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Abstract

Traditional rateless codes were designed without the use of a feedback channel, though one is available in

many applications. In this work, we build upon recent interest in rateless coding with feedback to produce a novel

approach, dubbed Delete-and-Conquer coding, for rateless coding with very little feedback. In our scheme, the

feedback used is a measure of distance between a received word and the symbols already decoded at the receiver.

This distance, in turn, permits a transmitter to deduce which symbols have been decoded and exclude them from

subsequent transmissions. Our approach can be tuned to the specific transmission properties of a given feedback

channel, and we empirically show that a very small amount of feedback from receiver back to the transmitter can

significantly reduce coding overhead and encoding/decoding complexity. We also provide some analytically backed

intuition for this improvement.

I. INTRODUCTION

Reliable communication over erasure channels has emerged as a key technology for various Internet applications

(e.g., digital video broadcasting). In applications where there exists a high-throughput feedback channel, automatic

repeat request (ARQ) protocols can achieve capacity over erasure-based links. However, when such feedback

channels are not available, rateless codes, such as the capacity achieving Luby-Transform (LT) [1] and Raptor

codes [2], can often provide reliable communication for sufficiently long block lengths.

There have been several methods proposed in the literature for exploiting a feedback channel to improve coding

performance on short and intermediate block lengths, where LT codes are less efficient. The authors in [3] propose

real-time oblivious erasure codes, which utilize feedback messages to send the number of decoded symbols to the

broadcaster. Shifted LT codes [4] utilize a similar approach by shifting the LT codes’ Robust Solution distribution [1]

according to the number of decoded symbols noted through the receiver’s feedback channel. The authors in [5] use

more informative feedback messages to notify the transmitter of which input symbols have been decoded, and this

information is then applied to modify the degree distribution. Typical performance criteria for such feedback-based

schemes include:

• coding overhead: number of encoded symbols needed to decode all input symbols with a high probability;

• computation cost: the amount of arithmetic operations needed in the encoder and decoder;

• utilization of feedback channel: the amount of feedback transmitted through the back channel.

We propose a novel coding scheme, dubbed Delete-and-Conquer, that optimizes for these same metrics by using

a different type of feedback message. Our feedback contains information on the distance between a received

encoding symbol and the set of already decoded symbols at the receiver. The encoder uses this feedback to infer

which symbols are known to the decoder, and those symbols are excluded from future transmissions.

For applications with constrained feedback channels, a Delete-and-Conquer receiver opportunistically sends

distance feedback messages when certain conditions are met. In our case, feedbacks are sent for every received

symbol of distance 0 or 1 from the set of decoded symbols at the receiver. This type of 0− 1 distance message is

indeed a generalization of ACK-based protocols to the coded cases, as they notify the recovery of input symbols

involved in a linear equation. For even more constrained feedback channels, we consider scenarios when the

receiver sends a 0−1 feedback message with a fixed probability, allowing us to trade off the forward and feedback

transmissions according to the costs and constraints of both channels. We also discuss the most general form of

our approach, wherein all forward transmissions trigger distance feedback.
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It should be noted that we base our Delete-and-Conquer codes upon LT codes merely for ease of exposition;

the same methodology can apply to other rateless codes already in the literature. Our use of an LT base allows

Delete-and-Conquer codes to enjoy the same simple encoding and decoding procedures as LT codes, together with

similar analytical guarantees, while improving overall performance with only the nominal utilization of a feedback

channel. Finally, we compare our scheme in simulation to traditional LT codes, Growth codes [6], and online

rateless codes proposed in [7].

In summary, the contributions of our work are:

• We propose Delete-and-Conquer rateless codes based on a distance-type feedback;

• We provide precise analyses of Delete-and-Conquer codes for very short block lengths;

• We experimentally validate the performance gains of our scheme against some existing rateless codes.

A. Organization

The rest of this paper is organized as follows. In Section II we review various related coding schemes, and

specifically, in Section III, we provide some preliminaries of LT and online codes, which will be used in later

comparisons. Section IV describes the intuition of our Delete-and-Conquer coding scheme adapted for constrained

feedback scenarios, followed by its generalizations. Coding analyses are presented in Section V, and simulation

results are provided in Section VI. We conclude with overall thoughts in Section VII.

II. RELATED WORK

Both fixed rate low-density parity-check (LDPC) codes [8] and Turbo codes [9] are capable of correcting bit

errors, as well as erasures. Byers et al. in [10] have presented fixed rate Tornado codes as a class of simplified

capacity-achieving LDPC codes. Within the context of rateless coding, random linear codes (e.g.[11]) are well known

due to their low communication overhead, but the encoding and decoding computations make them practical only

for small message sizes. On the other hand, Luby Transform (LT) [1] codes and their extensions such as Raptor

codes [2] are examples of rateless codes that are asymptotically optimal and also have computationally efficient

encoding and decoding algorithms; unfortunately, they usually have poor performance for small block sizes [5] and

various optimization methods have been proposed [12] for these cases.

In some applications, like video streaming, intermediate symbol recovery is also important, as it is desirable

to decode some symbols before an entire frame has been received. The authors in [13] design different degree

distributions for high intermediate symbol recovery rates. More recently, there have also been proposed rateless

protocols that utilize side information fed back from the decoder to the encoder in order to improve the performance.

In the Real Time (RT) oblivious codes [3], the encoder starts with degree one symbols and the encoded symbol

degree increases based upon feedback messages containing the number of recovered symbols. Shifted LT codes

(SLT) [4] use the same type of feedback information as RT codes, but instead of increasing the encoded symbols

degree explicitly, SLT shift the Robust Soliton distribution according to the number of decoded symbols. The authors

in [14] study the problem of minimizing the amount of feedback in broadcast scenarios by combining extreme value

theory with rateless coding. As another class of feedback-based coding schemes, the authors in [7] propose online

codes, in which the decoder informs the encoder about which degree it should use for next encoded symbols.

Finally, the proposed scheme in [5] uses more informative feedback messages noting recovered symbols explicitly

to the encoder, at which point the recovered symbols are excluded and the degree distribution is redesigned for

subsequent encodings.

Our work differs from the cited works above in two key aspects: (1) we use a limited amount of distance-type

feedback messages for rateless codes, (2) our encoder excludes the recovered symbols from the future transmissions,

in addition to changing the degree distribution. As an example, though the work in [5] (described above) is similar

to our approach, its goal is to design a “good” degree distribution after each deletion step, and, in addition, their

scheme feeds back messages to inform the transmitter about the exact ID of recovered input symbols, which may

require a significant communication overhead for the feedback channel.

III. PRELIMINARIES

We next describe our problem and some rateless codes.
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A. Setup

We assume that an encoder (broadcaster) has k input symbols to transmit to all receivers over an erasure channel,

and that there exists a feedback channel through which receivers can send some information back to the encoder. In

contradistinction to previous works, we do not assume that the feedback channel is high bandwidth and error-free;

instead, we strive for a parsimonious use of the feedback channel. Indeed, we send back exactly one bit (plus some

header information) for each of a small fraction of received symbols. For sake of clarity, we restrict our attention

to the scenarios with one broadcaster and one receiver, although we do briefly describe the applicability of our

codes to the cases of multiple receivers in Section IV-C.

B. LT codes

1) Encoding: Luby Transform’s codes (LT) were first proposed in [1] and provide a rateless coding scheme

that has low overhead. Specifically, they support full recovery with probability 1− δ and computational complexity

O (k ln(k/δ)) using an expected k+O
(√

k ln2(k/δ)
)

error-free transmissions. The encoding process involves an

encoder picking a coding degree d, based on the Robust Soliton distribution [1], and then adding together d distinct

symbols (chosen uniformly at random) from the k input symbols to produce an encoding symbol in a given finite

field. The d chosen symbols are neighbors of the encoded symbol, and their indices are made available to the

decoder through explicit communication, e.g., by adding meta-information to the encoding symbols. In the design

of Robust Soliton distribution, it is presumed that the encoder does not utilize any side information fed back from

the decoder.

2) Decoding: The LT decoder (so-called Peeling decoder) uses a simple greedy algorithm, whose complexity is

typically less than traditional Gaussian elimination methods. In one variant, the decoder finds all encoding symbols

with degree 1, whose neighbor can be immediately recovered. These recovered input symbols are then excluded

from all output symbols that have them as neighbors, reducing the number of unknowns in those encoding symbols

by one. This process continues until there exists no encoding symbol with degree 1. Decoding succeeds if all input

symbols are recovered; alternatively, decoding fails if, at some point, there is no output symbol with degree 1.

C. Online codes

There also exist rateless-type codes with real-time properties that allow intermediate knowledge of some input

symbols as the decoding progresses. The authors in [6] propose Growth codes for the purposes of data collection

within lossy sensor networks. Growth codes’ degree increases as the coding progresses, while in the coding scheme

of [7], the receiver has the ability to control the decoding progress by requesting particular encoding degrees. In

this method, the average number of output symbols n required for decoding k input symbols is shown to be upper

bounded by 1.236k, referred as redundancy overhead 0.236.

IV. DELETE-AND-CONQUER CODES

In many communication systems, the bandwidth is mainly provisioned for forward transmissions, and, therefore, it

is advantageous to design feedback-based codes with a nominal utilization of the back channel. Within this context,

we develop Delete-and-Conquer codes that use a very small amount of feedback, which in turn can significantly

improve performance.

A. Delete-and-Conquer codes: Primitive form

There are several types of feedback messages that have been used with rateless coding in the literature:

• the receiver sends the number of decoded symbols to the transmitter [3, 4];

• the receiver notifies the transmitter of which input symbols have been recovered [5]; or

• the receiver suggests to the transmitter what kind of degrees it should use for future encodings [7].

Our approach uses feedback messages containing the distance of received symbols to the set of already recovered

symbols at the receiver. More precisely, given a set C of recovered symbols at the receiver and an encoding symbol

y, we are interested in the number of neighbors of y that are not present in C.

Based on distance definition, a Delete-and-Conquer receiver transmits feedback messages only in the case of

distances 0 or 1. Assuming that an encoded symbol y is received by the receiver and the set of decoded symbols
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is C, then if the distance between y and the set C is equal to 0 or 1, then all neighbors of y have been decoded

(distance 0) or can be decoded by an exclusive or operation (distance 1). Under such cases, the receiver transmits

one bit as feedback message to inform the transmitter that all neighbors of the previously received symbol are

decoded and can be excluded from future transmissions. Thereafter, the transmitter deletes the neighbors of y and

then rescales the primary degree distribution (e.g., Robust Soliton) to the smaller set of input symbols.

Example: Suppose that 4 input symbols xi (i = 1, ..., 4) are encoded and transmitted in the following order:

y1 = x1 ⊕ x2, y2 = x1 ⊕ x4, y3 = x4, and y4 = x1 ⊕ x2. Based on distance definition, y1 and y2 would have

distance 2, y3 distance 1, and y4 distance 0 (as x1 and x2 will be decoded after receiving y3). The Delete-and-

Conquer scheme therefore transmits a feedback message after receiving y3 and then after y4 signalling that x4, x1, x2
(in that order) have been decoded and can be excluded from subsequent transmissions.

The benefits of Delete-and-Conquer scheme are twofold compared to the previous feedback-based methods: (1)

it limits the amount of feedback messages, which are sent only in the cases of distance 0 or 1; (2) it reduces the

average degree of encoding symbols by excluding the recovered symbols from future transmissions, and thus, it

decreases the expected computational complexity in the encoder.

Rate-limited feedback: In the case of severe constrained feedback scenarios, we add the mechanism of probabilis-

tic feedback control, in which the receiver transmits feedback only with a given probability. This probability can be

determined according to feedback channel rate, condition, and the cost of back transmission. With this method, the

receiver can consider the utility and costs of transmitting feedback and accordingly choose the optimal feedback

probability to minimize an appropriate cost function. We briefly discuss the problem of utility-cost tradeoffs for

forward and back channels in the form of two examples in Section V, and further experimentally illustrate the

effect of such probabilistic feedback control in Section VI.

B. Generalization

The Delete-and-Conquer solution for constrained feedback cases can be generalized to the scenarios with a low-

cost feedback channel, which provides the possibility of transmitting feedback message for each received symbol. In

the generalized version of Delete-and-Conquer, each forward transmission triggers a feedback message, containing

the distance information; the encoder then process the collected distance information to infer which symbols have

been decoded up to the current step, and excludes those symbols from future transmissions. In order to process

distance information, we propose a distance graph structure to find the recovered symbols.

One may argue that it is possible to simply send an ACK (without distance information), based on which the

transmitter can learn about the recovered symbols, but under such circumstances, coding may not be even necessary

for point-to-point communications. If the ACK channel is error-prone, then the coding can improve performance,

as it potentially prevents from retransmission of already received symbols, in the cases of ACK loss. Moreover,

distance-type feedback messages are applicable to the broadcast scenarios as discussed in Section IV-C, while a

simple ACK method may not fit into those cases.

1) Bipartite Distance Graph: In the general form of Delete-and-Conquer scheme, the goal of the encoder is to

label each input symbol as either “decoded” or “not-yet-decoded” in a manner that is consistent with the distance

information, noting that there may be more than one such labeling. We therefore propose the use of a bipartite

x1 x2 x3 x4 x5 x6

y1 y2

2 2 2 2 2 3 3 3

(a) Before applying the Case 1 labeling

x1 x2 x3 x4 x5 x6

y1 y2

1 1 1 1 2 2

(b) After applying the Case 1 labeling

Fig. 1. Case 1: Full-distance (a) The encoding symbol y2 = x4 + x5 + x6 has full distance 3 to the current state of decoder. (b) The

distance graph of (a) after one time running of Case 1 labeling.

distance graph, which is depicted in Fig. 1(a) for a simple example with two consecutive encoding symbols y1
and y2. In this graph, input symbols are shown on the top and the encoding symbols on the bottom; each encoding
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x1 x2 x3 x4 x5 x6

y1 y2 y3

1 1 1 2 2 2 0 0

(a) Before applying the Case 2 labeling

x1 x2 x3 x4 x5 x6

y1 y2 y3

1 1 1 2 2 0

(b) After applying the Case 2 labeling

Fig. 2. Case 2: Zero-distance (a) In Case 2, there exist some symbols with distance 0. (b) The distance graph of (a) after applying Case

2 algorithm. Case 1 algorithm can be used for this graph, declaring the symbols x1, x2, x5, and x6 as decoded symbols.

symbol is connected to its neighbors through an edge with weight equal to the distance of that encoded symbol

from the set of already decoded symbols. For example, y1 is of distance 2 from the decoded set, meaning that only

two of the input symbols x1, x2, x3, x4, x5 are not known at the decoder.

Our labeling proceeds recursively, relying on two cases where the distance information fed back from the receiver

to the transmitter provides unambiguous information on which symbols have been decoded at the receiver. The

first case occurs when the distance of the encoded symbol is equal to its degree (number of neighbors), in which

case none of the symbol’s neighbors are known at the decoder (full-distance). The second case occurs when the

distance of the encoded symbol is 0, implying that all of the neighbors are known at the receiver (zero-distance).

Case 1: (Full-distance) In this case, we start with an encoding symbol whose distance is equal to the coding

degree, e.g., y2 in Fig. 1(a). The labeling algorithm finds neighbors of this encoding symbol with degree more

than one, such as x4, and deletes the edge between y2 and x4 together with any edge connecting x4 to other

encoding symbols. Accordingly, the algorithm reduces the weight of edges from involved encoding symbols by

one unit, resulting in Fig. 1(b). This algorithm continues until there is no encoding symbol whose distance is equal

to its degree, whereupon all input symbols with weight zero (e.g., x1, x2, and x3 in this example) can be labeled

“decoded” and excluded from future encodings.

Case 2: (Zero-distance) In this case, there exists an encoding symbol with distance 0, implying that all of

its neighbors have already been decoded and can be excluded from the future transmissions, as in Fig. 2(a) for

encoding symbol y3. The Case 2 labeling algorithm repeats (until exhaustion) by identifying a symbol of distance

0 and then finding its neighbors that have degree more than one, e.g., x5, deleting all edges from the encoding

symbol to these neighbors, together with edges coming out of these neighbors (resulting in Fig. 2(b), for which

Case 1 now applies, allowing the encoder to infer that the symbols x1, x2, x5, and x6 are decoded and can be

excluded from future transmissions).

C. Multiple receivers

Traditional rateless codes make no use of the feedback channel, making them applicable to the broadcast scenarios;

on the other hand, exploiting feedback-based coding schemes under such scenarios may not be straightforward,

as we assume that the transmitter broadcasts the encoded symbols to receivers, and that there exists a dedicated

feedback channel between each receiver and the transmitter. In the Delete-and-Conquer scheme, excluding a subset

of recovered symbols from the subsequent transmissions may increase the total number of transmissions, but does

not impede coding progress. In particular, for the case of no exclusion, Delete-and-Conquer will reduce to the

traditional LT codes. Therefore, for the multiple receivers scenario, if the set of symbols labeled decoded is not the

same across the receivers, the transmitter will exclude those symbols that are decoded by all receivers. In the worst

case, no symbol is dropped from the encoding set, which reduces the Delete-and-Conquer codes to the original

LT codes. Alternatively, the encoder can simply take the maximum over distance values collected from different

receivers, and then proceeds with the labeling algorithms based on the maximum distance.

V. CODING ANALYSIS

In this section, we first provide some analysis results of the Delete-and-Conquer scheme, followed by an analytical

illustration of the benefits of feedback for small block lengths k = 2 and k = 3. To this end, we maintain the
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assumption that initially there exist k input symbols and at some point, the encoder deletes d symbols and continues

with a smaller set of k − d input symbols.

The Delete-and-Conquer distribution is thus given by ωk,d(i) = πk−d(i) (for i = 1, ..., k − d), where d is the

number of deleted symbols and πk−d is the Robust Soliton distribution [1] calculated over k − d symbols.

We may straightforwardly adapt the results of [1] to see that the average degree of an encoding symbol under the

distribution ωk,d is given by D̄ = O(ln(k−d)), and its computational complexity is O
(
(k − d) ln k−d

δ

)
. Furthermore,

an encoder that deletes d symbols out of k symbols, needs to transmit at most k−d+O
(√

k − d ln2(k−d
δ

)
)

symbols

so that the decoder be able to decode all input symbols with probability at least 1− δ. On the other hand, from the

total coding overhead viewpoint, the Delete-and-Conquer performance reduces to the standard LT codes when there

is no feedback, though our simulation results show that it significantly reduces the number of transmissions needed

for the receiver to decode all input symbols. For instance, if only degree 1 encoding symbols are transmitted, then

the Delete-and-Conquer approach avoids the coupon collector phenomenon [15] in that it deletes decoded symbols

from future encodings.

A. Small block length calculation

We next precisely analyze the performance of Delete-and-Conquer codes for very short block lengths k = 2
and 3. Although such small block lengths are far from practical values, they can provide some insight into Delete-

and-Conquer scheme. For larger block lengths, our exact calculation of overhead in terms of degree probabilities

becomes unwieldy.

1) Example 1: In the first example, we consider the block length k = 2, in which two input symbols x1 and x2
are encoded as x1 or x2 each with probability p, and x1 ⊕ x2 with probability 1− 2p.

Lemma 1. For the block length k = 2, and if the probability of degree 1 symbol is 2p, then the Delete-and-Conquer

codes provide a savings of
2p2

1−p
transmissions over LT codes for successful decoding.

Proof: We first calculate the expected number of transmissions required by the LT codes to recover all symbols.

To this end, we obtain the probability of completely decoding within n ≥ 2 transmissions. For instance, in the case

of n = 2, the decoder should receive one of the following sets to successfully recover x1 and x2:

{x1, x2}, {x1, x1 ⊕ x2}, {x2,x1}, {x2, x1 ⊕ x2},
{x1 ⊕ x2, x1}, {x1 ⊕ x2, x2}.

Accordingly, the probability of decoding within two transmissions can be calculated as 4p− 6p2. For a general n
number of transmissions one can see that the probability of recovery within the n transmissions is:

P (n) = 2pn−1 (p+ (1− 2p)) + (1− 2p)n−1 (p+ p) ;

and hence, the expected total number of transmissions is:

n̄LT =

∞∑

n=2

nP (n) =
4p2 − p+ 1

2p(1− p)
. (1)

The situation is slightly different for Delete-and-Conquer codes, which can successfully decode two symbols

within n = 2 transmissions under the following possibilities for the received symbols:

{x1, x2}, {x2, x1}, {x1 ⊕ x2, x1}, {x1 ⊕ x2, x2}.

And the probability of terminating after two transmissions is obtained as 4p − 4p2. Finally, the receiver would

successfully decode x1 and x2 within n ≥ 3 transmissions in the case of the following received symbols:

{
n−1 Symbols

︷ ︸︸ ︷

x1 ⊕ x2, ..., x1 ⊕ x2, x1}, {
n−1 Symbols

︷ ︸︸ ︷

x1 ⊕ x2, ..., x1 ⊕ x2, x2}.
The probability of successful recovery in this case would be:

Q(n) = (1− 2p)n−1 (p+ p) , n ≥ 3;
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and therefore, the expected number of total transmissions for the Delete-and-Conquer scheme is equal to:

n̄Del = 2(4p− 4p2) +

∞∑

n=3

nQ(n) =
4p2 + 1

2p
. (2)

Using (1) and (2), the expected amount of savings n̄LT − n̄Del is obtained.

Lemma 2. Assuming that for the block length k = 2, each transmission through the forward channel has a cost

C1, while each feedback transmission has a cost C2, then the inequality

1− p

p
≤ C1

C2

specifies the economical region of transmitting feedback.

Proof: One can see that the expected number of feedback messages sent by the Delete-and-Conquer is 2p,

as one feedback is transmitted only in the cases of received symbols {x1, x2} and {x2, x1} (each happens with

probability p), noting that we exclude the last feedback message notifying the full recovery. The last ACK message

is in fact needed by other coding schemes to stop the encoder from further transmissions. Using the Lemma 1,

it would be worthwhile to send feedback messages rather than sending more encoded symbols if the following

inequality holds:

2pC2 ≤
2p2

1− p
C1 ⇒

1− p

p
≤ C1

C2

.

2) Example 2: For the block length k = 3, the authors in [12] have derived the expected number of encoding

symbols required by LT codes for complete decoding. In this model, the set of received symbols at the decoder

defines a state of an absorbing Markov chain, and the process (i.e., transmission of encoded symbols) ends when

it arrives to the absorbing state that includes all input symbols decoded. We similarly adapt this approach to obtain

the Markov chain for the Delete-and-Conquer scheme with 3 input symbols, as shown in Fig. 3. This Markov

chain includes states up to the permutations of input symbols, e.g., two states {x1, x2 ⊕ x3} and {x2, x1 ⊕ x3} are

isomorphic and it is enough to consider a single unique state for each group of isomorphic states. In this figure,

darker states are irreducible by the decoder whereas other states can be immediately reduced to darker ones. By

constructing the state transition matrix P as follows

P =

(
Q R

0 I

)

we can compute the expected number of steps (transmissions) from the initial state to the absorbing state {x1, x2, x3}.

In the notation, matrix Q represents the transition probabilities between transient states, R denotes the probabilities

between transient states and the absorbing state, and I is an identity matrix.

Lemma 3. For the block length k = 3, given that pj is the probability of transmitting an encoded symbol with

degree j, the expected number of transmissions required by the Delete-and-Conquer scheme for successful decoding

is:

n̄Del =

1

p1
+

p2
3p1 + 2p2

+
p2
2

p1 + p2
+

3p1 − 4p2 + p1p2 + p2
2
+ 3

3− p2
. (3)

Proof: In an absorbing Markov chain with a transition matrix P and the fundamental matrix N = I+Q+Q2 + ... = (I−Q
the expected number of steps (transmissions) from the initial state to the absorbing one is: n̄ = π0Nc, where
π0 = (1 0 ... 0) is the initial probability corresponding to the state of no symbols been transmitted, and c = (1 .. 1)T
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Fig. 3. State space of the Delete-and-Conquer scheme with 3 input symbols. The four states in a box are considered one state. Notation

xixj represents the symbol xi ⊕ xj , and dotted red lines represent transitions with a feedback.

[16]. From the Fig. 3, we obtain the matrix:

P =

















0 p1 p2 p3 0 0 0 0 0
0 0 0 0 p′1 p′2 0 0 0

0 0 p2

3
0 2p1

3

p1

3
p3

2p2

3
0

0 0 0 p3 0 p1 p2 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 p′2 0 0 p′1
0 0 0 0 0 p1

3

p2+3p3

3

2p2

3

2p1

3

0 0 0 0 0 0 0 1− p1 p1
0 0 0 0 0 0 0 0 1

















where we assume that after each symbol deletion at the encoder, the probabilities are normalized by dividing by

the sum of the remaining degrees. This leads to the lemma statement.
The expected number of transmissions for LT codes has been derived in [12] as follows:

n̄LT =

1

p1
+

6p1
p1 − 3

+
18p1

(3− p2)(3− 2p1 − p2)
+

9p1
2(p1 + p2)(3p1 + 2p2)

. (4)

If the encoder uses only degree 1 symbols (i.e., p1 = 1), the expected number of required symbols for LT codes is

n̄LT = 5.5, illustrating the effect of the coupon collector’s problem; on the other hand, Delete-and-Conquer requires

only n̄Del = 3 encoded symbols, which is the minimum possible number of transmissions. Using the optimizations

in [12] provides p1 = 0.524, p2 = 0.366, p3 = 0.109, resulting in a total of 4.046 transmissions, whereas Delete-and-

Conquer coding with these same probabilities requires n̄Del = 3.5214 transmissions. In general, we can numerically

compare (4) to (3) to see that Delete-and-Conquer improves the LT performance, and that it can decrease the total

number of transmissions up to 2.4-fold.

Lemma 4. For k = 3 input symbols, the expected number of feedbacks transmitted by the Delete-and-Conquer

scheme before conclusion (i.e. not including the termination signal) is:

f̄ =
3p1

3p1 + 2p2
+

6p1
3− p2

+
p2
1

p1 + p2
− 2p1. (5)

Proof: In an absorbing Markov chain, the probability of ever visiting state j when starting at a transient state i
is the entry hij of the matrix H = (N− I)N−1

dg
, where N is the fundamental matrix and Ndg is the diagonal matrix

with the same diagonal as N, and I is an identity matrix [16]. In Fig. 3, a feedback is transmitted if transitions along

the dotted-line occur, e.g. a transition from the state 1 to state 2. Accordingly, the probability of such transitions,

and hence the expected number of feedback transmitted is given by:

f̄ = h12 + h12h25 + h13h35 + h13h36 + h14h46;
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from which the result follows.

Similar to k = 2 symbols, we can obtain the economical region of transmitting feedback in the Delete-and-

Conquer codes for the block length 3. We therefore maintain the same previous assumption of cost C1 for forward

transmission and the cost of C2 for the back channel, and hence, it is worthwhile to send feedback if:

f̄

n̄LT − n̄Del

≤ C1

C2

,

where n̄Del, n̄LT , and f̄ are calculated in (3), (4), and (5).

VI. SIMULATION RESULTS

We evaluate the performance of our Delete-and-Conquer codes with respect to standard LT codes, Growth

codes, and a recently proposed coding scheme [7] (referred as Online codes) through simulation. We are primarily

concerned with the metrics expressed in the introduction: coding overhead, computational costs, intermediate

performance, and the amount of feedback sent. The parameters c and δ in Robust Soliton distribution [1] are

specified for each simulation.

a) Coding overhead: LT codes have been proved to be symptomatically optimal in terms of required encoding

symbols to decode all k input symbols; however, they are also known to have poor performance for small and

intermediate block lengths. Online codes are shown to have a low redundancy overhead 0.236, lower than other

online schemes such as Growth codes. Our simulation results with block lengths less than k = 500 symbols and

1000 trials are shown in Fig. 4(a), confirming that the Delete-and-Conquer scheme improves the performance of

LT codes. We also observe that Delete-and-Conquer codes have smaller overhead compared with the Growth codes

and similar performance to the Online codes. On the other hand, we compare the amount (bits) of feedback sent

by the Online codes and our method in Fig. 4(b), which demonstrates that the Delete-and-Conquer codes require

less feedback than Online codes to achieve almost the same performance in terms of coding overhead.

b) Intermediate performance: Although LT codes are capacity-achieving, they lack real-time features; in

other words, not many input symbols are decoded until the decoding process is almost complete. To investigate

the progressive performance of Delete-and-Conquer codes, we run simulations with the block length k = 128 and

1000 trials. Our results are shown in Fig. 5, demonstrating that Growth codes can provide higher symbol recovery

rate at the beginning, while Delete-and-Conquer achieves better performance when a small fraction of symbols are

unrecovered (near the “knee”).

c) Rate-limited feedback: As discussed in Section IV, we can add an order of flexibility to the Delete-and-

Conquer receiver by probabilistic feedback control. Considering the Delete-and-Conquer scheme, every time that

the receiver should transmit a feedback (i.e., a symbol with distance 0 or 1 has been received), it sends feedback

only with a given probability, which can be obtained from the overall forward and feedback costs minimization. In

the simulation, we increase the probability of feedback transmission, as shown in Fig. 6, and observe the effect of

such increment on the coding overhead. As it is shown in Fig. 6(a), by increasing the probability of feedback the

overhead (1+ ǫ) decreases, especially for short block lengths, where the original LT codes have poor performance;

on the other hand, by increasing the probability, the number of feedback transmitted increases, as shown in Fig.

6(b). Therefore, based on the available rate of feedback channel and the costs of forward and back channels, the

receiver can choose an optimal probability to send feedback.

d) Computational costs: Computational costs at the encoder and decoder are mainly related to the average

degree of input symbols. Fig. 7 shows the average degree of input symbols for different codes compared to the

Delete-and-Conquer codes. We observe that our method decreases the average degree of input symbols (hence

computational complexity) by excluding the recovered symbols from the future encodings.
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Fig. 4. (a) Number of encoding symbols required by various rateless codes, and (b) feedbacks transmitted to achieve that performance

(c = 1.5, δ = 0.1).
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Fig. 5. Intermediate performance for k = 128 symbols (c = 0.9, δ = 0.1).
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Fig. 6. Coding overhead and transmitted feedbacks (normalized by the number of inputs) by Delete-and-Conquer with probabilistic feedback

(c = 0.9, δ = 0.1).
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VII. CONCLUSION

In this paper, we have developed Delete-and-Conquer rateless codes based on distance-type feedback messages.

For very short block lengths, we have derived the precise performance gains, amount of feedback sent, and the

regime in which it is economical to utilize feedback with our method. The same approach can be easily extended

to obtain optimal degree distributions, minimizing the overall cost of transmissions in our method. For larger block

lengths, we have experimentally validated that Delete-and-Conquer codes require less forward transmissions than

standard LT codes, Growth codes, and low-overhead online codes. Moreover, we showed that Delete-and-Conquer

decreases the computational complexity of encoding/decoding by excluding the recovered symbols from subsequent

transmissions, in addition to intermediate performance improvement for relatively small block lengths, e.g., k = 128.

On the whole, we believe that Delete-and-Conquer codes can improve several aspects of rateless codes perfor-

mance with a nominal utilization of the back channel (i.e., one bit per feedback for a fraction of received symbols),

making them suitable for applications with constrained feedback channel. In future works, we plan to investigate

the applicability of the distance-type feedback to Index Coding (IC).
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