
1

Connected Identifying Codes

Niloofar Fazlollahi, David Starobinski and Ari Trachtenberg

Dept. of Electrical and Computer Engineering

Boston University, Boston, MA 02215

Email: {nfazl,staro,trachten}@bu.edu

Abstract

We consider the problem of generating a connected identifying code for an arbitrary graph. After a brief

motivation, we show that the decision problem regarding the existence of such a code is NP-complete, and we

propose a novel polynomial-time approximation ConnectID that transforms any identifying code into a connected

version of at most twice the size, thus leading to an asymptotically optimal approximation bound. When the input

identifying code to ConnectID is robust to graph distortions, we show that the size of the resulting connected

code is related to the best error-correcting code of a given minimum distance, permitting the use of known coding

bounds. In addition, we show that the size of the input and output codes converge for increasing robustness, meaning

that highly robust identifying codes are almost connected. Finally, we evaluate the performance of ConnectID on

various random graphs. Simulations for Erdős-Rényi random graphs show that the connected codes generated are

actually at most 25% larger than their unconnected counterparts, while simulations with robust input identifying

codes confirm that robustness often provides connectivity for free.

A version of this paper appeared as:

• Niloofar Fazlollahi, David Starobinski, and Ari Trachtenberg, ”Connected Identifying Codes”, IEEE

Transactions on Information Theory, 58:7, pp. 4814-4824, July 2012.

Index Terms

Identifying codes, localization, approximation algorithms, robustness, error correcting codes

I. INTRODUCTION

An identifying code [3] for any given non-empty, connected graph G = (V,E) is a subset I ⊆ V of

the vertices of the graph (called codewords) with the property that every vertex in the graph is adjacent

to a unique and non-empty subset of I (known as the identifying set of the vertex). Robust identifying

codes were introduced in [4] and proposed for applications to location detection in harsh environments,

where the underlying graph topology may change because of addition or deletion of vertices or edges.

An r-robust identifying code is thus one which remains an identifying code even if one adds or removes

up to r vertices from every identifying set.

Identifying codes have been linked to a number of deeply researched theoretical foundations, including

super-imposed codes [5], covering codes [3, 6], locating-dominating sets [7], and tilings [8–11]. They have

also been generalized and used for detecting faults or failures in multi-processor systems [3], environmental

monitoring [12, 13] and routing in networks [14].

Many of these applications actually assume some base connectivity between codewords implicitly

requiring a connected identifying code, which we formally define in Section III-A. This issue is clearly

seen in the application of identifying codes to RF-based localization in harsh environments [4, 15, 16]. In

the method proposed in [4], sensors in a building are mapped to graph vertices, so that a pair of vertices

is connected by an edge if the two corresponding physical sensors are within each other’s communication

Preliminary elements of the coding-theoretic aspects of this work were presented at ITA 2011 [1]. Preliminary applications of this work

were presented in WCNC 2011 [2].

Copyright (c) 2011 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

2

Fig. 1. (a) An example building floor plan and connectivity graph of sensors located at positions marked by circles. The filled circles

represent codewords of an identifying code for the sensor network connectivity graph. The dashed lines show the boundaries of distinguishable

regions based on the radio range of the active sensors. (b) Codewords of a connected identifying code for the same topology.

range. Only a fraction of all sensors (those corresponding to codewords within the identifying code of the

graph) are kept active while the rest can be put in energy-saving mode. A target is located by the unique

pattern of sensors within its radio range.

An example of an indoor floor plan and the graph corresponding to sensor placement and connectivity

is depicted in Figure 1(a). Sensors that are within each other’s radio communication range, like a and

b, are connected by a graph edge (we assume connectivity between sensors is symmetrical), and filled

circles a, c, d, f, g and h represent codewords of an identifying code for the sensor connectivity graph.

Only the mentioned sensors actively monitor their surrounding for location detection, so that the location

of a target placed at any of the regions marked by dashed lines can be uniquely determined based on the

set of sensors that hear it. For instance, the set {a, c} uniquely identifies the region surrounding position

b.

In order to route data over a sensor network and transfer sensor data to a processor for location detection

processing, one needs the network of active sensors to be connected, as shown in Figure 1(b). Yet, if

one only activates sensors that correspond to codewords of an identifying code and deactivates the rest,

there is no guarantee that one produces a connected network of active sensors. In fact, although there

exist various algorithms in the literature for creating an identifying code for an arbitrary graph [4, 14, 17],

none of these algorithms guarantee that the produced identifying code is connected.

Our approach focuses on building a connected (robust) identifying code out of an arbitrary given (robust)

identifying code, with the goal of adding a minimum number of codewords to the original input identifying

code and thereby keeping as many sensors as possible in energy-saving mode. We begin by proving that

finding a connected identifying code is NP-complete, and by presenting a novel, efficient algorithm (called

ConnectID) that produces a connected code of at most twice the cardinality of the arbitrary identifying

code on which it is based. This translates to an asymptotically optimal O(log(|V |)) approximation bound

for our approach, when the original code is produced using the polynomial-time rID algorithm proposed

in [14].

3

When the input to ConnectID is r > 0-robust, we show that the size of the resulting (connected)

identifying code is upper bounded by the largest error-correcting codes of a given minimum Hamming

distance. Moreover, the sizes of the input and output codes differ by a multiplicative factor of roughly

1+ 1
2r

, meaning that they are asymptotically equal as robustness r increases. In other words, highly robust

codes are almost connected, and this is confirmed by simulations on Erdős-Rényi random graphs.

This paper is organized as follows. We begin with a discussion of the related literature in Section II. In

Section III we provide some background, including formal definitions of identifying codes in Section III-A

and a brief review of existing algorithms for generating identifying codes in Section III-B. We then prove

that the connected identifying code problem is NP-complete in Section IV. Section V presents our main

algorithm ConnectID, starting with some models and notation in Section V-A, the core of our algorithm

in Section V-B, some performance results in Section V-C, implementation details in Section V-D and

complexity analysis in Section V-E. We present our numerical simulations in Section VI and conclude

the paper in Section VII.

II. RELATED WORK

There is extensive theoretical work on identifying codes in the literature.

In [18, 19] identifying codes are proved to be NP-complete by reduction from the 3-satisfiability

problem. Karpovsky et. al. [3] provide information theoretic lower bounds on the size of identifying

codes over generic graphs and some specific graph topologies like meshes. The works in [5, 20–22] derive

upper/lower bounds on size of the minimum identifying codes, with some providing graph constructions

based on relating identifying codes to superimposed codes. The work in [22] focuses on random graphs,

providing probabilistic conditions for existence together with bounds.

Many variants of identifying codes are defined and studied in the literature: a robust identifying code [4,

6] is resilient to changes in the underlying graph, a (1, l ≥ 0)-identifying code [5, 20] uniquely identifies

any subset of at most l vertices, a ρ-radius identifying code [3] uniquely identifies every vertex using the

set of all codewords within distance ρ or less from the vertex, and a dynamic identifying code [6] is a

walk whose vertices form an identifying code.

Identifying codes are also linked to superimposed codes [3, 5, 20–22], dominating sets [23], locating

dominating sets [7], the set cover [13, 17] and the test cover problem [13, 17] and r-robust identifying

codes are linked to error correcting codes with minimum Hamming distance 2r + 1 [4] and the set

r-multi-cover problem [17].

Of these, the locating dominating sets are closest in flavor to identifying codes, and indeed Suomela [23]

links identifying codes and locating dominating sets to dominating sets and shows that it is possible to

approximate both problems within a logarithmic factor, and that sub-logarithmic approximation ratios are

intractable.

There is also considerable work regarding generation of dominating sets and connected dominating

sets [24, 25], but these results do not apply directly to connected identifying codes, since not every

dominating set is an identifying code. In other words, the optimal identifying code generally has larger

cardinality than that of the optimal dominating set.

Finally, identifying codes are also proposed for various applications. The authors in [4] suggest applica-

tion of identifying code theory for indoor location detection. They introduce robust identifying codes and

also present a heuristic which creates robust identifying codes for an arbitrary graph. The work in [14] uses

the same technique for indoor location detection, although the authors introduce a more efficient algorithm

for generation of robust identifying codes. They also suggest an additional application of identifying codes

for efficient sensor labeling for data routing in the underlying sensor network. Both references implicitly

assume that a sensor network can route location detection data toward a sink, which is not satisfied in

those sensor networks where only vertices corresponding to codewords are active. Since we will use the

algorithms in [4, 14] for generating an identifying code, we will review their techniques in more detail in

Section III-B.

4

The work in [12] studies the problem of sensor placement in a network which may be a water supply

network or an air ventilation system with potential contamination source(s) such that the contamination

source is identified under either of the following constraints:

• sensor-constrained version where the number of sensors is fixed and the identification time has to

be minimized,

• time-constrained version where the identification time is limited and the number of sensors has to

be minimized.

The latter version of this problem is shown to be a variant of the identifying code problem [13].

III. BACKGROUND ON IDENTIFYING CODES

We begin with a formal description of identifying codes in Section III-A, followed in Section III-B

with a review of two existing algorithms for generating them.

A. Definitions

Consider a graph with vertex set V 6= ∅ and edge set E 6= ∅ (we shall make this non-empty assumption

throughout the text). We categorize every vertex in V as either a codeword or a non-codeword, with the

set of codewords denoted I ⊆ V . For every vertex v in V , the identifying set is the set of vertices in I
that are adjacent to v (including v itself, if it is a codeword), and it is denoted by SI(v). If the identifying

set for every vertex is unique and non-empty, then we call I an identifying code. Note that every superset

of I is an identifying code for the same graph [4]. As a simple example, the identifying sets for vertices

a, b, and f in Figure 1(a) are, respectively, {a}, {a, c}, and {f, g}, all of which are different.

An identifying code I over a given graph G is said to be connected if there exists a simple path in

G between any two vertices of I, wherein all the vertices on the path belong to I . The code is r-robust

if it remains an identifying code after we arbitrarily add or remove up to r vertices in V to (or from)

every identifying set, i.e., SI(u)△V1 6= SI(v)△V2 for every V1, V2 ⊂ V such that |V1|, |V2| ≤ r. The

operator △ is the symmetric difference operator, meaning that A△B includes all elements that are either

only in set A or only in set B for any given pair of sets A and B. The minimum symmetric difference of

an identifying code I , dmin(I), is defined to be the minimum Hamming distance between every pair of

identifying sets, i.e., dmin(I) = minu,v∈V,u 6=v |SI(u)△SI(v)|. It is shown in [4] that an identifying code I
is r-robust if and only if dmin(I) ≥ 2r + 1, and that every superset of an r-robust identifying code I is

also an r-robust identifying code.

B. Existing algorithms

Next, we briefly review two existing polynomial-time algorithms that generate an identifying code (if

one exists) for an arbitrary graph. We refer the reader to the cited references [4, 14] for further details.

Algorithm ID-CODE introduced in [4] initially selects all vertices V in the input graph to be codewords,

and then checks, one by one, whether each vertex can be removed from the code without losing the

identifying property. This greedy algorithm produces an irreducible code, meaning that no codeword can

be removed from it while still keeping it an identifying code, and it can be modified to yield r-robust

codes by changing the greedy criterion accordingly.

Algorithm rID presented in [14] initially calculates the identifying set of every vertex, assuming that

all vertices are codewords. Then it associates with every vertex v in V the set of vertex pairs which

distinguish v, i.e., one vertex in the pair is adjacent to v and the other is not. The algorithm iteratively

forms an identifying code by selecting the vertex that distinguishes the most pairs to be a codeword. Using

a similar approximation to the set cover problem [26], the authors in [14, 17] prove that rID achieves

a logarithmic approximation ratio upper bounded by c1 ln |V | and lower bounded by c2 ln |V | for some

constants c1 > c2 > 0. They also show that this bound is tight unless NP ⊂ DTIME
(
|V |O(log log |V |)

)
[27].

A robust version of rID is also presented in [14] using a reduction to the set multi-cover problem [26].

5

�� �� ��

��

� � �

�

��� ��� ���

���
�

�

Fig. 2. Graph G with four vertices on top and constructed graph G∗ with ten vertices. Vertex s connects vertices a′, b′, c′ and d′ in

subgraph G′ and vertices a′′, b′′, c′′ and d′′ in subgraph G′′ by edges that are shown dashed.

IV. NP-COMPLETENESS

Next we prove that deciding whether a connected identifying code with a certain number of codewords

exists for any given graph is NP-complete.

Theorem 4.1: Given any non-empty graph G and an integer k, the decision problem of the existence

of a connected identifying code with cardinality at most k in G is NP-complete.

Proof: We will prove the above statement with a polynomial-time reduction from the identifying code

problem which is known to be NP-complete [18, 19, 28]. Specifically, we show that an identifying code

with cardinality at most k exists in G if and only if there exists a connected identifying code with

cardinality at most 2k + 1 in a specially generated graph G∗. In order to complete the proof, we need

to show that any instance of a connected identifying code can be verified in polynomial time, a rather

straightforward exercise that we omit.

Next, we explain our polynomial-time construction of the graph G∗(V ∗, E∗) from any non-empty graph

G(V,E). We begin by constructing two copies, G′(V ′, E ′) and G′′(V ′′, E ′′), of G. The vertices of these

graphs are connected through the isomorphic bijections g′ : V → V ′ and g′′ : V → V ′′, having the

property that (u, v) ∈ E implies that (g′(u), g′(v)) ∈ E ′ and (g′′(u), g′′(v)) ∈ E ′′. We combine G′ and G′′

with two new vertices s and t, the former connecting to all vertices V ′ and V ′′, and the latter connecting

only to s. In other words, this new graph will be G∗(V ∗, E∗) with V ∗ = V ′ ∪ V ′′ ∪ {s, t} and

E∗ = E ′ ∪ E ′′ ∪ {es,v|v ∈ V ′ ∪ V ′′} ∪ {es,t},

with ei,j denoting an edge between vertices i and j. Clearly the transformation from G to G∗ is polynomial

and takes Θ(|V | + |E|) time since |V ∗| = 2|V | + 2 and |E∗| = 2|E| + 2|V | + 1. Figure 2 demonstrates

our construction for a sample instance of G.

We next show that there exists an identifying code with cardinality ≤ k in G if and only if there exists

a connected identifying code with cardinality at most 2k + 1 in G∗.

=⇒. Assume we have an identifying code I with cardinality at most k over graph G. Define I ′ ⊆ V ′ to

be the image of I under the mapping g′, i.e., I ′ = {g′(v)| ∀v ∈ I}, and similarly I ′′ = {g′′(v)| ∀v ∈ I}.
Then I∗ = I ′ ∪ I ′′ ∪ {s} is clearly connected because s is connected to all vertices. Moreover, since I ′ is

an identifying code for G′, every vertex in V ′ has a unique identifying set, and similarly for I ′′; these sets

are all different because V ′ and V ′′ have no common vertices and empty identifying sets are not allowed.

Altogether then, I∗ is a connected identifying code with cardinality at most 2k + 1.

⇐=. Assume that we have a connected identifying code with cardinality at most 2k + 1 over graph G∗.

This identifying code must contain the vertex s; otherwise, either the code is disconnected or G′ or G′′

have no codewords, meaning that there is an empty identifying set. Removal of s will result in k codewords

6

in each of G′ and G′′ or < k codewords within one of G′ or G′′ (WLOG, assume it is within G′). Since

s is connected to all vertices in G∗, no pair of vertices can be identified using s. Therefore, the resulting

codewords within G′ will necessarily correspond to an identifying code for G, unless it contains an empty

identifying set.

The vertex t serves to ensure that every vertex in G has a non-empty identifying set. If t is not a

codeword, then no other vertex in G′ can have the same identifying set {s}. Thus, every vertex in G′

must have a codeword neighbor that is not s. If t is a codeword, then there must be less than k codewords

in G′. In this case, there may be a single vertex v in G′ with identifying set {s}, but adding v to the

codewords of G′ will produce a non-empty identifying code of size not larger than k for G.

V. ALGORITHM ConnectID

We next present and analyze our polynomial-time approximation algorithm for connected identifying

codes.

A. Model and notations

We assume an undirected, connected graph G(V,E) (or G in short) where V is the set of vertices and

E is the set of edges between the vertices. We consider I ∈ V to be the set of codewords of an identifying

code in G and a superset Ic ⊇ I to be the set of codewords of a derived connected identifying code in

G. The redundancy ratio R = |Ic|/|I| ≥ 1 relates the two quantities.

We define a component of connectivity (or a component) C of I in graph G to be a maximal subset of

I such that the subgraph of G induced by this subset is connected, i.e., the graph G′(C,E ∩ (C ×C)) is

connected and any codeword added to C renders it unconnected. For the example of Figure 1(a), we have

I = {a, c,d, f, g, h} with components of connectivity C1 = {a}, C2 = {c}, C3 = {d} and C4 = {f, g, h}.
A plain path between components C1 and C2 is an ordered subset of vertices in V that forms a path in

G connecting a vertex x1 ∈ C1 to a vertex x2 ∈ C2, with x1 and x2 being the only codewords in the path.

By distinction, a path may include any number of codewords or non-codewords. In Figure 1(a), {a,b, e, f}
and {a, j, f} are the only plain paths between components C1 and C4. On the other hand, {a, j, f, e, d} is

not a plain path between C1 and C3 because f is a codeword.

The distance between a given pair of components, say C1 and C2, is denoted dist(C1, C2) and is

defined to be the number of edges on the shortest plain path between C1 and C2. If there is no plain path

between C1 and C2, then dist(C1, C2) = ∞. In Figure 1(a), dist(C1, C2) = 2, dist(C1, C3) = 3 and

dist(C1, C4) = 2.

B. Algorithm description

We present algorithm ConnectID in the format of a function which receives the set of codewords of

an identifying code I for a given graph G and returns the set of codewords Ic of a connected identifying

code. For sake of clarity, we first present algorithm ConnectID informally.

In the initialization phase, function ConnectID(G, I) partitions the identifying code I into a set of

N distinct components of connectivity {C1, C2, ..., CN} where 1 ≤ N ≤ |I|. Note that every pair of

components is connected by some path in G because of the connectivity of G. Define C to be a set that

stores the growing connected identifying code, arbitrarily initialized to the set of codewords in one of the

components, say C1. In addition, Ĉ is the set that stores all components whose codewords are not yet

included in C. Therefore, Ĉ is initialized to {C2, ..., CN}.
At every iteration, the algorithm first updates the distance dist(C,Cj) between C and every component

Cj in Ĉ (Section V-E will describe how to do this efficiently). It then extracts from Ĉ the component

C∗ with minimum dist(C,C∗) (breaking ties arbitrarily). The algorithm selects as codewords all vertices

on the shortest plain path connecting C and C∗, denoted path∗(C,C∗), and unites the codewords in C
and C∗ and path∗(C,C∗) into C. After this step, the algorithm examines whether there are any other

7

components in Ĉ which become connected to C via the newly selected codewords on path∗(C,C∗). We

define Γ ⊆ Ĉ to be the set of such components. If Γ is non-empty, C is united with the components in

Γ and the members in set Γ are removed from set Ĉ. The iteration above is repeated until Ĉ becomes

empty.

At termination, the algorithm returns the connected set Ic = C, which, as a superset of I , is necessarily

an identifying code.

Below, is a more formal presentation of algorithm ConnectID(G, I):
Algorithm ConnectID(G, I):
Initialization:

1) Partition I into a unique set of components of connectivity {C1, C2, ..., CN} where 1 ≤ N ≤ |I|.
2) Set Ĉ ← {C2, ..., CN}.
3) Set C ← C1.

Iteration:

7) While Ĉ is not empty,

8) Update dist(C,Cj) and path(C,Cj) for every

Cj ∈ Ĉ and set C∗ ← argminCj∈Ĉ
dist(C,Cj).

9) Extract component C∗ from Ĉ.

10) Set C ← C ∪ C∗ ∪ path∗(C,C∗).
11) Find the set Γ ⊆ Ĉ of components that are connected

to C.

12) If Γ is not empty,

13) For every component Cj ∈ Γ,

14) Extract Cj from Ĉ.

15) Set C ← C ∪ Cj .

16) Return Ic ← C.

Example. Figure 3 shows the progress of ConnectID(G, I) after every iteration for the same graph and

the same input identifying code as shown in Figure 1(a). The vertices in black are codewords. Assume

that at initialization we have: C1 = {a}, C2 = {c}, C3 = {d} and C4 = {f, g, h}. In Figure 3(a) we

set C = C1 and Ĉ = {C2, C3, C4}. At first iteration, after we calculate the distance between C and all

components in Ĉ at line 8, we have: dist(C,C2) = 2, dist(C,C3) = 3, dist(C,C4) = 2. At line 9,

we extract one component with minimum dist from Ĉ, which may be C2 or C4. Assume that we select

C2. Then, we unite C and C2 and vertex b at line 10. Hence, C = {a, b, c} as illustrated in Figure 3(b).

There are no components in Ĉ that are connected to C at this stage, i.e., Γ = {}, and we return back

to line 7. We update distances and paths again: dist(C,C3) = 2 and dist(C,C4) = 2. We extract the

component with minimum dist, which may be C3 or C4. Assume that we extract C3 at line 9. Hence,

we unite C and C3 and vertex e and obtain C = {a, b, c, d, e}. Then, we examine the only component

remaining in Ĉ which is C4 to see if it is now connected to C. We get Γ = C4 and we unite C and C4

at line 15. Finally, in Figure 3(c) we have C = {a,b, c,d, e, f, g,h} which is the connected identifying

code Ic output by the algorithm.

Algorithm ConnectID resembles Prim’s algorithm for constructing the minimum spanning tree of a

graph [29], but exhibits some fundamental differences. For example, Prim’s algorithm selects an edge

with minimal weight at every iteration and finally spans every vertex in the graph. However, ConnectID

selects a path with the shortest length at every iteration and finally spans all components, which may not

include all vertices in the graph.

C. Performance results

In this section, we first prove two properties of any identifying code I . These properties are invariably

true at every iteration of ConnectID. Based on this, we prove our main result, that is, that algorithm

8

Fig. 3. Progress of ConnectID(G, I). The filled circles represent codewords of an identifying code I for the illustrated graph G. Initially,

I is partitioned to components C1 = {a}, C2 = {c}, C3 = {d} and C4 = {f, g,h}. We then set (a) C = {a} and Ĉ = {C2, C3, C4}, (b)

C = {a,b, c} and Ĉ = {C3, C4}, and (c) C = {a,b, c,d, e, f, g,h} and Ĉ = {}.

ConnectID produces a connected identifying code whose size is tightly bounded with respect to the input

identifying code. Finally, we provide a performance analysis for the connected robust identifying code

achieved by ConnectID when the input identifying code is robust.

Lemma 5.1: Consider any identifying code I that is partitioned into a set of components of connectivity

P = {C1, ..., C|P |} over graph G. If |P | > 1, then every component Ci in P is at most three hops away

from some other component Cj in P where j 6= i.
Proof: By the definition presented in Section III-A for an identifying code, every non-codeword vertex

in G is adjacent to at least one codeword in I . Since the graph is connected, every pair of components in

P should be connected by at least one path. Consider the shortest path connecting component Ci in P to

component Ck in P where k 6= i. The second node on this path (the node at the first hop) is obviously

not a codeword because otherwise it would be included in Ci. The third node on this path (the node at

the second hop) is either a codeword belonging to a component Cj in P or is a non-codeword adjacent

to some component Cj . Component Cj should be different from Ci because otherwise the selected path

from Ci to Ck will not be the shortest.

Lemma 5.2: Every vertex in graph G that is adjacent to a component Ci with cardinality one in P is

adjacent to at least one other component Cj in P where j 6= i.
Proof: This property follows from the uniqueness of the identifying sets. The identifying set of the single

codeword belonging to component Ci is itself. If any non-codeword that is adjacent to Ci is not adjacent

to at least one other component Cj where j 6= i, then it will have the same identifying set as the single

codeword in Ci which contradicts the definition of an identifying code.

Corollary 5.3: Consider any identifying code I that is partitioned into a set of components of connec-

tivity P = {C1, ..., C|P |} over graph G. If |P | > 1, then every component Ci in P with cardinality one is

at most two hops away from some other component Cj in P where j 6= i.
Lemmas 5.1 and 5.2 hold for every identifying code I over graph G. Therefore, they are true right

after the initialization of algorithm ConnectID. Since at every iteration, we add one or more codewords

9

and do not remove any codeword, the set of codewords in C and in every component of Ĉ forms an

identifying code. Hence, Lemmas 5.1 and 5.2 invariably hold after every iteration.
Next, we provide the overall analysis of our algorithm which is based on Lemmas 5.1 and 5.2.
Theorem 5.4: Assuming I is an identifying code for graph G and Ic is the identifying code created by

algorithm ConnectID(G, I), we have:

i) Ic is a connected identifying code.

ii) The total number of codewords, |Ic| generated by algorithm ConnectID(G, I) is at most 2|I| − 1.

Furthermore, this bound is tight.

Proof:

i) Clearly, C remains a component of connectivity throughout. The while loop starting at line 7

necessarily terminates when Ĉ is empty. Since every component extracted from Ĉ unites with C at

line 10 or line 15, at termination of the while loop I ⊆ C, implying that Ic = C is an identifying code.

ii) At every iteration of ConnectID, we unite C with at least one component denoted C∗ in Ĉ and add

at most two codewords according to Lemma 5.1. If the newly merged component C∗ has cardinality one,

then either C∗ is two hops away from C or according to Lemma 5.2, the non-codeword on path∗(C,C∗)
that is adjacent to a codeword in C∗, is also adjacent to at least one other component Ci in Ĉ. In the latter

case, after the union at line 10, Ci becomes connected to C and unites with C at line 15. Thus, we are

adding at most two codewords on path∗(C,C∗). Overall, we select at most one new vertex as codeword

for every codeword in I \ C1 where \ denotes the usual set difference operator. Thus, the cardinality of

the resulting identifying code |Ic| is at most |I|+ |I \ C1| ≤ 2|I| − 1 codewords when ConnectID(G, I)
terminates.

This bound is tight. Consider a ring topology with 2k vertices (k being a positive integer). The optimal

identifying code (i.e., that with minimum cardinality) consists of k interleaved vertices, whereas the

connected identifying code for this graph and the mentioned input identifying code must necessarily

contain all but one vertex, i.e., |Ic| = 2k − 1.
Corollary 5.5: The redundancy ratio R = |Ic|/|I| of the connected identifying code Ic achieved by

ConnectID(G, I) is at most two for any given graph G.

If the input identifying code I to ConnectID(G, I) is an identifying code achieved by the algorithm in

[14], then we have |I| ≤ c |I∗| ln |V | where c > 0 is a constant, I∗ is the identifying code with minimum

cardinality for graph G and |V | is the number of vertices in graph G. We define I∗c to be the connected

identifying code with minimum cardinality in graph G. Since |I∗c | ≥ |I
∗|, we have the following corollary.

Corollary 5.6: If the input identifying code I to ConnectID(G, I) is an identifying code achieved by

the algorithm in [14], then the cardinality of the connected identifying code Ic achieved by ConnectID

is at most c′ |I∗c | ln |V | where c′ > 0 is a constant.
Robustness analysis. The properties of ConnectID ensure that it produces a connected robust code if it

is given a robust code as an input. Next, we combine the results of the algorithm with well-known coding

theoretic bounds to derive bounds on the cardinality of connected robust identifying codes. We show that

as robustness increases, the resulting codes are increasingly connected.
Before presenting our analysis, we present our notations. Recall our notation that an r-robust identifying

code I over graph G can be partitioned into connected components P = {C1, ...C|P |}. We define Smin(I)
(or just Smin in short) to be the minimum non-unitary cardinality of a component in P , i.e.,

Smin = min
j s.t. Cj∈P and |Cj |>1

|Cj |.

Our upper bound on the cardinality of Ic depends on Smin, for which we shall provide lower bounds

later in this section.
Lemma 5.7: Given an r ≥ 1-robust identifying code I with connected components P = {C1, ..., C|P |},

there may be at most one component Ci with cardinality one.

Proof: We prove the Lemma by contradiction. Suppose there are at least two components with cardinality

one. Then, the Hamming distance between the identifying sets of the single codeword in the two compo-

10

nents is two. This contradicts our assumption that I is r-robust for r ≥ 1 since the minimum symmetric

difference of I , dmin(I), should be at least 2r + 1.

The following theorem is based on Lemma 5.7.

Theorem 5.8: The connected identifying code Ic produced by ConnectID(G, I) from an r-robust

identifying code I over graph G satisfies

|Ic| ≤

(
1 +

2

Smin

)
|I| −

2

Smin
.

Proof: If I is connected, the bound follows trivially. Otherwise, I consists of at least two components.

Therefore, Ĉ and C in ConnectID are initially not empty. Based on Lemma 5.7 there is at most one

component with cardinality one. Three scenarios are possible:

(i) Component C is initialized to the only component with cardinality one. In this case, every component

in Ĉ has cardinality at least Smin and there are |I| − 1 codewords not in C. Hence, Ĉ contains at most

(|I| − 1)/Smin components initially. Using a similar reasoning as in Theorem 5.4 based on Lemma 5.1,

ConnectID adds at most two codewords per every component that is initially in Ĉ. Therefore, we have

|Ic| ≤ |I|+ 2(|I| − 1)/Smin.

(ii) There is a component with cardinality one in Ĉ at initialization. In this case, there are at most

|I|−Smin codewords not in C initially. We add at most one codeword for the component with cardinality

one in Ĉ based on Lemma 5.2. There are at most (|I| − Smin − 1)/Smin other components in Ĉ initially.

Therefore, we add at most 2(|I| − Smin− 1)/Smin codewords plus one codeword for the component with

cardinality one to |I|. The overall cardinality of Ic is at most |I|+ 2(|I| − 1)/Smin − 1 in this case.

(iii) There is no component with cardinality one. In this case, there are at most (|I| − Smin)/Smin

components in Ĉ initially and we add at most two codewords per every component in Ĉ. Therefore, we

have |Ic| ≤ |I|+ 2|I|/Smin − 2.

Case (i) leads to the largest upper bound on |Ic| among the three cases.

The following lemma relates Smin to the r ≥ 1-robust identifying code of minimum possible size.

Lemma 5.9: The value of Smin is lower bounded by the minimum size of an r ≥ 1-robust identifying

code with more than one codeword.

Proof: We are given an r-robust identifying code that is partitioned to a set of components P . For every

component Cj in P , the identifying set for every codeword in Cj consists of a unique subset of codewords

in Cj . The minimum symmetric difference between the identifying sets of the codewords in Cj must be

at least 2r+1, i.e., dmin(Cj) ≥ 2r+1. Therefore, the codewords in Cj form an r-robust identifying code

for the subgraph induced by Cj in G. Hence, the size of Cj has to be at least as large as the size of

the minimum possible r-robust identifying code. Since Smin is greater than one by definition, the lemma

follows.

Based on Lemma 5.9, we next relate Smin to the size of a minimum error-correcting code. Recall that

the characteristic vector of a set is the binary vector whose i-th bit is 1 if and only if the i-th element of

a given universe (in this case, the set of vertices in the graph) is in the set. Note that the characteristic

vectors of the identifying sets of an r-robust identifying code I form a binary r-error correcting code of

length |I|. The reverse does not necessarily hold because of the limitations imposed on identifying codes

by the graph structure.

We can now form a relationship between Smin and the coding-theoretic function A(n, d) denoting the

maximal size of a (binary) code of length n and minimum distance d. This leads us to our theorem

linking bounds on connected identifying codes and error-correcting codes, and allows the application of

coding-theoretic upper bounds to connected identifying codes.

Theorem 5.10: Given an r = d−1
2

-robust identifying code, it holds that

Smin ≥ min
2≤n≤A(n,d)

n.

11

Proof: For any given r ≥ 0-robust identifying code I with n codewords over an arbitrary graph G, we

know from [4] that dmin(I) ≥ 2r+1, meaning that an r-robust identifying code with n codewords over any

given graph G exists only if an r-error correcting code exists with length n and size A(n, d = 2r+1) ≥ n.

Let nmin = argminn≥2(n ≤ A(n, d)). If nmin = 2, then Smin ≥ nmin trivially since Smin is an integer

strictly larger than one. Otherwise for nmin > 2, it must be that n′ > A(n′, d) for every n′ such that

1 < n′ < nmin. This implies that Smin ≥ nmin, proving the theorem.

Thus, Smin is bounded by the smallest n for which A(n, d) ≥ n. We can sharpen this result with the

Plotkin bound [30] and the following lemma.

Lemma 5.11: For all 2 ≤ n ≤ 2d− 1 and odd d ≥ 3,

A(n, d) < n.

Proof: The Plotkin bound states that A(n, d) ≤ 2
⌊

d+1
2d+1−n

⌋
for odd d > n−1

2
. In order for the right-hand

side of the inequality to be greater or equal to n, it must be that:

d+ 1

2d+ 1− n
≥ n/2

n2 − (2d+ 1)n+ 2d+ 2 ≥ 0.

For 2 ≤ n ≤ 2d− 1 and odd d ≥ 3, this inequality has no feasible solution.

The following lemma follows directly from Lemma 5.11.

Lemma 5.12: For odd d ≥ 3, Smin ≥ 2d.

Combining Theorem 5.8 with Lemma 5.12 we have the following simple bound on the size of a

connected code generated by our algorithm.

Corollary 5.13: If the input identifying code I to ConnectID(G, I) is an r-robust identifying code for

graph G, where r ≥ 1, we have,

|Ic| ≤

(
1 +

1

2r + 1

)
|I| −

1

2r + 1
.

We observe that with increase of r, Smin increases and the upper bound on |Ic| gets closer to |I|. This

implies that for larger robustness r, I tends to be more connected and we usually require fewer additional

codewords to make it connected. Furthermore, according to Corollary 5.13 for large values of robustness

r, |Ic| tends to |I|. Note, on the other hand, that connectivity does not necessarily imply robustness, as

one can observe from Figure 1(b).

D. Implementation

Our implementation relies on well-known data structures and algorithms, as may be found in a standard

text [29]. Its main data structure is the disjoint-set, which is used to maintain components of connectivity.

For our purpose, every disjoint set will store a connected component of codewords as a linked list, with

all the codewords of a component maintaining a link to a common representative.

Populating these data structures requires the use of a connected components algorithm, such as that

of Hopcroft and Tarjan based on the BFS or DFS [31] requiring an overall O(|V | + |E|) time. We next

describe how to use this data structure to calculate the distance dist(C,Cj) and the shortest plain path

path(C,Cj) between component C and every component Cj in Ĉ as needed in line 8 of ConnectID.

Starting at any codeword of component C, we run an optimized two-stage Breadth First Search (BFS).

To begin, we select an arbitrary codeword in C to be the source (with distance metric 0). In the first stage,

we visit and finish all codewords in component C without updating our distance metric. In the second

stage, we visit and finish other vertices not in C as we increment the distances. The motivation behind a

two-stage BFS is to finish all codewords at distance zero from the source, i.e., codewords in C, before

the rest of the vertices. In order to engineer the BFS in two stages, we use two BFS queues. The first

12

queue stores the visited but unfinished codewords in C. The second queue stores the rest of the vertices

that are visited but unfinished.
In the first stage of BFS, when we visit a non-codeword adjacent to a codeword in C, we insert it into the

second queue, and we do not extract any vertex from the second queue until we finish all codewords in C
in the first stage, i.e., we empty the first queue. In the second stage, the BFS continues the search starting

from the non-codewords in the second queue. All codewords outside C are considered leaf vertices, i.e.,

we do not visit their adjacent vertices. This is because we are only interested in plain paths. While running

the BFS, we maintain an estimate of the distance dist(C,Cj) between C and every component Cj in

Ĉ, initialized to infinity. Every time BFS visits a codeword, it finds the component to which it belongs

using the find− set primitive (of the disjoint-set data structure) and updates the estimate of dist(C,Cj)
accordingly (i.e., keeping the smaller value seen so far). It also stores the codeword that achieved the

smaller distance since this will be used to find the shortest plain path path(C,Cj) upon termination. We

also maintain the component C∗ with minimum dist(C,C∗) during the BFS process. In this way, there

will be no additional processing to find the component with minimum distance from C.

Computation of the distances and the shortest plain paths between C and the components in Ĉ described

above is no more than that of the standard BFS upon which it is based, i.e., O(|V |+|E|), since we exercise

a constant overhead per node during the traversal.

E. Complexity analysis

We next consider the worst case running time of ConnectID. The initialization phase takes O(|E|)
time: we remove all non-codewords and incident edges from the graph, run connected-components to

partition the result, and then set up Ĉ (as a linked list) and C. The iteration part of algorithm ConnectID

can run in O(N |E|) time as follows.
The while loop (starting at line 7) iterates at most N (which is O(|E|)) times, and at least one component

is extracted from Ĉ per iteration. Within the loop, each iteration requires the calculation of dist(C,Cj)
and path∗(C,Cj) at line 8 requires O(|V | + |E|) time as described in Section V-D. Line 9 takes the

O(1) needed to delete from a linked list, since we have already identified the component C∗. Lines 10

and 15 require O(|V |) time, since Lemma 5.1 assures only a constant number of calls to the disjoint-set

unionprimitive. Line 11 requires the algorithm to run find− set (i.e., constant-time) on all neighbors

of vertices on path∗(C,C∗), of which there are O(|E|). For each of the components found, a union

operation is used, giving a net total of O(|V |) unions over the life of the iteration loop. Altogether, the

computational complexity of ConnectID is O(N |E|), which is O(|V ||E|) since N ≤ |V |.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of ConnectID on two types of random graphs: Erdős-

Rényi random graphs and regular random graphs, i.e., graphs with random arrangement of edges such

that every node will have a fixed degree. It should be noted that even though geometric random graphs

are appropriate for modeling the outdoor communication range of wireless sensors, they are less practical

for indoor or harsh environments for which applications of identifying codes have been proposed [4], and

we have thus not included them. Indeed, geometric random graphs generally do not possess identifying

codes [14], although there are ways to get around this problem by removing a few indistinguishable

vertices from the graph.
In order to generate an identifying code for a given graph instance, we use the two existing algorithms

rID [14] and ID-CODE [4] that we briefly reviewed in Section III-B. As we will see, the identifying codes

generated by rID and ID-CODE are often disconnected.
Our metrics are the following: the number of components of connectivity for each of the identifying

codes, the cardinality of the identifying codes generated by algorithm ID-CODE and algorithm rID, the

cardinality of the connected identifying codes generated by ConnectID for each of the two identifying

codes and the corresponding redundancy ratios. We have measured the mentioned metrics over at least

100 graph instances and plotted the empirical means and 95% confidence intervals.

13

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

average node degree

av
er

ag
e

nu
m

be
r

of
 c

om
po

ne
nt

s

ID−CODE [2]
rID [10]

Fig. 4. Average number of components of connectivity for the identifying codes produced by ID-CODE [4] and by rID [14] over 100-node

Erdős-Rényi random graphs and varying average node degree.

2 4 6 8 10 12 14 16
1.05

1.1

1.15

1.2

1.25

1.3

average node degree

av
er

ag
e

re
du

nd
an

cy
 r

at
io

ID−CODE [2]
rID [10]

Fig. 5. Average redundancy ratio of the connected identifying codes generated by ConnectID for input identifying codes from ID-CODE [4]

and from rID [14] over 100-node Erdős-Rényi random graphs and varying average node degree.

A. Erdős-Rényi random graphs

We consider two scenarios, either we fix the number of vertices in the graph and change the average

node degree, or we fix the average node degree and change the graph size (i.e., the number of graph

vertices). We finally present results for connected robust identifying codes.

Figures 4, 5 and 6 correspond to random graphs with 100 nodes and average node degree ranging from

3 to 15.

Figure 4 shows the average number of components of the identifying codes produced by ID-CODE

and by rID. We expect lower redundancy with fewer components. If there is a single component, the

identifying code is connected. We observe that algorithm rID produces fewer components of connectivity

than algorithm ID-CODE on average. We also observe that the average number of components decreases

as the average node degree increases and equals about 2 when the average node degree equals 15. This

is reasonable since the connectivity between vertices (and codewords) increases with the average node

degree.

Figure 5 shows the average redundancy ratio of ConnectID, when the input identifying codes are

generated by ID-CODE and by rID. As one can expect, based on the results of Figure 4, rID leads to a

smaller redundancy ratio than that of ID-CODE. In both cases, the average redundancy ratio decreases as

the average node degree increases and approaches a value quite close to 1 for an average node degree of

15. The average redundancy ratio achieves its highest value (i.e., slightly above 1.25) for ID-CODE and an

average node degree of 3.

Figure 6 compares the cardinality of the connected identifying codes generated by ConnectID with the

14

2 4 6 8 10 12 14 16
10

20

30

40

50

60

70

average node degree

av
er

ag
e

id
en

tif
yi

ng
 c

od
e

si
ze

 (
co

de
w

or
ds

)

rID [10]

ID−CODE [2]

ConnectID−ID−CODE

ConnectID−rID

Fig. 6. Average cardinality of the input identifying codes from ID-CODE [4] and from rID [14] and average cardinality of the connected

identifying codes generated by ConnectID in both cases for 100-node Erdős-Rényi random graphs and varying average node degree.

0 20 40 60 80 100 120 140 160
1.1

1.15

1.2

1.25

graph size (number of nodes)

av
er

ag
e

re
du

nd
an

cy
 r

at
io

ID−CODE [2]
rID [10]

Fig. 7. Average redundancy ratio of the connected identifying codes generated by ConnectID for Erdős-Rényi random graphs of increasing

size and the input identifying codes from ID-CODE [4] and from rID [14]. The average degree of the graphs is kept fixed to four.

cardinality of identifying codes generated by ID-CODE and by rID. As previously shown in Figure 5, we

observe that the cardinality of the connected identifying code is far smaller than twice that of the input

identifying code. We also observe that the cardinality of all four identifying codes decreases with the

average node degree. We conclude that for Erdős-Rényi random graphs, algorithm rID not only generates

a smaller identifying code compared to ID-CODE to begin with, but also its resulting connected identifying

code is significantly smaller for all examined average node degrees.

Figure 7 depicts the average redundancy ratio for graphs with average node degree of 4 and number of

vertices ranging from 20 to 150. According to the figure, for rID, the redundancy ratio of the connected

identifying code decreases (at least initially) with the size of the graph. The redundancy ratio does not

change significantly for ID-CODE.

Figure 8 depicts the redundancy ratios for connected identifying codes from ConnectID when the input

identifying code is 0-robust, 1-robust, 2-robust or 3-robust. The graph size is fixed to 100 vertices and the

average node degree varies. Except for the case of 0-robust input, we obtain redundancy ratios of about

one. This implies that robust identifying codes are often connected for Erdős-Rényi random graphs.

B. Regular random graphs

Next, we evaluate the performance of ConnectID over regular random graphs with 100 nodes and

changing node degrees. Figure 9 depicts the redundancy ratios for connected identifying codes from

ConnectID when the input identifying code is 0-robust, 1-robust, 2-robust or 3-robust. As for Erdős-

15

0 5 10 15 20 25
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

average node degree

av
er

ag
e

re
du

nd
an

cy
 r

at
io

ID−CODE [2], r=0

rID [10], r=0

ID−CODE [2], r=1

rID [10], r=1

ID−CODE [2], r=2

rID [10], r=2

ID−CODE [2], r=3

rID [10], r=3

Fig. 8. Average redundancy ratio of the connected identifying codes generated by ConnectID for input identifying codes from ID-CODE [4]

and from rID [14] with various degrees of robustness ranging from 0 to 3. The underlying graphs are 100-node Erdős-Rényi random graphs.

All curves with diamond markers are almost overlapping.

5 10 15 20
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

node degree

av
er

ag
e

re
du

nd
an

cy
 r

at
io

ID−CODE [2], r=0
rID [10], r=0
ID−CODE [2], r=1
rID [10], r=1
ID−CODE [2], r=2
rID [10], r=2
ID−CODE [2], r=3
rID [10], r=3

Fig. 9. Average redundancy ratio of the connected identifying codes generated by ConnectID for input identifying codes from ID-CODE [4]

and from rID [14] with various degrees of robustness ranging from 0 to 3. The underlying graphs are 100-node regular random graphs. All

curves with diamond markers are almost overlapping.

Rényi random graphs, we observe that robust identifying codes for regular random graphs tend to be

connected.

VII. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of guaranteeing the connectivity of identifying codes, a problem

relevant to joint monitoring and routing in sensor networks. We showed, by reduction from the identifying

code problem, that the decision problem regarding the existence of a connected identifying code is NP-

complete. We introduced algorithm ConnectID that produces a connected identifying code by adding

codewords to any given identifying code for an arbitrary graph. The cardinality of the resulting connected

identifying code is upper bounded by 2|I| − 1 where |I| is the cardinality of the input identifying code.

We proved that the mentioned bound is tight and proposed an efficient implementation for ConnectID

with polynomial time complexity that grows as the product of the number of edges in the graph and the

number of vertices in the graph.

Motivated by the application of robust identifying codes in monitoring harsh environments where sensors

may fail and the connectivity is unreliable [4], we extended our analysis to the case where the input

identifying code to ConnectID is r-robust which leads to a connected r-robust identifying code. By

applying the theory of r-error correcting codes, we derived upper bounds on the cardinality of the resulting

connected identifying code that depend on the robustness r and the cardinality of the input identifying

16

codes |I|. Our results prove that as r becomes large, the redundancy ratio tends to one, meaning that

robustness implies connectivity.

We numerically evaluated the redundancy ratio of ConnectID. Our simulation results for Erdős-Rényi

random graphs and regular random graphs showed that this quantity is generally far below the theoretical

bound of two. When the input identifying code is robust, the redundancy ratio is close to one (i.e., the

input identifying code is connected or almost connected).

This paper opens several directions for further research. For instance, one could explore different

approaches for constructing a connected identifying code. Thus, instead of first constructing an identifying

code and then connecting it, once could try to build connected identifying codes from scratch. Also,

rather than bounding the redundancy ratio as done in this paper, one could devise algorithms that provide

performance guarantees on the minimum number of redundant vertices (codewords) needed, e.g., using

Steiner tree heuristics [32, 33]. That said, the results of our paper show that one cannot expect much

gain if the input identifying code is robust. Finally, one could investigate extensions of our work to the

problem of constructing connected identifying codes with robustness not only in identification but also in

connectivity, i.e., the generated identifying code remains connected in the event of failure of a bounded

number of graph vertices.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their very thorough review of the paper, and

especially for identifying and filling a small but important hole in Theorem 4.1 and suggesting Lemma 5.12

based on the Plotkin bound.

REFERENCES

[1] N. Fazlollahi, D. Starobinski, and A. Trachtenberg, “Connecting identifying codes and fundamental bounds,” in Proc. Information

Theory and Applications, February 2011.

[2] ——, “Connected identifying codes for sensor network monitoring,” in Proc. IEEE WCNC, Cancun, Mexico, 2011.

[3] M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, “On a new class of codes for identifying vertices in graphs,” IEEE Transactions

on Information Theory, vol. 44, no. 2, pp. 599–611, March 1998.

[4] S. Ray, D. Starobinski, A. Trachtenberg and R. Ungrangsi, “Robust location detection with sensor networks,” IEEE JSAC (special Issue

on fundamental performance limits of wireless sensor networks), vol. 22, no. 6, pp. 1016–1025, August 2004.

[5] S. Gravier and J. Moncel, “Construction of codes identifying sets of vertices,” The Electronic Journal of Combinatorics, vol. 12, no. 1,

2005.

[6] I. Honkala and M. Karpovsky and L. Levitin, “On robust and dynamic identifying codes,” IEEE Transactions on Information Theory,

vol. 52, no. 2, pp. 599–612, February 2006.

[7] I. Honkala and A. Lobstein, “On identifying codes in binary Hamming spaces,” Journal of Combinatorial Theory, Series A, vol. 99,

no. 2, pp. 232–243, August 2002.

[8] G. Cohen, I. Honkala, A. Lobstein, and G. Zémor, “New bounds for codes identifying vertices in graphs,” Electronic Journal of

Combinatorics, vol. 6 , 1999.

[9] I. Charon, I. Honkala, O. Hudry and A. Lobstein, “General bounds for identifying codes in some infinite regular graphs,” Electr. J.

Comb., vol. 8, no. 1, 2001.

[10] I. Charon, O. Hudry, and A. Lobstein, “Identifying codes with small radius in some infinite regular graphs,” Electr. J. Comb., vol. 9,

no. 1, 2002.

[11] I. Charon, I. Honkala, O. Hudry, and A. Lobstein, “The minimum density of an identifying code in the king lattice,” Discrete

Mathematics, vol. 276, no. 1-3, pp. 95–109, 2004.

[12] T. Berger-Wolf, W. Hart and J. Saia, “Discrete sensor placement problems in distribution networks,” Mathematical and Computer

Modelling, vol. 42, no. 13, pp. 1385–1396, December 2005.

[13] M. Laifenfeld, A. Trachtenberg, and T. Berger-Wolf, “Identifying codes and the set cover problem,” in Proceedings of the 44th Annual

Allerton Conference on Communication, Control, and Computing, September 2006.

[14] M. Laifenfeld, A. Trachtenberg, R. Cohen and D. Starobinski, “Joint monitoring and routing in wireless sensor networks using robust

identifying codes,” Springer Journal on Mobile Networks and Applications (MONET), vol. 14, no. 4, pp. 415–432, August 2009.

[15] S. Ray, R. Ungrangsi, F. De Pellegrini, A. Trachtenberg and D. Starobinski, “Robust location detection in emergency sensor networks,”

in Proc. INFOCOM, San Francisco, CA, April 2003.

[16] M. Laifenfeld, A. Trachtenberg, and D. Starobinski, Robust Localization Using Identifying Codes. Hershey, PA: Information Science

Reference - Imprint of: IGI Publishing, 2009, pp. 321–347.

[17] M. Laifenfeld and A. Trachtenberg, “Identifying codes and covering problems,” IEEE Transactions on Information Theory, vol. 54,

no. 9, pp. 3929–3950, September 2008.

[18] I. Charon, O. Hudry and A. Lobstein, “Identifying and locating-dominating codes: NP-completeness results for directed graphs,” IEEE

Transactions on Information Theory, vol. 48, no. 8, pp. 2192–2200, August 2002.

17

[19] ——, “Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard,” Theoretical Computer Science,

vol. 290, no. 3, pp. 2109–2120, 2003.

[20] S. R. T. Laihonen, Codes identifying sets of vertices. Berlin, Germany: Springer-Verlag, 2001, vol. 2227, in Lecture Notes in Computer

Science.

[21] Y. Ben-Haim and S. Litsyn, “Exact minimum density of codes identifying vertices in the square grid,” SIAM Journal on Discrete

Mathematics, vol. 19, no. 1, pp. 69–82, 2005.

[22] A. Frieze, R. Martin, J. Moncel, M. Ruszinkó and C. Smyth, “Codes identifying sets of vertices in random networks,” Discrete

Mathematics, vol. 307, no. 9-10, pp. 1094–1107, May 2007.

[23] J. Suomela, “Approximability of identifying codes and locating-dominating codes,” Information Processing Letters, vol. 103, no. 1, pp.

28–33, 2007.

[24] S. Guha and S. Khuller, “Approximation algorithms for connected dominating sets,” Algorithmica, vol. 20, no. 4, pp. 374–387, April

1998.

[25] J. Blum and M. Ding and A. Thaeler and X. Cheng, Connected dominating set in sensor networks and MANETs. Norwell, MA: In

Handbook of combinatorial optimization. Kluwer Academic Publishers, 2004.

[26] U. Feige, “A threshold of ln(n) for approximating set cover,” Journal of the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[27] C. H. Papadimitriou, Computational Complexity. Addison-Wesley, 1993.

[28] G. Cohen, I. Honkala, A. Lobstein and G. Zémor, “On identifying codes,” in DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, vol. 56, 2001, pp. 97–109.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

[30] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. The Netherlands: North-Holland, 1977, vol. 16.

[31] J. Hopcroft and R. Tarjan, “Efficient algorithms for graph manipulation,” Communications of the ACM, vol. 16, no. 6, pp. 372 – 378,

June 1973.

[32] M. Karpinsky and A. Zelikovsky, “New approximation algorithms for the Steiner tree problem,” Electronic Colloquim on Computational

Complexity (ECCC), Tech. Rep. TR95-030, 1995.

[33] G. Robins and A. Zelikovsky, “Tighter bounds for graph Steiner tree approximation,” SIAM Journal of Discrete Math, vol. 19, no. 1,

pp. 122–134, 2005.

