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Abstract

We consider the problem of finding a minimum identifying code in a graph, i.e., a designated set
of vertices whose neighborhoods uniquely overlap at any vertex on the graph. This identifying code

problem was initially introduced in 1998 and has been since fundamentally connected to a wide range
of applications, including fault diagnosis, location detection, environmental monitoring, and connections
to information theory, superimposed codes, and tilings. Though this problem is NP-complete, its known
reduction is from 3-SAT and does not readily yield an approximation algorithm. In this paper we show
that the identifying code problem is computationally equivalent to the set cover problem and present
a Θ(log n)-approximation algorithm based on the greedy approach for set cover; we further show that,
subject to reasonable assumptions, no polynomial-time approximation algorithm can do better. Finally,
we show that a generalization of the identifying codes problem, for which no complexity results were
known thusfar, is NP-hard.

1 INTRODUCTION

An identifying code is a subset of vertices in a graph with the property that the incoming neighborhood of
any vertex has a unique intersection with the code. The goal of the identifying code problem is to find an
identifying code of minimum cardinality for a given graph. Identifying codes have been studied extensively
since their introduction in 1998 [1], and they have formed a fundamental aspect of a wide variety of theoretical
work and practical applications. They are also intimately linked to locating-dominating sets, introduced in
1988 [2] and well studied thereafter.

The initial application for identifying codes was to fault diagnosis in multiprocessor systems [1]. Since
then, identifying codes were extended and applied to location detection in hostile environments [3–5], to
energy balancing of such systems [6], and to dynamic location detection agents [7]. More recently, these
codes were extended for applications to environmental monitoring [8].

From a theoretical perspective, identifying codes are closely linked to error-correcting codes, specifically,
super-imposed codes [9], covering codes [1, 7], and locating-dominating codes [10]. The identifying code
problem is itself NP-complete [11], although information-theoretic bounds are known [1, 6] and many of
the best identifying codes to date are constructed for periodic geometries using known tilings. The source
identification problem, a generalization of the identifying codes has been shown to be NP-complete for a
time-constrained version [8] but no general results are known.

Despite the extensive amount of work in the area and the fundamental nature of the problem, little has
been done towards developing a proven approximation algorithm for the identifying code problem, or its
cousins, in the general case. The most general approach we know of so far is the greedy heuristic in [5],
which Moncel showed to have no approximation guarantees in [12]. As such, the main contribution of this
work is to relate two identifying code variants to well-studied covering problems, primarily to the set cover
problem. In one case, our reduction is tight enough that we can carry over set cover hardness results together
with greedy approximations, thus providing a concrete and efficient methods for producing provenly good
identifying codes in arbitrary graphs for a wide variety of theoretical and practical applications.
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The rest of the paper is organized as follows. We give formal definitions of the identifying codes, set
covers and the source identification problem in Section 2. In Section 3 we show polynomial equivalence
of the set cover problem and the identifying code problem, and we similarly prove the NP-completeness
of the source identification problem. In Section 4 we provide an O(log n)-approximation algorithm for the
identifying code problem and show that this approximation ratio is tight. We also present simulation results
on random graphs.

2 FORMAL DEFINITIONS AND RELATED WORK

2.1 Identifying codes

Given a directed graph G = (V, E), an incoming ball B+(v) consists of edges directed towards v ∈ V ,
together with v; likewise, an outgoing ball B−(v) consists of edges directed away from v, together with v.
For undirected graphs, we shall simply use the notation B(v) = B+(v) = B−(v).

As such, an identifying code is a set of vertices in a graph G with the property that any incoming ball in
G has a unique intersection with the identifying code. More precisely, a non-empty subset C ⊆ V is called
a code and its elements are codewords. For a given code C, the identifying set IC(v) of a vertex v is defined
to be the codewords directed towards v, i.e., IC(v) = B+(v) ∩ C (if C is not specified, it is assumed to be
the set of all vertices V ). A code C is thus an identifying code if each identifying set of the code is unique,
or in other words ∀u, v ∈ V u = v ←→ IC(u) = IC(v).

Identifying codes were initially introduced in [1] and have since developed a prodigious following in the
literature. Recently, random graphs were studied in the context of identifying codes [13], where it was shown
that any subset of a certain threshold size is almost surely an identifying code (asymptotically in the size
of the graph). It was also shown that the threshold is asymptotically sharp, i.e., the probability of finding
an identifying code of slightly smaller size asymptotically approaches zero. In contrast to very large random
graphs, finding a minimum size identifying code for arbitrary undirected and directed graphs was proven
to be NP-complete in [11, 14], based on a reduction from the 3-satisfiability problem. An exception to this
result is the specific case of undirected trees, for which there exists a polynomial-time algorithm for finding
a minimum radius 1 identifying code.

In spite of all the above work, little has been done towards a polynomial time approximation algorithm
for arbitrary graphs. In [3, 5] identifying codes were suggested for use in indoor location detection. A
polynomial-time greedy heuristic and its distributed variant were suggested for obtaining an identifying
code, and simulations showed it to work well over random graphs. Unfortunately, no guarantees for the
quality of the obtained solution were presented, and Moncel later proved in [12] that no such guarantees
exist.

2.2 Covering problems

Let U be a base set of m elements and let S be a set of subsets of U. We say that a subset S ∈ S covers
its elements in U. A cover C ⊆ S is a collection of subsets whose union is U. The set cover problem
asks to find a cover C of smallest cardinality. The set cover problem is one of the oldest and most studied
NP-hard problem [15]. It admits the following (well-studied) greedy approximation: at each step, and until
exhaustion, choose the heretofore unselected set in S that covers the largest number of uncovered elements
in the base set.

The performance ratio of the greedy set cover algorithm has also been well-studied. The classic results of
Lovasz and Johnson [16, 17] showed that

sgreedy

smin
= Θ(ln m), where smin, sgreedy are the minimum and the greedy

covers, and m is the size of the base set. Later Slavik [18] sharpened this ratio further, reaching a difference
of less than 1.1 between the lower and upper bounds on the performance ratio. Hardness results [19] show
that for any ε > 0, no polynomial-time algorithm can approximate the minimum set cover within (1−ε) ln m
unless NP ⊂ TIME

[

mO(log log m)
]

, suggesting that this greedy approach is one of the best polynomial
approximations to the problem.

Another closely related problem is the test cover problem. This problem asks to find the smallest set T

of tests Ti ⊂ U such that any pair x, y ∈ U is differentiated by at least one test Ti (i.e., |{x, y} ∩ Ti| = 1).
The test covering problem appears naturally in identification problems, with roots in an agricultural study
more than 20 years ago, regaining interest recently due to applications in bioinformatics. It is also a general
case of the identifying code problem and thus motivates some of our work in Section 4.

Garey and Johnson [20] showed the test cover problem to be NP-hard and later Moret and Shapiro [21]



suggested greedy approximations based on a reduction to the set cover problem. More recent work [22,
23] studied different branch-and-bound approximations and established a hardness of approximation by
extending the reduction in [21], and using the result of Feige [19]. Berman et. al. [24] also suggested a novel
greedy approximation and showed its performance ratio to be within a small constant from the hardness
result of [23].

2.3 Source identification

An important related problem is the sensor placement problem [8]. Given a utility distribution network
represented as a directed weighted graph, the sensor placement problem is to select the smallest subset of
vertices where to place sensors. Various objectives of the sensor placement are discussed in [8]. The source
identification problem aims to place sensors in a network so that the source of a flow originating from any
of the vertices can be uniquely identified by the sensors. We assume that the weights in the utility network
graph are defined by the shortest path metric of the flow translocation rates (the time it takes for a unit of
material to pass from one vertex to the other).

The source identification problem is a generalization of the identifying codes problem. An identifying
code must uniquely identify a vertex by the set of of the codewords within distance r of the vertex. An
identifying sensor placement allows vertices to be identified by any sensor downstream from it and uses the
distance ordering of sensors from the vertex as a distinguishing feature.

Let G = (V, E) be a directed graph with positive edge weights representing the utility distribution net-
work. Let R ⊆ V , R = {r0, . . . , r|R|−1} be the set of sensors in the graph. For a vertex v, let (rv

0 , . . . , rv
|R|−1)

be the sensors ordered by their distance from vertex v (breaking the ties by sensor number). Further, let
(tv1 , . . . , t

v
k−1) be the distance difference sequence (i.e., tvj = d(v, rv

j ) − d(v, rv
j−1) = wvrv

j
− wvrv

j−1
and is

possibly infinite). Then we say the set of sensors R distinguishes between vertices u and v if the sequences
〈(ru

0 , 0), (ru
1 , t1), . . . , (r

u
|R|−1, t|R|−1)〉 and 〈(rv

0 , 0), (rv
1 , t1), . . . , (r

v
|R|−1, t|R|−1)〉 are different. The source iden-

tification problem is to find the smallest set R of sensors that distinguishes between any two vertices in
V .

The time-constrained version of the source identification problem (i.e., the sensors that distinguish be-
tween two given vertices must be within a given distance limit from the vertices) is NP-complete [8]. However,
no progress has been made on the general source identification problem and no approximation algorithm is
known.

3 REDUCTIONS

In this section we establish the computational equivalence between the identifying codes and the set cover
problems via reductions to and from the set cover problem and the identifying code problem. In addition,
we present a heretofore unknown equivalence between set cover and the source identification problem.

Formally, we connect the following problems:

SET-COVER

INSTANCE: Set S of subsets of a base set U.
SOLUTION: A collection C ⊆ S such that ∪s∈Cs =
U .
MEASURE: The size of the cover: |C |.
ID-CODE

INSTANCE: Graph G = (V, E).
SOLUTION: A set C ⊆ V that is an identifying code
of G.
MEASURE: The size of the identifying code: |C|.
SOURCE-ID

INSTANCE: Directed weighted graph G = (V, E),
w : E → R+.
SOLUTION: A set R ⊆ V of source identifying sen-
sors of G.
MEASURE: The size of the source identifying set:
|R|.



3.1 ID-CODE ≤P SET-COVER

We first show a reduction from the minimum identifying code problem to the set cover problem. We state
the main theorem first and then we provide several properties of identifying codes that are used in its proof.

Theorem 1 Given a graph G of n vertices, finding an identifying code requires no more computations than

a set cover solution over a base set of n(n−1)
2 elements together with O(n3) operations of length n binary

vectors.

Definition 1 The difference set DC(u, v) is the symmetric difference between identifying sets of vertices
u, v ∈ V :

DC(u, v)
.
= d(IC(u), IC(v))

.
= [IC(u) − IC(v)] ∪ [IC(v) − IC(u)] ,

where subtraction denotes set difference. For simplicity of notation, we shall omit the subscript when looking
at identifying codes consisting of all graph vertices, i.e., D(u, z) = DV (u, z). We shall also use D to denote
the set of difference sets of all vertices pairs, i.e., D = {DC(u, z)|(u, z) ∈ U} where U = {(u, z)|u 6= z ∈ V }.

The following Lemma follows trivially from the definition of an identifying code.

Lemma 1 A code C is an identifying code iff ∅ 6∈ D.

Definition 2 Let U = {(u, z)|u 6= z, u, z ∈ V }. Then the distinguishing set δc is the set of vertex pairs in
U for which c is a member of their difference set: δc = {(u, z) ∈ U | c ∈ DC(u, z)}.

Lemma 2 C is an identifying code iff the family of all distinguishing sets covers U = {(u, z) |u 6= z, u, z ∈
V }.

Proof of Theorem 1: Consider the following construction of an identifying code: compute {I(u)|u ∈ V }
and ∆ = {δu|u ∈ V } and then find the minimum set cover of (U, ∆); the resulting identifying code will be
C = {u ∈ V |δu ∈ C}. Lemma 2 guarantees that C is an identifying code, and the optimality of the set cover
guarantees that no smaller identifying code can be found. To complete the proof we observe that computing
the identifying sets I(u) naively requires θ(n2) additions of binary vectors, and computing ∆ requires n

operations for each of the n(n−1)
2 elements in |U |.

3.2 SET-COVER ≤P ID-CODE

Theorem 2 Given a base set U of m elements and a family of subsets S of cardinality s = |S| finding the
optimal set cover requires no more computations than finding an identifying code over either a directed graph
of n = 2 max(s, m + 1)− 1 vertices or an undirected graph of 2m + max(s, m +1) ≤ n ≤ 3m + max(s, m + 1)
vertices (together with O(ms2) operations).

To prove the theorem we first provide and analyze a construction of a specific directed graph (that will be
used in the reduction) from an instance of the set cover problem. The construction and proof for undirected
graphs is omitted due to space limitations.

Construction 1 Let U = {v1, ..., vm} be a base set and S = {S1, ...,Sm+1} be a family of subsets of U.
Then we construct a directed graph G([U], [S]) with n = 2m + 1 vertices V = {v1, . . . , vn} and edges E such
that

1. The outgoing ball of each vertex v1 . . . vm+1 is constructed to be

B−(vi) =

{

Si if vi ∈ Si

V − Si otherwise.
(1)

2. The outgoing balls of the remaining vertices vm+2 . . . vn are constructed to be:

B−(vi) = {vi, vi−m−1}.



U v{= 1 v , 2 v , 3 S   } 1 v{= 1 S ,} 2 v{= 1 v, 2 S ,} 3 v{= 2 S ,} 4 v{= 1 v, 3}

v1

v2

v3

v5

v6

v7

v4

v{ 1 v , 2 v , 3 v, 5}

v{ 2 v , 4 v, 6}

v{ 3 v , 7}

v{ 3 v , 4}

v{ 3 v , 4 v, 5}

v{ 3 v , 4 v, 6}

v{ 3 v , 4 v, 7}

Figure 1: An example of our reduction framework. Incoming balls are noted near their corresponding
vertices.

We next provide several properties of an arbitrary identifying code C for the graph G([U], [S]); it might
be useful to refer to Fig. 1, which demonstrates our construction on a simple example, when reading these
properties. Recall that we use the notation D(vi, vj) to denote the difference set of the pair (vi, vj) ∈
G([U], [S]), and the notation δvi

to denote the distinguishing set of vertex vi. We introduce as additional

notation the set [U] = {(vi, vi+m+1) | i ≤ m} and corresponding operator
←→
δ = δ ∩ [U]. The following

properties are provided without proof.

Property 1 Any identifying code of G([U], [S]) must contain all vertices vm+2 . . . vn.

Property 2 For all k ≥ m + 2, the distinguishing set
←→
δvk

is empty.

Property 3 C is an identifying code iff {vm+2 . . . vn} ⊆ C and {
←→
δvi
| i ≤ m + 1 and vi ∈ C} is a cover of

[U].

Note that Property 3 determines a one-to-one correspondence between identifying codes and set covers
using distinguishing sets, so that, in fact, a minimum identifying code produces a minimum set cover. In

addition, the family of distinguishing sets {
←→
δ vi
|i ≤ m + 1} over support [U] is equivalent to the original

family of subset S over the support U. We use this to develop the following Lemma, which is provided
without proof.

Lemma 3 C is an identifying code of G([U], [S]) if and only if {vm+2 . . . vn} ⊆ C and {Si | vi ∈ C, i ≤ m+1}
is a set cover of (U,S).

Proof of Theorem 2: Given a base set U of size m a family of subsets S of size s, we trivially produce
sets U′ and S′ that fit Construction 1 as follows: (i) if s < m + 1, then U′ is derived from U by padding it
with lg(m+1−s) new items1, and S′ is derived from S by adding all possible subsets of these new items; (ii)
otherwise, U′ is derived from U by padding it with s− 1−m new items, and these items are also added to
each set in S to form S′. Lemma 3 then assures that a minimum identifying code of G([U′], [S′]) corresponds
to a minimum set cover of (U, S).

3.3 SET-COVER ≤P SOURCE-ID

We now show that the source identification problem is NP-complete using a reduction from the set cover
problem to the source identification problem.

Theorem 3 The source identification sensor placement problem is NP-complete.

1As is common, we use the notation lg(x) to denote log2(x).
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Figure 2: The graph resulting from an instance of a set cover problem.

Proof: Recall that an instance of a set cover problem is defined by a base set of elements U = {1, ..., n} and
a collection of sets S = {S1, ..., Sm}. We construct a graph G = (V,E) such that there exists a set cover of
size at most k C ⊆ S if and only if there exists a placement of k + n + m + 1 sensor for source identification
in G.

For each element i ∈ U we add two vertices i, i′ ∈ V and for each set Sj ∈ S we add two vertices
Sj , S

′
j ∈ V . We also add a vertex t ∈ V : V = U ∪ U ′ ∪ S ∪ S ′ ∪ {t}. For each element i we add the

corresponding edge (i, i′) ∈ E. For each set Sj we add an edge (Sj , S
′
j) and edges (Sj , t) and (S′

j , t). For
each element i ∈ Sj we add edges (i, Sj) and (i′, S′

j). All edges are of weight 1. See Fig. 2.

Lemma 4 There exists a cover of size at most k in S if and only if there exists a set of identifying sensors
of size k + n + m + 1 in G.

Proof: Let C ⊆ S be a set cover of size k. We place sensors at all the vertices i′, the vertices Sj corresponding
to the sets in C , all the vertices S ′

p, and the vertex t. Then for every item i ∈ U there is an edge (i, Sj)
such that i ∈ Sj and Sj ∈ C and therefore Sj has a sensor at it. Thus, every vertex i is identified by the
tuple 〈(Sj , 0), (i′, 0), ...〉. Every vertex i′ is identified by 〈(i′, 0), (S′

j , 1), ...〉. Similarly, the vertices Sj are
identified by 〈(Sj , 0), (S′

j , 1), (t, 1)〉 if there is a sensor there, or 〈(S ′
j , 0), (t, 0)〉. The vertices S′

j are identified
by 〈(S′

j , 0), (t, 1)〉. Finally, the vertex t is identified by 〈(t, 0)〉.
Let R ⊆ V be the set of identifying sensors. Note, that any vertex that has fewer than 2 outgoing edges

must have a sensor in it for identification to be possible. Thus, t ∈ R and all i′, S′
j ∈ R. There must be

additional vertices in R since U ′ ∪ S′ ∪ {t} does not distinguish between U and U ′. Moreover, it is sufficient
to have a sensor at either i or Sj such that (i, Sj) ∈ E. We can replace every sensor at a vertex in U with a
sensor at a vertex in S connected to it without increasing the size of R and still have an identifying sensor
set. Given this set R we create a set cover C by choosing every set corresponding to a vertex Sj ∈ R. Since
every i ∈ U has an edge to some Sj ∈ R then, by construction, every i ∈ U is contained in some set Sj ∈ C.
Thus, by definition, C is a set cover of size |R| − |U ′| − |S ′| − |{t}| = |R| − n−m− 1, as claimed.

Polynomial verification of a source identifying solution is immediate, thus completing our NP-completeness
proof.

4 APPROXIMATING THE IDENTIFYING CODE

Given a basis set U of size m and a family of subsets S, a well-known greedy approximation involves
repeatedly picking (until exhaustion) an unused set in S that covers the largest number of uncovered elements
of U. This algorithm has performance ratio

sgreedy

smin
= ln m− ln ln m + Θ(1), where smin and sgreedy represent

the minimum and greedily produced set covers respectively [18]. The reduction in Theorem 2 thus provides
the following construction.

Construction 2 Let G=(V,E) be a given graph, and let Set cover greedy(U,S) be the greedy set cover
algorithm, then the identifying code greedy algorithm is:



IDgreedy(G)→ Cgreedy

1. Compute {I(u)|u ∈ V }.
2. Compute ∆ = {δu|u ∈ V }.
3. C← Set cover greedy(U,∆)
4. Output Cgreedy ← {u ∈ V | δu ∈ C}

The remainder of this section is devoted to proving that the reduction in Theorem 1 is tight enough to
maintain the approximation guarantees of the set cover solution. This result is formalized with the following
theorem.

Theorem 4 There exist non-negative constants c1 and c2 such that, for any graph G on n vertices,

c1 ln n <
cgreedy

cmin

< c2 ln n,

where cmin and cgreedy are the sizes of the minimum and greedy identifying codes respectively.

The upper bound of Theorem 4 follows from the fact that transformation in Theorem 1 maps identifying

codes on n vertices to set covers over base sets of size n(n−1)
2 . As such, since greedy set cover algorithm has

an approximation guarantee of
sgreedy

smin
< c′ ln m, we have that

cgreedy

cmin
< c′ ln n(n−1)

2 < 2c′ ln n. We will prove
the lower bound of the theorem by providing a specific example that attains it in Section 4.1 and thereafter.
As a basis for the lower bound example, we first provide the following lemma without proof.

Lemma 5 Consider a collection of m non-empty sets,M = {M1, ...,Mm}, over a base set U = {u1, . . . , uk}
of size k ≥ lg(m) + 2. Then there is a collection of 2m different sets I = {I1, ..., I2m} such that:

ui ∈ Ii for all i ≤ k, and Mi = Ii ⊕ Ii+m for all i ≤ m.

We henceforth assume that the elements of I are arranged so that Ii ⊕ Ii+m = Mi for all i ≤ m.

4.1 Lower bound construction

We now develop the construction that will provide our desired lower bound on approximation. Our con-
struction transforms certain instances of the set cover problem into an identifying code problem. The salient
point of the construction is that it provides an explicit link between the cardinalities of the minimum (or
greedy) set covers in one problem and the minimum (or greedy) identifying codes in the other problem. We
shall then make use of an existing result in the literature to show that the desired set cover instances exist.

Construction 3 Let (U = {ui, ...um},S = {S1, ...S2m−k}) be a set cover problem. Furthermore, let Smin,
Sgreedy, smin, and sgreedy be the minimum and greedy set covers and their sizes, and assume that m = 2k and
smin ≥ k + 2.

We then generate a graph G from (U,S) as follows. The graph will have n = 2m vertices, with vertex vi

corresponding to set Si for i ≤ m. To determine the edges of the graph, we shall make use of two collections:

• M = [Mi] is a collection of m sets such that Mi = {vj |Sj ∈ Smin and ui ∈ Sj}.

• M = [Mi] is the collection of m sets such that Mi = {vj |Sj /∈ Smin and ui ∈ Sj}.

Provided that k > 1, Lemma 5 implies the existence of the set:

• I = {Ii} having 2m distinct sets from Smin such that:
(i) Ii ⊕ Ii+m = Mi for all i ≤ m, and (ii) vj ∈ Ij for all j such that Sj ∈ Smin.

We can also simply generate the following list:

• I = [Ii] having 2m sets from U − Smin such that:
(i) Ii ⊕ Ii+m = Mi for all i ≤ m, and (ii) vj ∈ Ij for all j such that Sj 6∈ Smin.

This is done by setting Ii = ∅ and I i+m = Mi for i ≤ m, and then toggling the existence of ui and ui+m in
sets I i and I i+m so as to satisfy the stated properties. The edges of G are then defined as

B+(vi) = Ii ∪ Ii ∪ pi (mod m) (2)

where pj is the j +1-th set in the power set P ({v2m−k+1 . . . v2m}), where the power set elements are ordered
so that the m− i-th set contains ui (thus ensuring an all-one diagonal in the adjacency matrix of G).



M(U,S) =























































v14 v15 v16 v1 v3 v5 v6 v7 v4 v2 v8 v9 v10 v11 v12 v13

v14 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1
v15 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
v16 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0

v1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
v3 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0
v5 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1
v6 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
v7 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0

v4 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0
v2 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0
v8 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0
v9 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
v10 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0
v11 0 1 1 0 1 0 1 0 0 1 0 0 1 1 0 0
v12 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
v13 1 0 1 0 1 1 0 1 1 0 0 0 0 0 1 1























































Figure 3: The adjacency matrix of a graph G(U,S) from Construction 3.

4.2 Example of Construction 3

Consider the base set U = {u1, u2, u3, . . . u8} and the collection of sets

S = { {u1, u2}, {u2, u3}, {u4, u3}, {u4, u5}, {u5, u6},
{u6}, {u1, u7}, {u1, u8}, {u1},

{u2}, {u3}, {u4}, {u5} }
.

In the terminology of Construction 3, we have k = 3, m = 8, and it is clear that the smallest set covering
for (U,S) is of size smin = 5. We then generate a graph G = (V, E) corresponding to this set cover problem,
with vertices v1 . . . v16. Following the construction, we compute:

M = [ {v1, v7, v8}, {v1}, {v3}, {v3},
{v5}, {v5}, {v7}, {v8} ]

M = [ {v8}, {v2, v9}, {v2, v10},
{v4, v11}, {v4, v12}, {v13}, ∅, ∅ ]

.

Intuitively, the i-th set in M represents the sets that cover basis element ui in the minimum set cover,
whereas the i-th set in M represents the the sets that cover ui but are not in the minimum set cover.
Utilizing Lemma 5, we also construct two collections:

I = { {v1}, {v7}, {v3, v6}, {v3, v5}, {v3, v5, v7},
{v3, v6, v5, v7}, {v1, v5, v7}, {v1, v3},

{v6, v7}, . . . }

I = [ {v1, v9}, {v2, v10}, {v3, v11}, {v4, v12},
{v5, v13}, {v6, v14}, {v7, v15}, {v8, v16},

{v1, v8, v9}, {v9, v10}, . . . ]

Finally, applying (2) provides the edges of the graph in terms of incoming balls of vertices, the first of
which are: B+(v1) = {v1, v9, v16}, B+(v2) = {v2, v7, v10, v15}, B+(v3) = {v3, v6, v11, v15, v16}... It is easier
to understand the graph in terms of its adjacency matrix, depicted in Fig. 3 with each row representing an
incoming ball.

4.3 Lower bound

We next provide some properties Construction 3 that will be crucial in completing the proof of the lower
approximation bound of Theorem 4. We omit their proof due to space considerations.

Property 4 Given a set cover problem (U,S) with |U| = 2k = m, |S| = 2m − k, and smin ≥ k + 2,
Construction 3 produces a graph G with the following properties:



1. The vertices Vmin associated with Smin form an identifying code of G = (V, E). More precisely, Vmin

contains only vertices vi, where i is such that Si ∈ Smin.

2. The distinguishing sets of V̂ = {v2m−k+1, ..., v2m} ⊆ V cover all pairs except [U]. In other words

⋃

i∈{2m−k+1...2m} Si =

{(vu, vz) | z 6∈ {u, u + m} and 1 ≤ u, z ≤ 2m}.

3. The modified set cover problem ([U], {
←→
δv1

. . .
←−→
δv2m
}) is equivalent to the original problem (U,S). As

such, the function f : [U] −→ U where f(vi, vi+m) = ui has the property that f(
←→
δvi

) = Si, with the
usual understanding that f(S) = ∪s∈Sf(s). Note that this also provides an equivalence between covers
in the modified problem and covers in the original problem.

Corollary 1 The directed graph G generated by Construction 3 has the following two properties:
(1) cmin = smin, and (2) cgreedy = sgreedy + k.

Proof of Lower bound of Theorem 4: Slavik [18] demonstrated that there exist set cover problems
(U, S) with greedy covers of any size sgreedy and minimum covers of size smin ≥ 2 as long as the size |U | = m
is at least as large as the greedy number N(sgreedy, smin). He further showed that, for any k′ ≥ l ≥ 2 the
greedy number satisfies

ln N(k′, l) ≤

ln l + 2l−1
2l(l−1)

[

(k′ − l) + (l − 2)
(

1−
(

l−1
l

)k′−l
)]

,
(3)

which can be (weakened and) simplified to ln l + k′

l−1 . As such, we can see that, for sgreedy ≥ smin ≥ 2, if

ln m ≥ ln smin +
sgreedy

smin − 1
, (4)

then m > N(sgreedy, smin), and a corresponding set cover problem exists.
In order to apply Construction 3 to a set cover problem (U, S) produced by Slavik’s construction, we

need to ensure that the construction’s assumptions are satisfied, namely that (i) m = 2k, (ii) smin = k + 2,
and that (iii) |S| = 2m − k. In addition, we need that the constructed graph to have the property that
cgreedy

cmin
≥ c ln n = c ln m+c ln 2 for some constant c in order to have our performance bound; under Corollary 1,

this corresponds to a condition (iv) that
sgreedy+k

smin
= c lnm + c ln 2, which reduces to

sgreedy = ck2 + 2ck + 2c ln 2. (5)

Thus, if we have set cover problems satisfying conditions (i)-(iv), then we can create an identifying code
instance satisfying the lower bound of Theorem 4.

Slavik’s construction trivially satisfies conditions (i) and (ii) since (4) holds for any given m, smin ≥ 2.
Reconciling (4) with (5), we see that condition (iv) is satisfied when ck2 + 2ck + 2c ln 2 ≤ k2 + (ln 2− ln(k +
2))k − ln(k + 2), which will clearly hold for any 0 ≤ c < 1 when k is sufficiently large. Finally, we can
transform a set cover problem (U, S) satisfying conditions (i),(ii), and (iv) into a problem (U, S ′) satisfying
(i)-(iv) as follows:

If |S| < 2m − k, then we can pad S with empty sets to get S′ of cardinality 2m − k without breaking
Construction 3.

If |S| > 2m− k, then we can take S ′ = Smin ∪ Sgreedy without violating any conditions. This new set will
have cardinality |S′| ≤ smin + sgreedy ≤ (k + 2) + ck2 + 2ck + 2c ln 2, which is clearly ≤ m for c = 1 and large
k.
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Figure 4: Simulation results for random graphs.

4.4 Hardness of approximation

We next manipulate the reductions of Theorem 2 to carry set cover hardness results over to the identifying
code problem. Our work is based on the work of Feige [19] proving that (for any ε > 0) no polynomial-
time approximation of set cover can attain a performance ratio of (1− ε) ln m unless NP⊂DTIME(mlg lg m).
Our proof differs from the more general hardness result of [23] for the test cover problem because of the
constraints imposed by the (undirected) graph structure on which identifying codes are defined (rather than
the arbitrary “tests” permitted in the test cover problem). The proof is quite involved, and we omit it due
to space considerations.

Theorem 5 For any ε > 0 the identifying code problem has no polynomial time approximation with perfor-
mance ratio (1− ε) ln n (for directed and undirected graphs) unless NP⊂DTIME(nlg lg n).

The identifying codes problem is actually a special case of the test cover problem, and thus test cover
approximations can be applied to produce ”good” identifying codes. One such greedy approximation was
recently devised by Berman et. al. [24] using a modified notion of entropy as the optimization measure.
This greedy approximation was proven to have a performance ratio of 1 + ln n, where n is the number of
elements in the basis set. Applying this algorithm to graphs of size n guarantees identifying codes with the
same performance ratio, closing the gap (up to a small constant) from the lower bound of Theorem 5.

5 SIMULATIONS

We have simulated the approximations based on the greedy set cover heuristic and the entropy based ap-
proximation of [24], and applied them to random graphs with different edge probabilities. We use average
identifying code size as our performance measurements, and our simulation results are compared to the
algorithm of Ray et. al. [5]. For the sake of comparison, we also show the combinatorial lower bound of
Karpovsky et al. [1] and the convergence bound of Moncel et al. [13], who provided a threshold number of
vertices that, with high probability, will form an identifying code when the size of the graph tends to infinity.

Fig. 4 shows the theoretic lower bound and the results of our greedy algorithm (IDgreedy). Our algorithm
clearly improves over that of Ray et al., although the curves should converge (apparently at a very slow rate)
to the result of Moncel et al. for large n. The slow convergence rate suggests that one can gain significantly
from more sophisticated identifying code algorithms, even for reasonably large graphs.
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