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Abstract

We examine the problem of minimizing feedbacks in reliableelgss broadcasting, by pairing rateless coding with
extreme value theory. Our key observation is that, in a brasidenvironment, this problem resolves into estimating
the maximum number of packets dropped amomgny receivers rather than for each individual receiver. Witleless
codes, this estimation relates to the number of redundansmnissions needed at the source in order for all receivers
to correctly decode a message with high probability. We ldgvand analyze two new data dissemination protocols,
called Random SamplindR§) and Full Sampling with Limited Feedback$_F), based on thenoment and maximum
likelihood estimators in extreme value theory. Both protocols rely osingle-round learning phase, requiring the
transmission of a few feedback packets from a small subseiceivers. With fixed overhead, we show tR&_F has

the desirable property of becoming more accurate as thévees's population gets larger. Our protocols are channel
agnostic, in that they do not require a-priori knowledgeiofd() packet loss probabilities, which may vary among
receivers. We provide simulations and an improved fullesémplementation of the Rateless Deluge over-the-air
programming protocol on sensor motes as a demonstratidmegbriactical benefits of our protocols, which translate
into about 30% latency and energy consumption savingshé&unive apply our protocols to real time oblivious (RT)
rateless codes in broadcast settings. Through simulatisasdemonstrate a 100-fold reduction in the amount of
feedback packets while incurring an increase of only 10-20%e number of encoded packets transmissions.
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I. INTRODUCTION

Reliable data broadcasting is the basis for over-the-aigq@mming (OAP) of sensor networks [1-4]. OAP
is used to deliver software updates and data from a broacésiurce) to large populations of sensors
(receivers) within wireless transmission range of the seuSimilar protocols have also been developed for
applications like real-time updating of stock-quotes aoors-boards on cellular and mobile smartphones.

Automatic Repeat reQuest (ARQ) protocols are commonly eygal to guarantee the reliability of data
dissemination over lossy wireless channels [5]. ARQ rexsunieceivers to notify a source about missing
packets via acknowledgements (ACKs) or negative acknaydeeents (NACKs). When the number of
receivers gets large, however, these messages becomeiegcasd result in the well-knowbroadcast
storm problem [2, 4, 6].

Packet-level forward error correction (FEC) provides anpiging approach to effectively reduce feed-
backs [7]. FEC requires the source to anticipate packeetoasd make redundant transmissions proactively,
instead of waiting for feedbacks from receivers and theningakdditional transmissions. Rateless codes
such as random linear codes, LT codes [8] and Shifted LT cf@leallow FEC to be implemented in a
practical and efficient way. The source encodériginal packets of a file and then transmits the encoded
packets. A receiver is able to recover the file successfitigr aeceiving M (or slightly more) distinct
encoded packets.

One of the challenges of implementing FEC is for the sourcdet@rmine an appropriate amount of
redundancy when transmitting proactively. While too maegundant FEC packets slows down the data
dissemination process unnecessarily, insufficient rednicylleaves many receivers unable to decode packets.
Furthermore, the inherent heterogeneity of channel ckeniatics across receivers (due to, e.g., link quality,
distance to the source, antenna sensitivity) significasttyplicates the task of redundancy estimation. While
estimating each receiver's packet loss probability may dssiple [10], such an approach does not scale
given that per-receiver packet loss probability needs tadmertained.

This paper is based on the following key observation. Whamgusiteless codes in a broadcasting environ-
ment, such as wireless, the number of redundant packentissisns corresponds to timaaximum number
of redundant packet transmissions needed among all reseiMas allows us to exploit advances in extreme
value theory [11], a powerful mathematical tool for studythe distribution of extreme order-statistics, such
as maxima of random variables, to effectively quantify srarssion redundancy with minimum overhead.

In this paper, motivated by OAP applications, we considergioblem of disseminating a file composed
of multiple segments, opages, from one source tdV receivers over a lossy wireless channel. Each page
consists of a fixed number of packets. Our first contributoformalizing this problem using extreme value
theory, in order to perform accurate online estimation @&f dimount of transmissions (formally defined as
o-reliable volume in Section Ill) a source needs to make in order to achieve batitity § of successfully
delivering each page of the file to all the receivers. Thaonksxtreme value theory, we are able to perform
accurate estimation of thereliable volume without requiring specific knowledge of channel charasters.
This accurate estimation can be accomplished with extatipol based on limited information obtained from
the dissemination of aingle page.

Second, we develop two new data dissemination protocoledc&andom Sampling (RS) and Full
Sampling with Limited Feedback (FSLF), based on extreme value estimators known to be asymgiptica
exact asN — oo. Both protocols estimate thé-reliable volume during alearning phase, and then
reliably disseminate the rest of the file duringransmission phase. While RS restricts the overhead of the
estimation during théearning phase, by randomly sampling feedbacks from a small subset of veci
FSLF judiciously exploits the fact that the extreme value estorarequire only samples of tliet 1 largest
order statistics, for somé << N, to collect all the feedbacks needed. We further show H&iF has
the appealing property of providing more accurate estonatif thed-reliable volume when the receivers’
population gets larger, without incurring higher overhead



Third, we show through extensive simulations that b&& and FSLF almost completely eliminate
receivers’ feedbacks during thteansmission phase. Thanks to the high accuracy of the estimators, the
amount of packet transmission by the source is only about fiteh than with ARQ.

Fourth, we compare the performance of different extremeevastimators, namely, th@oment and
maximum likelihood estimators, in conjunction with theS and FSLF protocols. Amongst all the possible
combinations, we observe th&SLF based on the moment estimator achieves the best performiance
terms of minimizing overhead and maximizing accuracy.

Fifth, to demonstrate practical benefits of our protocols,a@nductreal mote experiments on a testbed
of 14 Tmote Sky sensors [12] and perform larger-scale sitimmausing the TOSSIM simulator [13].
Specifically, we design a new over-the-air programming quolt based on Rateless Deluge [4], called
Extreme Value Quantile Estimation (EV-QE) Deluge, whickegrates theRS protocol. The experiments
and simulations show that EV-QE Deluge lead to a 75% redudtiocontrol-plane traffic together with
30% savings on latency and energy consumption, at the egpanan about 5% increase in data-plane
traffic as compared to Rateless Deluge.

Finally, we employ extreme value estimators for creatirajadale broadcast versions of real time oblivious
(RT) rateless codes [14]. RT codes have a simple decodegrjesiaking them especially suitable for
wireless sensor receivers. However, each receiver isnemtjto send information about its decoding progress
to the source periodically, limiting the scalability of Rddes for large receiver populations. For a marginal
increase in the number of encoded packets broadcast fromotitee we show how using EVT to predict
receiver decoding progress offers a major decrease (onrtlee of two orders of magnitude) in the total
amount of feedback required from the receivers.

This paper is organized as follows. In Section Il we survdgtesl work. We formulate our problem in
Section 1ll. We point out the limitations of classical esdition techniques in Section IV-A, give a primer
on extreme value theory in Section IV-B, and introduce themaot and maximum likelihood estimators
in Section IV-C. The design of thBS and FSLF protocols is presented in Section V. Simulation results
and sensor mote experiments are provided in Section VI ahdr&8pectively. We illustrate the practical
applicability of our approach by designing and then bencking a scalable broadcast version of RT
codes [14] in Section VIII. We provide concluding remarksSaction IX.

Il. RELATED WORK

The concept of exploiting FEC for reliable data dissemorathas been the subject of prior research,
both in wireline and wireless settings, and we next survesehworks most related to our paper. The
works in [15, 16] numerically evaluate the performance iovements achieved with different levels of
FEC redundancy. In order to allow the sender to decide whestdp transmitting FEC-coded packets
without explicit feedback, the authors in [17-20] study treperties of file dissemination completion
times. While in practice the packet loss probability diffdrom node to node due to many factors (i.e.,
link quality, distance to the source, antenna sensitiyvityg works in [15,17, 21, 22] as well as some hybrid
FEC/ARQ protocols such as [23], assume homogeneous packet tobahlities in their analysis. The
works in [16,18-20] do study the more realistic scenario etelogeneous packet loss, but they assume
that receivers’ packet loss probabilities &®wn to the source, a relatively strong assumption for practical
multiple receiver environments. In our work, we allow thecket loss probabilities to banknown and
heterogeneous across receivers. The idea of applying EVT to minimize fee#tbwas first proposed in [20].
However, the techniques presented in this present paperoanpletely different from those in [20], since
we resort here t@n-line measurements to estimate the extreme-value parameters.

While it is possible to perform online estimation of netwgrirameters such as packet loss probabil-
ities [10], such techniques are not generally scalable Withnumber of receivers in the network, given
that all per-receiver packet loss probabilities must bemeined. The authors in [24] try to estimate FEC



redundancy without obtaining the individual receiverstlket loss probabilities, but they do not establish
relationship between the redundancy and the probabilitguacess. In this present work, we propose to
estimate the amount of transmissions needed to fully dissgendata to all receivers, with probabilidy
Our estimate is computed online without the knowledge ofnoleh characteristics, and we establish an
analytical relationship between the amount of transmissi@nd the probability of success.

Finally, estimation can also be performed using classippl@aches [25]. However, they have significant
overhead (cf. Section IV for details), which our approachids by utilizing the theory of extreme values.

I1l. PROBLEM FORMULATION

We consider the problem of broadcasting a file from a sourag, (a base station) t&/ receivers within

its transmission range. The file is divided inbpages, each consisting 6f packets. Encoding is done at
the packet level using rateless codes (e.g. computing mnarsdons of input packets). Each receiver needs
to receiveM distinct packetsin order to recover a page.

The time axis is slotted, and each packet transmission igvess to take one time slot. The packet loss
probability for receivem (n =1, .., N) is p,,, wherep,,’s are heterogenous andunknown, but assumed to be
independent, identically distributed (i.i.d.) randomightes. The source encodes and broadcasts the pages
in an increasing order. Sending one page is denoted aseaheation in the data dissemination process.

In a given realization of the data dissemination process, denotd pyhe number of time slots required
for receivern to recover a page. Singg,’s are i.i.d. random variables, the time required for dengdhe
page is i.i.d. across receivers; in other word¥;s are also i.i.d. random variables. Denote by the
random variable representing the completion time for teaization,i.e.,the number of time slots needed
to disseminatel/ packets to a cluster oV receivers:I” = max 7.

The success probability of a page dissemination is thg_ﬁrijbability that the page toded by allV
receivers. Th&-reliable volume, denoted as;, is the amount of packets the source needs to broadcast to
guarantee a success probability

Our goal is to sample and analyze a fixed number of feedbadtefmm a single realization, correspond-
ing to the broadcast of the first page of a file, in order to estiinthed-reliable volume ¢5. Our estimation
aims to accurately quantify the valug of a realizationr, where, by definitionPr{7" < ¢;} = 6. Note
thatts is also referred to as-quantile of the distribution functiorPr{7™ <t} [26, p.404].

V. EXTREME VALUE QUANTILE ESTIMATION

We begin this section with a review of traditional approacie quantile estimation, pointing out their
limitations, and a short primer on extreme value theory,\agutul statistic tool for studying the distribution
of the maxima of random variables. We then introduce extreahge theory-based estimators, which form
the basis of our near-zero feedback data disseminationgmist described in Section V.

As discussed in Section lll, for a given realizatiorof the data dissemination process, the completion
times of the receivers are i.i.d. random variablgs, 7, .., T}, following an unknown distribution function
F(t). Let their order statistics b€] y, 75 v, .., T 5, Mmeaning thall] y <77 < .. < T} . Clearly, T} v,
which corresponds to the maximum of completion times amadingeeivers, is identical td™, the number
of packet transmissions by the source during realizatioBimilarly, for R realizations,” = 1, .., R, the
set of 7"’s are also i.i.d. random variables because they are themaaaf i.i.d. random variabled.”. Let
their order statistics be denoted BYy-%, T2, .. THE,

Recall that our goal is to quantify thereliable volume, 5, needed in order to achieve a success probability
0 of delivering a page to all receivers, corresponding todttgiantile of the distribution functioRr{7" <
t} = Pr{nr_nlaXN T <t} = FN(t) [26, p.404]. Equivalently, this problem can be considersdstimating

T-quantile,r = §~, of the distribution function'(t); clearly thisT-quantile is precisely;.

'Somenear optimal rateless codes require slightly more thah packets to decode a page.



A. Classical Estimators and their Limitations

Classical quantile estimators compute theuantile, 75, by interpolating linearly between the order
statistics [26, p.404]. For example, consider the averagjuantile estimator [25]. After the completion
times of R realizations are collected and ordered Bs”® < T>% < ... < TRE the §-quantile for
Pr{T" <t} = FN(t) is estimated as

~ LR J+LRY i 5
ts=19 7 (?:1 R o ) o, 1)
Tr+h otherwise

A major limitation of all interpolation-based quantile iesators is that they need many realizations
(i.e,large R) to estimate high quantiles. The fundamental reason is diathese estimators implicitly
assume that the estimation will not exceed the largest cstigistic, namely*#. For instance, using
Eqg. (1) to estimate the high quantile (whén- 1 — }—1%) always yieldst; = 772, Therefore, this estimator
becomes ineffective wheth> 1 — 1—1%. In other words, it is not possible to estimate any quantiggér than
(1— %) based on the data collected froRrealizations using classical quantile estimators. Edentdy,
to determinets wherePr{7T" < ¢;} = §, one needs to collect the completion times7d% from at least
R = ;1 realizations.

Note that one could equivalently estimate theuantile,r = §~, of the distribution functionF'(t) by
collecting the individual completion time§;”, from all receivers. However, it can be shown that at least
R = 1—i5 realizations are still required.

B. Extreme Value Theory

The completion time for successfully disseminating a pagessponds to the maximum of the individual
completion times of each receiver. In order to estimatedtneiable volume by extrapolating beyond the
limited amount of feedbacks (based on only a single readzatone needs to explore the properties of
the distribution of the maximum of i.i.d. random variables.

Extreme Value Theory (EVT) provides a sound theoreticahBaork for such an extrapolation. It restricts
the behavior of the distribution of the maximum of i.i.d. d@m variables, namely”, whereI” = max 77,

n=1,.N

to an EVT distribution. The EVT distribution can be specifieg just two parameters, thextreme value
index and thescale factor [11], defined below. Consequently, we can quantify dheliable volume without
requiring knowledge of channel statistics of each indialdieceiver.

Formally, suppose there exists a sequence of constaitsandb(/NV), such tha(nr_nlaxN T"—b(N))/a(N)

has a non-degenerate limit distribution s— oco. Then, according to extreme value theory,
dim FY(a(N)t +b(N)) = G,(t), (@)
where
G (t) = exp (—(1 + yt)-%) L for 14+t >0,7€R, 3)

and the right-hand side interpreted eag(—e™*) for v = 0.
DefineU to be the inverse function qf_l—F As depicted in Fig. 1U(§) corresponds te-quantile,t .
Ref. [11] shows that the following statement is equivalenEg. (2):
Ut) - U tM) 1

i VUG _ (#8)' -1

whereU(N) = b(N) in Eqg. (2), and the right-hand side is interpretedast for v = 0.

(4)




Fig. 1. The relationship between functidnand U.

EqQ. (4) is used as a basis for extreme quantile estimatioesifimate ar-quantile, one can use following
estimator,

1k
£ =0(— >=ﬁ<%>+a<%><1”+a ()

1—71

where N is the sample size and k is the intermediate number. As £ — oo, N — oo and % — 0, Eq. (5)
asymptotically converges to the actual quantile [11].

By the definition ofU, it can be shown that/(') = T} _, - The right hand sideT}_, , which is
the (N — k) largest completion time in the-th realization, can be obtained from the order statisticthe
empirically collected completion times reported by theeieers. Therefore, when using Eq. (5) to estimate
the 7-quantile, one only needs to estimate tx&eme value index  and thescale factor a(%’). This is the
reason thej-reliable volume at the source can be estimated without knowledge of charraghcteristics.
Next, we describe statistical approaches for estimatieghtio parameters.

C. Estimation of the Extreme Value Index and Scale Factor

We will now introduce two important EVT estimators used tdireate the extreme value index and
the scale factoa(%) of EQ. (5). Note that these estimators are derived from Egol(&s equivalent forms.

1) The Moment Estimator [27]: The moment estimator is an extension of the simple and widely used
Hill estimator [28], which is a special cage= 1 of the following equation:

Ead
—_

M](Vj) = (log TJT\}—i,N — log T](/—k,N)jaj =1,2. (6)

| =

I
o

i

The Hill's estimator provides estimates for. = max(0,~), and converges to 0 when < 0 (i.e.,non-
informative).
Let v_ = min(0,v). The work [27] estimates_ as follows:

-1
- L(,_Q)y
Fo=1-2 (1~ . (7)
2 < MY

Complementarily to the Hill's estimatofy_ can only estimate the case wheye< 0 and converges to 0
for the casey > 0.
The moment estimator foy € R, proposed in [27], is essentially a combination of the estonfor .

and~_,
-1
N 1 M(l) 2
’VM:M](\})+1—§<1—7(MA(T2))> . 8)
N




The corresponding moment estimator of the scale factor is

~ N ~
() = Xnonn My (1-72). (9)

The authors in [27] show that providéd= k(N) — oo and £ — 0, as N — oo, both7,; anda,, are
consistent estimators and convergeytand a(%).respectively.

Given a set of observatiori§', .., T}, the maximum likelihood (ML) estimator aims to determine which
parameters of the extreme distribution make the observéal rdast likely to occur. We next summarize
the work in [29], which provides an equivalent method of apmating Eq. (2).

Denote the upper endpoint df by t* = sup{t : F(t) < 1} < oo and, fors < t*, let F,(t) be the
conditional distribution function of) — s givenT; > s. More precisely,

F(s+t)— F(s)
1—F(s)

Fi(t)=P(T, <t+s|T, >s)= (10)
fors<t*,t>0andl— F(s) > 0.
Let H,(t) be the generalized Pareto distribution function

Hy(t)=1—(1+~t)7. (11)

Then, (based on [29] and the citations therein) there eaistsrmalizing functioru(s) > 0 such that - this
is the formal result in DrFe04:

t
lim sup |Fi(t)— H,(—

ST 0<t<tr—s a(s)

)| =0, (12)

if and only if F; is in the maximum domain of attraction 6f.(¢).

Eq. (12) shows that the distribution of an applicable randariable 7 — s given T" > s converges
to a generalized Pareto distributidih, (¢), ass — t*. Therefore,Hv(ﬁ), which is determined by the
parametersy anda(s), can be used to approximate(t).

The ML estimator aims to determine the parameters which nmhbkeobserved data most likely to
occur [30]. Specifically, given a set @ independent observations, ts, .., t, (drawn fromH,y(ﬁ)), the
ML estimator determines values ofanda(s) that maximize the joint probability that these observation
will occur. Formally, leth., . (t) = w be the PDF (Probability Density Function) th(ﬁ). Thus
we have

1 £\
heyas(t) =—— (1 — . 13
7va( )( ) a(s) ( +Va(s)) ( )
Therefore, the joint density function for all independent observations is as follows,
Py a(s) (B tay oy ) = 1L By o) (12). (14)

Eqg. (14) is also calletikelihood function. The goal of the ML estimator is to find the valuesyadinda(s)
that maximize the likelihood when given the observations,, .., .. Namely,

AL, a(s)uLe} = argr?z)lx 15 By s (1) (15)
v,a(s
Equivalently, one can maximize the logarithm of the likeldldl function, calledog-likelihood, as following,

L
{;}\/J\/[LE76(3)MLE} = argmax Z 10g h%a(s) (tl) (16)

770’(8) =1



In order to obtain the estimation that maximizes the likatith, one can set the partial derivatives of the
log-likelihood function (Eq. (16)) with respect tp and a(s) to zero. Therefore, using Eqg. (13), one can
obtain the ML estimation fory anda(s) by solving the following system of equations,

dlog h%a(s) (t)

=0

0 | (17)
dlog h%a(S)(t) —0
da(s) '

Namely,

4 1 ]
> 1) T =0 (18)
T (7 1+ 5t

Now back to the problem of estimating the extreme value iratek the scale factor using ML estimator.
When given a set of order statistics of random varialilgs, .., T v, the distribution of the set of random
variables{ (T} _,.;y — Th_pn)li = 1...k} givenTy_, v, Fi(t), can be approximated by the distribution
of an ordered sample df i.i.d. random variables with CDIH,Y(ﬁ), wheres = Ty, . According to
Eq. (18), one thus can obtain the ML estimators for the extrealue indexy and the scale factar(%)
by solving the following system of equations,

( k
1 g
—log |1+ —(Th ;1 n —Th_
Z,yz ( a(%)( N—i+1,N N k,N))

i=1

T ; =0, (19)
1+ #%)(TN—H-LN — TN n)

(1 ) ﬁ%)(Tff—iH,N - T](f—k,N)
1+ #%)(T](f—i—kl,N Ty 1n)

i (1 ) a(lﬂ) (Tx —i+1,N — T](f—k,N)

= k.

There are only two unknown variables in Eq. (19), which arand a(%), and their solutions are the
ML estimators for the extreme value index and scale factenoted~,,.r and aMLE(%) respectively.
Discussions on obtaining the solutions of Eq. (19) numéyican be found in [31].

Under certain technical conditions [29], fér= o(log2 N) — oo and N — oo, e anday g are
shown to asymptotically converge to the actual valueand a(%).

Remarks:

1) Both the moment and ML estimators neemly the largestk + 1 order statistics (ofV samples) to
estimatey anda(%Y), a significant source of savings for our protocols as showt. ne

2) It is possible to use the EVT estimators to collect datanfraultiple realizations (pages) to improve
the estimation quality. However, we show that the estinmatias small variance (see Section VI-A) even
if the collection is restricted to one realization.

3) According to [11], different choices of the intermediatamber i result in different estimation
variances. The discussion of tuning the parameters of the &tfimators is presented in Section VI-B.



V. BROADCASTING PROTOCOLS WITHLIMITED FEEDBACKS

In practical applications, one of the crucial steps to sfagt estimation is to collect sample data, which
is referred to thdearning phase in this paper. The estimation will then be used to determivgerequired
redundancy for the remaining pages, which are distributeithe transmission phase of our protocols.

In the learning phase, the source disseminates the first toatpe network and then collects individual
completion times {'s) from the receivers. Upon collecting enough responses sturce estimates the
o-reliable volume using either the moment estimator based on Eq. (8) and Ego(3he ML estimator
based on Eq. (19). The estimatetgis used to determine how many packets to transmit in therireasson
phase.

It is important to minimize the communication overhead of protocol (in terms of the duration and the
number of feedbacks) in order to maintain scalability, egdly when there is a large number of receivers.
We propose two methods for managing this overhe&hndom Sampling (RS) and Full Sampling with
Limited Feedback (FSLF).

A. Random Sampling

1) Learning Phase: In our first approachiRandom Sampling, the source restricts the amount of feedbacks
by only collecting completion times from a small sét'j of receivers chosen uniformly at random among
N receivers, whereV’ < N.

In order to collect feedbacks fron¥’ random receivers, the source attaches a random seed todhe fir
page, and then encodes and transmits packets as usual. imoooseed is used by all receivers to
generate the same set &df pseudo-random integers uniformly distributed[on. . N|. Only receivers with
IDs within this common set send their completion time backh® source. The source continues to send
packets until it receivedV’ feedbacks. It then uses the feedbacks to estimhatin practice, the feedback
channel itself may be faulty, in which case one may desigsatee smaller threshold of feedback packets
that must be received before attempting estimation.

As discussed in Section IV, to quantify, one can either estimate theguantile ofPr{7, <t} = FV(t),
or estimate the-quantile,r = 6~ of Pr{7™ < t} = F(t). In our case, we will estimate the-quantile,
since the source collects completion tini€sduring the dissemination process.

According to Eqg. (5), withN’ data samples]7 v, .., Tk s, the source first sorts the data and then
obtains the number of transmissions required using thevimllg estimator:

N N <;1 . %)v 1
Trs(®) =U(— ) +a(— ) =22 . (20)
k k ~

The result will be one of two different-reliable volume estimatorsfgfs(é) corresponding to the moment
estimator orTALLE(6), corresponding to the ML estimator.

We will show through simulation in Section VI-A that randgmthoosing N’ = 50 out of N = 10*
receivers is sufficient to achieve good estimation.

2) Transmission Phase: The source first broadcasts data packets as estimated iredh&ing phase.
Receivers that cannot recover the page, sense the chamhél ao other request is overheard first, reply to
the source with a request for additional data packets. Thecedransmit®i~'y additional packets in the
i-th round of its transmissions, whenes an integer. This multiplicative factor is important irdueing the
number of requests, and our simulations show that it doesypaally result in transmission of unnecessary
data packets. If there is no request for a predefined lengtimef~’.,,., the source moves on to the next
page. In our sensor mote implementation (Section VII), wemps: 1 and7,.¢p. = 500 (MS).
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B. Full Sampling with Limited Feedbacks

A simple way to improve the quality of estimations using 8 is to collect more feedbacks, e.g.,
increasing/N’ towards N. However, this approach does not scale as the number ofveeséV becomes
large and may cause feedback implosion, precisely the gmolve try to avoid in the first place.

By exploiting the inherent properties of the EVT estimatave devise here a sampling approach called
Full Sampling with Limited Feedbacks which is able to collect all the completion times needed fribra
receivers, with an almost fixed amount of feedbacks. Coresgty) an appealing property &1SLF is that,
given a fixed amount of feedbacks, the estimators become mxrerate when the network has more
receivers, since the source collects more useful data sampl

FSLF exploits the fact that the EVT estimators only need kel (recall k is the intermediate number)
largest order statistic®y_; x, Tx_j11.n) - I, @S inputs for the estimation. Therefore, if the sorting
process can be performed before the collecting processtrandource only collects the + 1 largest
individual completion times from the network, then this gui&valent to the case where the source collects
all the data, sorts them, and then use the 1 largest order statistics as inputs for the extreme estirsato
to quantify §-reliable volume.

In order for the source to collect the+ 1 largest completion times, we assign higher priority to the
receivers with larger completion times in sending feedbackhis is achieved as follows. The source
transmits the first page using tRS method. Ideally, after the page is successfully disserathatll receivers
know the network completion timg&”™ = max. T". Each receiver then sets a random timer with length

n=1,.
inversely proportional to the difference between its owmptetion timeZ and the network completion
time 7. Before the timer expires, each receiver records the nuwi@rerheard feedbacks with completion
time larger than or equal to its own. When the timer expiresg@iver reports its own completion time
T7 if less thank + 1 feedbacks are recorded, or suppress it otherwise.

The timer of each receiver is set as follows. Re@all,,,; is the interval of time allotted to receivers to
report the feedbacks. We set the length of the timer to bedorarvariable uniformly distributed during this
interval between =2 (T — T77) and 2= (T" — T} + 1). Therefore, a receiver with larger individual
completion time7” will report its completion time sooner. After waiting forahend of the report interval,
the source estimates thdereliable volume using thek + 1 largest order statistics.

In practice, each receiver may not necessarily know the ar&teompletion time and the source may not
be able to collect alk + 1 largest completion times, due to lossy channels. We let eaxdiver consider
the time when overhearing the last data packets as the retwonpletion time, and use it in lieu af".

In the case where the source collektgk’ < k + 1) feedbacks, the source will underestimaesince it
considers the’ feedbacks as the largest completion times. However, recall the source already has an
estimation fromRS when sending the first page. Therefore, it can compare bditmaes and keep the
larger one.

The estimators foFSLF are slightly different fromRS. With FSLF, although the source collects only
k + 1 completion times, it is equivalent to the case where it ctdlehe completion times from all the
receivers, sorts them and then use the 1 largest order statistics as inputs for the extreme estirmato
Thus, the sample size fétSLF is N. One can first creaté&’ data by setting thé + 1 largest ones to the
samples collected, and the rest to zero, then obtain the&stn ofz; as following,

. N N (= %71
Trspr(8) = U(T) +a(5) 0% 5 : (21)

We again have two different-reliable volume estimators T2, ..(5) and TMEE (5), depending on the
estimators used (moment or ML). After the estimation, thetesy enters the transmission phase and behaves
the same way as described in tR€ method.
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In summary, an importantly property &1SLF is that given the same amount of feedbacks, it achieves
higher accuracy as the number of the receivers becomeg.|l&8e- helps to mitigate the problem of
feedback implosion in the learning phase, as it restrices thimber of feedbacks to be close kot 1.
Therefore, thanks to its scalability and increasing aaoyrthis approach is ideal for broadcasting in dense
networks.

C. Overhead Analysis of Extreme Value Estimators

We next summarize the overhead of the EVT estimators and a@nipwith that of classical approaches.
We look at the number of feedbacks needed for the estimasowed as the number of pages, which
corresponds to the time needed.

According to the discussion in Section IV-A, to estimage a classical estimator needs to know the
completion time oflflé pages to get a valid estimation. Therefore, the learning@loé classical estimators
requires the transmission of at qué_% pages and the collection of the completion time for each page

For EVT estimators, the learning phase for b&8 and FSLF requires the transmission of only one
page to estimates. During the learning phase d®S, only N’ receivers report their completion times.
Therefore the number of feedbacks neededRSrestimation is/N'. In the learning phase dfSLF, the
source transmits the first page usiR§, and then collects thé + 1 largest completion times. Therefore,
the number of feedbacks needed F8LF is N' + &k + 1.

Note that these comparisons are for the best case of all astisn In practice, the difference between
them can be even larger as shown by our simulations and expets.

VI. NUMERICAL RESULTS
A. Performance of Extreme Value Estimators

We first investigate the overhead and accuracy of the EVImestirs proposed in Section V in the
learning phase, as well as the benefit of applying the estimation to ttemsmission phase, in terms of
reducing feedback requests and maintaining the minimuminexd|d-reliable volume, ¢5, whered = 99%.

In this simulation, a two-page file is disseminatedNo(ranging from10? to 10*) receivers. Each page
consists ofM = 1000 packets. For receiver, the corresponding packet loss ratg unknown to the
source, is a uniformly distributed random variable in thege[0, 0.2]. The é-reliable volume estimations
are obtained from Eq. (20) and Eqg. (21) 6 andFSLF, respectively. The extreme value index and scale
factor are estimated by the moment estimator (Eqg. (8) and(®9. and the ML estimator (by solving
Eq. (19) using Matlab).

For RS the source collects feedbacks froM = 50 random receivers. The intermediate number is
k = 20. Since the solution of the system of equations for the MLnestor yields complex solutions when
N’ is small (similar issue is reported in [11]), we omit the MLtiewtion here. FoIFSLF, the values of
k for the moment estimator and the ML estimator are setOt@nd 50, respectively. The results shown in
the following figures represent an average over 1000 itarati

Fig. 2(a) shows that the overhead of the estimators (i.e ntimber of packets collected for the estimation)
marginally increases as the number of receivérgrows. As discussed in Section V-C, the smallest possible
overhead folRS and FSLF to perform estimation isV’ and N’ + k + 1 feedbacks, respectively. The result
shows that the overhead for both estimators is close to mimrand remains almost a constant as the
number of receivers increases. Note that the overhe&®df is slightly higher tharRS, sinceFSLF needs
to collect thek + 1 largest completion times at the end of the learning phaseeSa small intermediate
number.k, for the ML estimator yields to complex solutions, it is seb0 for the ML estimator, larger than
the one for the moment estimator, which is 20. Recall for FieF sampling technique, the intermediate
number corresponds to the number of samples the source teeddect from the receivers. Therefore,
FSLF with the ML estimator has higher overhead thHa8_F with the moment estimator in the learning
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phase, as shown in Fig. 2(a). Next we will show that this egtmunication cost trades off with higher
accuracy in estimating th&reliable volume.

Fig. 2(b) shows the accuracy of the estimators by compahagstimations with the empirical quantile.
The empirical quantile is obtained from the classical gilemistimator in Eg. (1) by running0® identical
iterations, bringing this estimate close to the actual @allhe accuracy of th&S approach decreases as
the number of receivers increases. Recall that estimatipgantile,t;, of FV(¢) is equivalent to estimating
the r-quantile,t., 7 = 6~ of F(t) (see Section IV). Therefore, increasing the number of vecgirequires
greater extrapolation to estimate higher quantiles. SR8éxes the number of feedbacks ¢’ = 50, its
accuracy thus decreases.

On the other hand, the accuracy lBBLF-based estimators improves as the number of receivers grows
because the source collects more useful data with incraSin Correspondingly, the EVT estimates
converge to the actual value @8 — oco. Further, the overhead diSLF barely increases ad grows,
as shown in Fig. 2(a), confirming the scalability FESLF.

Next, we study the benefit of applying the estimation in réggicontrol traffic during the transmission
phase. We record 1), the number of feedback requests ande2¢xtra number of data packets transmitted
compared to a pure ARQ scheme, where the source only transrhgn requested and so the number of
data packets transmitted is minimum.

Fig. 2(c) shows the average number of feedbacks for encodekiefs during the transmission phase.
While transmitting a page witd/ = 1000 packets toN = 10* receivers usindRS with moment estimator,
the average number of requests is only 1.2 per page. It evereakes when usingSLF, 0.19 for the
moment estimator and 0.04 for the ML estimator. Thereforglinost all cases, receivers recover the page
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using the initially estimated-reliable volume without using feedbacks.

Fig. 2(d) shows that the moment estimator using IR8landFSLF overestimates the required redundancy
by only 4% (of the total number of packets transmitted). le BhL estimator, the overestimate is relatively
large when the number of receivers is small, but decreasaséasonable level for largéey.

Based on the above simulations, we conclude Biz8F using the moment estimator provides the best
trade-off along all dimensions of interest (high estimateccuracy and low number of feedbackBp
using the moment estimator is accurate when the number efvess is small. However, the amount of
feedbacks needs to grow with increasingto maintain accurate estimation. Both protocols dradical
reduce receiver(s)-to-sender traffic and incur only maigaxtra communication due to overestimating

B. Further Evaluation on FEC Redundancy Estimators

In this part we are going to further study how each paramer k£, N’, and¢) affects the accuracy of
the FEC redundancy estimators. We only investigateRBenethod, as th&SLF approach is equivalent to
RSwhen N’ = N and yields better accuracy otherwise, as shown in Fig. 2(b).

In this simulation, we focus on the learning phase. The patars areM = 1000, N = 1000 and
the packet loss rates among receivers are again heteragereend uniformly distributed in the range of
[0,20%)]. The estimations are compared with the empirical resultlvig obtained from Eq. (1) by running
10° identical iterations. Each point in the figures representserage over 100 independent estimations.
A 95% confidence interval is also plotted in the figures.
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1) Varying intermediate number %k: We first investigate the accuracy of the estimators by varyire
choice of the intermediate numbérand fixing N = N = 1000, 6 = 95%. Fig. 3(a) shows that the
bias of both estimators increaseskamcreases, which is expected from the properties of extrguaatile
estimators [32]. The results show that while a larger valug ®ads to a smaller variance for the moment
estimator, it yields a larger variance for the maximum likebd estimator. Although the moment estimator
has larger variance for small values lof(e.g., £ = 10, 20), its 95% confidence interval is still small, i.e.,
less than 1% of the estimated quantile.

2) Varying sample size N': We next study how the size of data samplg, affects the estimators’
accuracy, by fixingd = 95%, k& = 10,20 for the moment estimator, ankd = 50, 150 for the maximum
likelihood estimator. As expected, Fig. 3(b) shows that ¢éséimators become more accurate and their
variances reduce a§’ increases. It is worth noting that for the moment estimatample sizeV’' = 25
Is sufficient to achieve good estimation, i.e., within 4%la# empirical value. This implies that the overhead
of usingRS can be made very small, since it roughly correspond&tdeedbacks, as shown in Fig. 2(a).

3) Varying success probability: We verify the accuracy of the estimators over a large rangeesfred
success probability, ranging from0.7 to 0.9995. The result (Fig. 3(c)) shows that both estimators are
accurate over the entire range. As one could expect, thenasdn variance increases with the stringency
of the success probability. However, all the estimatiommriare within the order of 5% of the empirical
value.

C. Small Network and Non-i.i.d. Scenarios

We evaluate the estimators under a non-typical EVT scenadq a network with small number of
receivers that have non-i.i.d. packet loss rates. We censidwo state burst channel model in Fig. 4(a).
When the receivers are in a good channel state their packetrédes are heterogeneous random variables
uniformly distributed in the rang@, 0.2]. When there is an error-burst (with probabilit; 5 = 0.2), the
channel will switch to the bad state, wherein the packet tdssach receiver is uniformly distributed in
the rang€0.6, 0.8]. The channel switches back to the good state with probpldilit = 0.5 at subsequent
time slots.

Similar to previous simulations, the source first transmoite page, collects feedbacks, and estimatds
then transmits the next pages based on the estimate. Thegtara are as follows\/ = 50, N ranging from
20 to 60,N’ = 20, k = 10, ando = 95%. The results in Fig. 4(b) and Fig. 4(c) demonstrate that liesé
scenarios, the estimators still significantly reduce fee#tb from the receivers. The extra communication
due to overestimating thé reliable volume is slightly larger than in i.i.d. packet loss scenarios, ibus
reasonable.

VIl. PROTOTYPEIMPLEMENTATION

In this section, we enhance an over-the-air programmindopod for wireless sensor networks using
the proposed extreme value techniques. Our modificatiom$ased on the Rateless Deluge over-the-air
programming protocol [4], which uses random linear code<fficient file distribution to wireless sensors.
The performance of both protocols is compared using our &msky [12] testbed as well as through the
TOSSIM bit-level network simulator [13].

A. Stup

In our setup a file is divided into pages consisting of tweryb§te packets each. The packet loss rate
of each receiver is a uniform random variable in the rangg, [0.2]. All sensors are within communication
range and transmit at their highest power setting to ensgeod link, and packet loss at the receiver is
forced by dropping packets uniformly at random accordingidcown packet loss rate. All results in this
section represent an averagelofindependent trials.
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Fig. 5. Tmote Sky sensors testbed with 14 motes.

Rateless Deluge | EV-QE Deluge
Number of Feedbacks 77.8 17.3
Number of Data Packets 593.1 632.7
Total Completion Time (sec) 56.7 39.1

Fig. 6. Rateless Deluge vs. EV-QE Deluge: 20 pagés= 12, M = 20, heterogeneous packet loss.

A sensor requests encoded packets from the sender if itwvdiscthat its neighbors have new data. The
request message specifies the page number and the numbecketspaeeded. When a sensor receives
enough packets, it can decode the page successfully. Arseappresses its request if it has overheard
similar requests by other sensors recently.

Here, we augment the original Rateless Deluge with the mrdrealue quantile estimation technique, and
refer to the new protocol as EV-QE Deluge. To ensure a fairpaiaon, minimal modifications are made
to Rateless Deluge. EV-QE Deluge operates in the same masrRateless Deluge when disseminating the
first page, referred to thiearning phase in Section V. The source then uses R® approach to collectV’
random feedbacks from the receivers and estimateé-tiegable volume corresponding to success probability
0 =0.95.

In the transmission phase, the source initially disseminates a page based on the astiin-reliable
volume. After that, it waits for a certain amount of timé(,,» = 500 (ms)). In the case that a receiver
requests additional encoded packets during this intetivalpackets are transmitted. Otherwise the source
proceeds to the next page.

B. Tmote Ky Sensor Testbed

The performance of EV-QE Deluge and the original Rateleskigeeis first evaluated on a testbed
consisting of 14 Tmote Sky sensors. One sensor serves asetiserfiding base station and 12 other sensors
are receivers. The last sensor is used to record netwoffictrBC into the base station to

The size of the file is 8518 bytes, which corresponds to 20 paging Rateless Deluge and EV-QE
Deluge. We monitor the network traffic due to the encoded gtsckansmitted and due to the encoded
packet requests. We also record the overall completion dindisseminating the file. Since the number
of receivers here is small (12 sensor motes), we have thesaatlect the feedbacks from every receiver
after disseminating the first page. Namel/, = N = 12 in the first experiment. The intermediate number
k is set to 5.

The results in Fig. 6 show that EV-QE Deluge sends out slightbre encoded packets (about 6%).
However, it drastically reduces the amount of feedbackschvis only 17.3 on average. Note that this
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Fig. 7. Rateless Deluge vs. EV-QE Deluge, TOSSIM simulat@mpages,M = 20, heterogeneous packet loss, varying the number of
receiversN. (a) Total packets transmitted: forward and feedback chlanib) Completion time, (c) Average energy consumptionrpeeiver.

number includes the overhead messages in the learning phiagiee estimation ofts, which is 12, as
well as the request messages when the source transmitsghpdge using the original Rateless Deluge,
which is 3.9 on average, as shown in Fig. 6. Therefore, withQE/Deluge, in the transmission phase,
the average number of feedbacks is about 1.4 for 19 pagedal irdicating that most of the time the
entire network finishes receiving enough packets after thiece’s first set of transmissions for each page.
Being able to accurately estimatg EV-QE Deluge effectively reduces the overall data dissatimn time

by about 30%.

C. Large Scale Network Smulation with TOSSM

We next compare the performance of both protocols in TOS®IMflarger scale experiment. The energy
consumption (due to CPU and Radio) for both protocols is atemitored through PowerTOSSIM [33].
The parameters for thBRS method are set t&v/ = 30, k = 20.

The simulation results for varying number of receivéys are shown in Fig. 7(a), 7(b) and 7(c). As
expected, the number of data packets sent out by EV-QE Desugkghtly higher than Rateless Deluge.
However, asV increases, the number of feedbacks of EV-QE Deluge reméimssé constant at about 50,
including the N’ = 30 initial feedbacks for the source to estimateeliable volume. On the other hand,
the number of feedbacks of Rateless Deluge increases WitBy reducing the control overhead, EV-QE
Deluge is able to effectively reduce the overall completimme and energy consumption per receiver by
about 30%, as shown in Fig. 7(b), and Fig. 7(c).

VIII. A PPLICATION TOREAL TIME OBLIVIOUS (RT) RATELESSCODES
A. RT Codes

To further emphasize the general applicability of our ressuke describe in this section application of
extreme value estimators to real time (RT) oblivious codR¥s.codes are erasure correcting rateless codes
which use a feedback channel from the receiver to the souarceder to efficiently encode packets at the
source. As compared to other rateless codes that requydex@redundant packet transmissions, RT codes
trade communication efficiency (encoded packets transthifeedbacks) for lower processing overhead and
lower memory requirement at the receivers. To achieve thisgceiver discards any encoded packet that
cannot be decoded immediately; therefore RT encoded packet designed to maximize the decoding
probability of encoded packets when they are received.

The RT encoder creates each encoded packet by combiningi(®P®Rrandomly-chosen input packets
out of the M total input packetsd < M), whered is the degree of the encoded packet. ketbe the
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number of input packets already decoded at the receiveregratted to the source (encoder) via feedback.
The degreel is determined as follows

M ifm=M-—1
dZ{ [ MEL| otherwise, (22)

The encoder continues transmitting encoded packets asilmE$@bove until the receiver has decoded
all the input packets.e.,until m = M. Using the construction in Eqg. (22) the authors in [14] shbat t
the expected number of encodings required for decodihghput packets is less thah/. The expected
number of feedback messages from the receiver to the saaiteeiM), and the total expected decoding
complexity of RT codes i$)(M log M).

A receiver can decode a degréencoded degree packet if ady- 1 input packets used its construction
are already available (previously decoded) at the receberause XORIing the encoded packet with these
d — 1 input packets reveals an unknown input packet. Otherwiseetitoded packet is discarded by the
receiver (instead of being stored for decoding at a latee t&s is the case, for example, in LT [8] decoding).
When an input packet is successfully decoded the receivgratet to send its decoding progress (the
updated number of input packets decoded,to the source if doing so changes the degfesf encoded
packets in Eq. 22.

Consider the scenario of extending this to the case of a sdtansmitting)/ input packets taV receivers
in a wireless communication environment with i.i.d. packeis rates across the receivers. The value:of
across the receivers may vary significantly during decadimgprder to accommodate all th€ receivers,
the source has to encodes packets using the smallest valuecoflected from the receivers. Otherwise,
some receivers will not be able to decode the packets.

However, the most significant problem with this approacln& the number of feedbacks from receivers
to the source grows a3(N+v/M), as we shall demonstrate in Section VIII-C. For large remepopulations,
as is often the case in dense cellular and sensor netwoeksptirce would be overwhelmed by the number
of feedbacks

B. Broadcasting Version of RT code

To improve the applicability of RT codes in a broadcastingrsecio, we incorporate use of extreme value
estimation techniques. Thus, instead of collecting feekibdrom the receivers to adjust the RT degree
distribution of the encoded symbéjsve propose to have the source accurately predict thesagimiVe
consider the same problem as in the previous sectionspr@adcasting a file with multiple pages from
a source toN receivers within its communication range. Each page ctmsic)M packets. Encoding is
done at the packet level using an RT code. In the broadcagéirgion of RT code, the source adjusts the
degree of encoded packets according to the number of dequatdebts of each receiver using Eq. (22).
Specifically, let the number of input packets decoded ativece to bem,, (n = 1, .., N), then the source
creates a degre€ encoded packet according to the following equation,
M if min, m, =M —1
d= { | AL | otherwise. (23)

M —min,, my
In our approach the source collects feedback in the form mijpsadata from a few receivers and estimates
the transition points when the encoded packets’ degreedoatee incremented. In effect, the source
broadcasts encoded packets and adjusts their degreesliagcty the total number of encoded packets
already broadcast instead of relying on continuous feddfraen the receivers.
Note that this problem differs from the previous sectionghat here the estimation is performed to
predictmultiple transition points at a time. Specifically, denotedy,, the number of encoded packets the

2The terms ‘symbol’ and ‘packet’ are used interchangeablghis text.
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source needs to broadcast for nodéo be able to decode: input packets. The source can determine the
degree of the encoded packets with information algoyt from all receivers. For example, if according
to the original RT code design, the degree of the encodedepastiould bed when all receivers have
decodedmn packets, then alternatively, the source can adjust theedeigr bed when max,, 6,,,,, packets
have been sent. Therefore, the problem becomes to estimaigd,, ,,, by only collecting a small amount
of feedbacks during the transmission of the first page (&uwst& continuously collecting feedbacks from
all receivers for each page).

Our goal is to sample and analyze a fixed number of feedbadtemin the broadcast of the first page of
a file, in order to estimate thereliable volume ¢; of each instance in the RT code design when the degree
of encoded symbols changes. We can then reduce the amougedifeficks while transmitting subsequent
pages by having the source broadcast encoded packets iagctrdhe estimation instead of feedback from
the receivers.

The sampling technique used here is random samplingRBas described in Section V-A. For simplicity,
we only consider the moment estimator. Similar to EV-QE Qeluour proposed RT code with EVT
estimation technique first obtains estimations by transmgitthe first page. It then uses these estimations
for the transmission of the rest of the pages. If after thesim@ssion of a page, there remain one or more
receivers which have not finished receiving it, the sourciéctes back to the original RT code.

C. RT Codes Smulation Results

We evaluate the performance of our EVT-based broadcasgmgjon of RT code, namely, RTscheme
(labeled EVT estimation in the figures). The number of remeivin the network ISV = 100. We assume
the packet loss rates across the receivers are heterogenediown, and they are i.i.d and uniformly
distributed between 10% and 20%. The sample sizB®is 15 and the intermediate number for extreme
value estimator ig = 10. The success probability associated with each transit@mnt phat we are trying
to estimate isd = 99%. The simulation results shown here represent an average1l®@ independent
identical iterations.

In the following simulations we evaluate the performanceh# original RT code, RF and RT code
with another simple estimation technique (labeled MAXrestion). With the MAX estimation, the source
determines the degree by simply taking a maximum of the givgV' < ) sample datad, ,,,, .., On’.m.
collected during the transmission of the first page. Name$gead of performing extrapolation using Eq. (5),
the MAX estimation simply uses the largest order statis#c, max; - 6, t0o estimate the actual shifting
point,max; _x 6,,,. Note that while this approach is simple, it generally uedémates the transition point,
since the sample size is much smaller than the number ofvexsein the network. Moreover, this simple
approach does not provide any relationship between the euofipackets broadcasted by the source and
the probability of successfully delivering the pages.

Figs. 8 and 9 plot the average number of encoded packets aralénage number of feedbacks needed
to guarantee completion across all receivers for the ald®T code, EVT estimation and MAX estimation.
Both estimation techniques need slightly more encodedgiadkan the original RT codes. The difference
in the number of encoded packets required by EVT estimatiwhthe original RT code remains almost
constant even as the number of input packét9 (ncreases. However, both the EVT and MAX estimation
techniques drastically reduce the amount of feedback medj#s compared to the original RT codes.

MAX estimation transmits less encoded packets than EVTnesgtbn because it underestimates the time
to change the degree. This is because MAX estimation maydatke into account very slow receivers,
and may therefore be too optimistic about the decoding ratheoestimated slowest receiver. This results
in receivers falling back to the original RT scheme more roftégth MAX estimation and, consequently,
significantly more feedbacks.
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Fig. 8. Expected number of transmissions from the soule= 100 receivers, packet loss rates are distributed uniformlyaatiom from
10% to 20%, varying the number of input packets. 95% confidénterval. Averaged over 100 iterations.
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Fig. 9. Expected number of feedbacks while varying the nunobénput symbols.\ = 100 input packets, packet loss rates are distributed
uniformly at random from 10% to 20%, varying the number ofefieers. 95% confidence interval. Averaged over 100 itematio

In Figs. 10 and 11, we compare the performance of the diftesellemes while varying the number of
receivers. We report the average number of encoded padaiged and the number of feedbacks needed
to guarantee completion.

For all sizes of receiver populations, the number of encquierkets transmissions required by the EVT
and MAX estimation techniques is slightly larger (10%20%) than that required by original RT codes,
and appears to grow sub-linearly with the number of receiv@n the other hand, the number of feedbacks
required using the estimation techniques is drasticallplemn (revealing a reduction by a multiplicative
factor of 60 with MAX to 150 with EVT) than the number of feediba required by the original RT codes.

IX. CONCLUDING REMARKS

In this paper, we propose novel, on-line prediction medrasifor FEC-coded data dissemination in wireless
networks with heterogenous packet loss probabilities. @echanisms, based on the (asymptotically exact)
moment and ML estimators in extreme value theory, offer magalability benefits because (1) estimation
of per-receiver packet loss probabilities is not requir&); the number of feedbacks used to estimate
redundancy is nearly constant; (3) accuracy improves witiwvth in the number of receivers.

We introduce two new protocol&S and FSLF, for wireless data broadcasting. Our simulation results
show that the=SLF protocol, in conjunction with the moment estimator, pr@dd good trade-off between
the number of feedbacks used to estimate redundancy, thadadcy transmitted, and the number of extra
encoded packet transmission requests. Further, we vaatyour approach provides reasonable performance
even when the assumptions of i.i.d. packet loss probalaliy large number of receivers are relaxed.
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Fig. 10. Original RT vs. modified RT, expected completiongim/ = 100 input packets, packet loss rates are distributed uniforatly
random from 10% to 20%, varying the number of receivers. 95¥fidence interval. Averaged over 100 iterations.

—=—Original RT code 1
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Fig. 11. Expected number of feedbacks while varying the remf receiversM = 100 input packets, packet loss rates are distributed
uniformly at random from 10% to 20%, varying the number ofefieers. 95% confidence interval. Averaged over 100 itematio

We demonstrate practical feasibility of our proposed apgindoy integratindRS into the Rateless Deluge
OAP protocol on a testbed of T-sky sensor motes. Our expetahand simulation results indicate a 30%
reduction in latency and energy consumption, an improvemgparticular significance for battery-limited
wireless devices.

Finally, we incorporate use of EVT estimation into RT codesler a broadcasting scenario. We employ
EVT to estimate the transition points (i.e., the number afigeés transmissions), at which a source changes
the degree of encoded packets. Our simulations show that au@pproach reduces the total number of
feedback packets by a factor of 100 compared to original RiesoThese results demonstrate the wide
applicability of our protocols to improving the performancf any broadcasting application making use of
feedback.
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