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Abstract

We examine the problem of minimizing feedbacks in reliable wireless broadcasting, by pairing rateless coding with
extreme value theory. Our key observation is that, in a broadcast environment, this problem resolves into estimating
themaximum number of packets dropped amongmany receivers rather than for each individual receiver. With rateless
codes, this estimation relates to the number of redundant transmissions needed at the source in order for all receivers
to correctly decode a message with high probability. We develop and analyze two new data dissemination protocols,
called Random Sampling (RS) and Full Sampling with Limited Feedback (FSLF), based on themoment andmaximum
likelihood estimators in extreme value theory. Both protocols rely on asingle-round learning phase, requiring the
transmission of a few feedback packets from a small subset ofreceivers. With fixed overhead, we show thatFSLF has
the desirable property of becoming more accurate as the receivers’s population gets larger. Our protocols are channel
agnostic, in that they do not require a-priori knowledge of (i.i.d.) packet loss probabilities, which may vary among
receivers. We provide simulations and an improved full-scale implementation of the Rateless Deluge over-the-air
programming protocol on sensor motes as a demonstration of the practical benefits of our protocols, which translate
into about 30% latency and energy consumption savings. Further, we apply our protocols to real time oblivious (RT)
rateless codes in broadcast settings. Through simulations, we demonstrate a 100-fold reduction in the amount of
feedback packets while incurring an increase of only 10-20%in the number of encoded packets transmissions.
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I. I NTRODUCTION

Reliable data broadcasting is the basis for over-the-air programming (OAP) of sensor networks [1–4]. OAP
is used to deliver software updates and data from a broadcaster (source) to large populations of sensors
(receivers) within wireless transmission range of the source. Similar protocols have also been developed for
applications like real-time updating of stock-quotes and score-boards on cellular and mobile smartphones.

Automatic Repeat reQuest (ARQ) protocols are commonly employed to guarantee the reliability of data
dissemination over lossy wireless channels [5]. ARQ requires receivers to notify a source about missing
packets via acknowledgements (ACKs) or negative acknowledgements (NACKs). When the number of
receivers gets large, however, these messages become excessive and result in the well-knownbroadcast
storm problem [2, 4, 6].

Packet-level forward error correction (FEC) provides a promising approach to effectively reduce feed-
backs [7]. FEC requires the source to anticipate packet losses and make redundant transmissions proactively,
instead of waiting for feedbacks from receivers and then making additional transmissions. Rateless codes
such as random linear codes, LT codes [8] and Shifted LT codes[9] allow FEC to be implemented in a
practical and efficient way. The source encodesM original packets of a file and then transmits the encoded
packets. A receiver is able to recover the file successfully after receivingM (or slightly more) distinct
encoded packets.

One of the challenges of implementing FEC is for the source todetermine an appropriate amount of
redundancy when transmitting proactively. While too many redundant FEC packets slows down the data
dissemination process unnecessarily, insufficient redundancy leaves many receivers unable to decode packets.
Furthermore, the inherent heterogeneity of channel characteristics across receivers (due to, e.g., link quality,
distance to the source, antenna sensitivity) significantlycomplicates the task of redundancy estimation. While
estimating each receiver’s packet loss probability may be possible [10], such an approach does not scale
given that per-receiver packet loss probability needs to beascertained.

This paper is based on the following key observation. When using rateless codes in a broadcasting environ-
ment, such as wireless, the number of redundant packet transmissions corresponds to themaximum number
of redundant packet transmissions needed among all receivers. This allows us to exploit advances in extreme
value theory [11], a powerful mathematical tool for studying the distribution of extreme order-statistics, such
as maxima of random variables, to effectively quantify transmission redundancy with minimum overhead.

In this paper, motivated by OAP applications, we consider the problem of disseminating a file composed
of multiple segments, orpages, from one source toN receivers over a lossy wireless channel. Each page
consists of a fixed number of packets. Our first contribution is formalizing this problem using extreme value
theory, in order to perform accurate online estimation of the amount of transmissions (formally defined as
δ-reliable volume in Section III) a source needs to make in order to achieve a probability δ of successfully
delivering each page of the file to all the receivers. Thanks to extreme value theory, we are able to perform
accurate estimation of theδ-reliable volume without requiring specific knowledge of channel characteristics.
This accurate estimation can be accomplished with extrapolation based on limited information obtained from
the dissemination of asingle page.

Second, we develop two new data dissemination protocols, called Random Sampling (RS) and Full
Sampling with Limited Feedback (FSLF), based on extreme value estimators known to be asymptotically
exact asN → ∞. Both protocols estimate theδ-reliable volume during a learning phase, and then
reliably disseminate the rest of the file during atransmission phase. While RS restricts the overhead of the
estimation during thelearning phase, by randomly sampling feedbacks from a small subset of receivers,
FSLF judiciously exploits the fact that the extreme value estimators require only samples of thek+1 largest
order statistics, for somek << N , to collect all the feedbacks needed. We further show thatFSLF has
the appealing property of providing more accurate estimation of theδ-reliable volume when the receivers’
population gets larger, without incurring higher overhead.
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Third, we show through extensive simulations that bothRS and FSLF almost completely eliminate
receivers’ feedbacks during thetransmission phase. Thanks to the high accuracy of the estimators, the
amount of packet transmission by the source is only about 5% higher than with ARQ.

Fourth, we compare the performance of different extreme value estimators, namely, themoment and
maximum likelihood estimators, in conjunction with theRS andFSLF protocols. Amongst all the possible
combinations, we observe thatFSLF based on the moment estimator achieves the best performance, in
terms of minimizing overhead and maximizing accuracy.

Fifth, to demonstrate practical benefits of our protocols, we conductreal mote experiments on a testbed
of 14 Tmote Sky sensors [12] and perform larger-scale simulation using the TOSSIM simulator [13].
Specifically, we design a new over-the-air programming protocol based on Rateless Deluge [4], called
Extreme Value Quantile Estimation (EV-QE) Deluge, which integrates theRS protocol. The experiments
and simulations show that EV-QE Deluge lead to a 75% reduction in control-plane traffic together with
30% savings on latency and energy consumption, at the expense of an about 5% increase in data-plane
traffic as compared to Rateless Deluge.

Finally, we employ extreme value estimators for creating scalable broadcast versions of real time oblivious
(RT) rateless codes [14]. RT codes have a simple decoder design, making them especially suitable for
wireless sensor receivers. However, each receiver is required to send information about its decoding progress
to the source periodically, limiting the scalability of RT codes for large receiver populations. For a marginal
increase in the number of encoded packets broadcast from thesource we show how using EVT to predict
receiver decoding progress offers a major decrease (on the order of two orders of magnitude) in the total
amount of feedback required from the receivers.

This paper is organized as follows. In Section II we survey related work. We formulate our problem in
Section III. We point out the limitations of classical estimation techniques in Section IV-A, give a primer
on extreme value theory in Section IV-B, and introduce the moment and maximum likelihood estimators
in Section IV-C. The design of theRS and FSLF protocols is presented in Section V. Simulation results
and sensor mote experiments are provided in Section VI and VII, respectively. We illustrate the practical
applicability of our approach by designing and then benchmarking a scalable broadcast version of RT
codes [14] in Section VIII. We provide concluding remarks inSection IX.

II. RELATED WORK

The concept of exploiting FEC for reliable data dissemination has been the subject of prior research,
both in wireline and wireless settings, and we next survey those works most related to our paper. The
works in [15, 16] numerically evaluate the performance improvements achieved with different levels of
FEC redundancy. In order to allow the sender to decide when tostop transmitting FEC-coded packets
without explicit feedback, the authors in [17–20] study theproperties of file dissemination completion
times. While in practice the packet loss probability differs from node to node due to many factors (i.e.,
link quality, distance to the source, antenna sensitivity), the works in [15, 17, 21, 22] as well as some hybrid
FEC/ARQ protocols such as [23], assume homogeneous packet loss probabilities in their analysis. The
works in [16, 18–20] do study the more realistic scenario of heterogeneous packet loss, but they assume
that receivers’ packet loss probabilities areknown to the source, a relatively strong assumption for practical
multiple receiver environments. In our work, we allow the packet loss probabilities to beunknown and
heterogeneous across receivers. The idea of applying EVT to minimize feedback was first proposed in [20].
However, the techniques presented in this present paper arecompletely different from those in [20], since
we resort here toon-line measurements to estimate the extreme-value parameters.

While it is possible to perform online estimation of networkparameters such as packet loss probabil-
ities [10], such techniques are not generally scalable withthe number of receivers in the network, given
that all per-receiver packet loss probabilities must be determined. The authors in [24] try to estimate FEC
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redundancy without obtaining the individual receivers’ packet loss probabilities, but they do not establish
relationship between the redundancy and the probability ofsuccess. In this present work, we propose to
estimate the amount of transmissions needed to fully disseminate data to all receivers, with probabilityδ.
Our estimate is computed online without the knowledge of channel characteristics, and we establish an
analytical relationship between the amount of transmissions and the probability of success.

Finally, estimation can also be performed using classical approaches [25]. However, they have significant
overhead (cf. Section IV for details), which our approach avoids by utilizing the theory of extreme values.

III. PROBLEM FORMULATION

We consider the problem of broadcasting a file from a source (e.g., a base station) toN receivers within
its transmission range. The file is divided intoR pages, each consisting ofM packets. Encoding is done at
the packet level using rateless codes (e.g. computing random sums of input packets). Each receiver needs
to receiveM distinct packets1 in order to recover a page.

The time axis is slotted, and each packet transmission is assumed to take one time slot. The packet loss
probability for receivern (n = 1, .., N) is pn, wherepn’s areheterogenous andunknown, but assumed to be
independent, identically distributed (i.i.d.) random variables. The source encodes and broadcasts the pages
in an increasing order. Sending one page is denoted as onerealization in the data dissemination process.

In a given realizationr of the data dissemination process, denote byT r
n the number of time slots required

for receivern to recover a page. Sincepn’s are i.i.d. random variables, the time required for decoding the
page is i.i.d. across receivers; in other words,T r

n ’s are also i.i.d. random variables. Denote byT r the
random variable representing the completion time for this realization,i.e.,the number of time slots needed
to disseminateM packets to a cluster ofN receivers:T r = max

n=1...N
T r

n.
The success probability of a page dissemination is the probability that the page is decoded by allN

receivers. Theδ-reliable volume, denoted astδ, is the amount of packets the source needs to broadcast to
guarantee a success probabilityδ.

Our goal is to sample and analyze a fixed number of feedback packets in a single realization, correspond-
ing to the broadcast of the first page of a file, in order to estimate theδ-reliable volume tδ. Our estimation
aims to accurately quantify the valuetδ of a realizationr, where, by definition,Pr{T r ≤ tδ} = δ. Note
that tδ is also referred to asδ-quantile of the distribution functionPr{T r ≤ t} [26, p.404].

IV. EXTREME VALUE QUANTILE ESTIMATION

We begin this section with a review of traditional approaches in quantile estimation, pointing out their
limitations, and a short primer on extreme value theory, a powerful statistic tool for studying the distribution
of the maxima of random variables. We then introduce extremevalue theory-based estimators, which form
the basis of our near-zero feedback data dissemination protocols described in Section V.

As discussed in Section III, for a given realizationr of the data dissemination process, the completion
times of the receivers are i.i.d. random variables,T r

1 , T r
2 , .., T r

N , following an unknown distribution function
F (t). Let their order statistics beT r

1,N , T r
2,N , .., T r

N,N , meaning thatT r
1,N ≤ T r

2,N ≤ .. ≤ T r
N,N . Clearly,T r

N,N ,
which corresponds to the maximum of completion times among all receivers, is identical toT r, the number
of packet transmissions by the source during realizationr. Similarly, for R realizations,r = 1, .., R, the
set ofT r’s are also i.i.d. random variables because they are the maxima of i.i.d. random variables.T r

n. Let
their order statistics be denoted byT 1,R, T 2,R, .., TR,R.

Recall that our goal is to quantify theδ-reliable volume, tδ, needed in order to achieve a success probability
δ of delivering a page to all receivers, corresponding to theδ-quantile of the distribution functionPr{T r ≤
t} = Pr{ max

n=1,..N
T r

n ≤ t} = F N(t) [26, p.404]. Equivalently, this problem can be considered as estimating

τ -quantile,τ = δ
1

N , of the distribution functionF (t); clearly thisτ -quantile is preciselytδ.

1Somenear optimal rateless codes require slightly more thanM packets to decode a page.
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A. Classical Estimators and their Limitations

Classical quantile estimators compute theδ-quantile, t̂δ, by interpolating linearly between the order
statistics [26, p.404]. For example, consider the averaging quantile estimator [25]. After the completion
times of R realizations are collected and ordered asT 1,R ≤ T 2,R ≤ . . . ≤ TR,R, the δ-quantile for
Pr{T r ≤ t} = F N(t) is estimated as

t̂δ =

{
1
2
(T j,R + T j+1,R) if j = Nδ,

T j+1,R otherwise.
(1)

A major limitation of all interpolation-based quantile estimators is that they need many realizations
(i.e.,large R) to estimate high quantiles. The fundamental reason is thatall these estimators implicitly
assume that the estimation will not exceed the largest orderstatistic, namely,TR,R. For instance, using
Eq. (1) to estimate the high quantile (whenδ > 1 − 1

R
) always yieldŝtδ = TR,R. Therefore, this estimator

becomes ineffective whenδ > 1− 1
R

. In other words, it is not possible to estimate any quantile higher than
(1 − 1

R
) based on the data collected fromR realizations using classical quantile estimators. Equivalently,

to determinetδ wherePr{T r ≤ tδ} = δ, one needs to collect the completion times ofT rs from at least
R = 1

1−δ
realizations.

Note that one could equivalently estimate theτ -quantile,τ = δ
1

N , of the distribution functionF (t) by
collecting the individual completion times,T r

n, from all receivers. However, it can be shown that at least
R = 1

1−δ
realizations are still required.

B. Extreme Value Theory

The completion time for successfully disseminating a page corresponds to the maximum of the individual
completion times of each receiver. In order to estimate theδ-reliable volume by extrapolating beyond the
limited amount of feedbacks (based on only a single realization), one needs to explore the properties of
the distribution of the maximum of i.i.d. random variables.

Extreme Value Theory (EVT) provides a sound theoretical framework for such an extrapolation. It restricts
the behavior of the distribution of the maximum of i.i.d. random variables, namelyT r, whereT r = max

n=1,..N
T r

n,

to an EVT distribution. The EVT distribution can be specifiedby just two parameters, theextreme value
index and thescale factor [11], defined below. Consequently, we can quantify theδ-reliable volume without
requiring knowledge of channel statistics of each individual receiver.

Formally, suppose there exists a sequence of constantsa(N) andb(N), such that( max
n=1,..N

T r
n−b(N))/a(N)

has a non-degenerate limit distribution asN → ∞. Then, according to extreme value theory,

lim
N→∞

FN (a(N)t + b(N)) = Gγ(t), (2)

where

Gγ(t) = exp
(
−(1 + γt)−

1

γ

)
, for 1 + γt > 0, γ ∈ R, (3)

and the right-hand side interpreted asexp(−e−t) for γ = 0.
DefineU to be the inverse function of1

1−F
. As depicted in Fig. 1,U( 1

1−τ
) corresponds toτ -quantile,t′τ .

Ref. [11] shows that the following statement is equivalent to Eq. (2):

lim
N
k
→∞

U(t) − U(N
k
)

a(N
k
)

=

(
tN

k

)γ − 1

γ
, (4)

whereU(N) = b(N) in Eq. (2), and the right-hand side is interpreted aslog t for γ = 0.



6

Fig. 1. The relationship between functionF andU .

Eq. (4) is used as a basis for extreme quantile estimation. Toestimate aτ -quantile, one can use following
estimator,

t̂τ = Û(
1

1 − τ
) = Û(

N

k
) + â(

N

k
)
( 1

1−τ
· k

N
)bγ − 1

γ̂
, (5)

whereN is the sample size andk is the intermediate number. As k → ∞, N → ∞ and k
N

→ 0, Eq. (5)
asymptotically converges to the actual quantile [11].

By the definition ofU , it can be shown that̂U(N
k
) = T r

N−k,N . The right hand side,T r
N−k,N , which is

the (N − k) largest completion time in ther-th realization, can be obtained from the order statistics of the
empirically collected completion times reported by the receivers. Therefore, when using Eq. (5) to estimate
the τ -quantile, one only needs to estimate theextreme value index γ and thescale factor a(N

k
). This is the

reason theδ-reliable volume at the source can be estimated without knowledge of channel characteristics.
Next, we describe statistical approaches for estimating the two parameters.

C. Estimation of the Extreme Value Index and Scale Factor

We will now introduce two important EVT estimators used to estimate the extreme value indexγ and
the scale factora(N

k
) of Eq. (5). Note that these estimators are derived from Eq. (2) or its equivalent forms.

1) The Moment Estimator [27]: The moment estimator is an extension of the simple and widely used
Hill estimator [28], which is a special casej = 1 of the following equation:

M
(j)
N =

1

k

k−1∑

i=0

(log T r
N−i,N − log T r

N−k,N)j, j = 1, 2. (6)

The Hill’s estimator provides estimates forγ+ , max(0, γ), and converges to 0 whenγ < 0 (i.e.,non-
informative).

Let γ− , min(0, γ). The work [27] estimatesγ− as follows:

γ̂− = 1 − 1

2

(
1 − (M

(1)
N )2

M
(2)
N

)−1

. (7)

Complementarily to the Hill’s estimator,̂γ− can only estimate the case whereγ < 0 and converges to 0
for the caseγ ≥ 0.

The moment estimator forγ ∈ R, proposed in [27], is essentially a combination of the estimator for γ+

andγ−,

γ̂M = M
(1)
N + 1 − 1

2

(

1 − (M
(1)
N )2

M
(2)
N

)−1

. (8)
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The corresponding moment estimator of the scale factor is

âM(
N

k
) = XN−k,NM

(1)
N (1 − γ̂−). (9)

The authors in [27] show that providedk = k(N) → ∞ and k
N

→ 0, asN → ∞, both γ̂M and âM are
consistent estimators and converge toγ anda(N

k
).respectively.

Given a set of observationsT r
1 , .., T r

N , the maximum likelihood (ML) estimator aims to determine which
parameters of the extreme distribution make the observed data most likely to occur. We next summarize
the work in [29], which provides an equivalent method of approximating Eq. (2).

Denote the upper endpoint ofF by t∗ = sup{t : F (t) < 1} ≤ ∞ and, for s < t∗, let Fs(t) be the
conditional distribution function ofT r

n − s given T r
n > s. More precisely,

Fs(t) = P (T r
n ≤ t + s|T r

n > s) =
F (s + t) − F (s)

1 − F (s)
, (10)

for s < t∗, t > 0 and1 − F (s) > 0.
Let Hγ(t) be the generalized Pareto distribution function

Hγ(t) = 1 − (1 + γt)−
1

γ . (11)

Then, (based on [29] and the citations therein) there existsa normalizing functiona(s) > 0 such that - this
is the formal result in DrFe04:

lim
s→t∗

sup
0<t<t∗−s

∣∣∣∣Fs(t) − Hγ(
t

a(s)
)

∣∣∣∣ = 0, (12)

if and only if Fs is in the maximum domain of attraction ofGγ(t).
Eq. (12) shows that the distribution of an applicable randomvariable T − s given T > s converges

to a generalized Pareto distributionHγ(t), as s → t∗. Therefore,Hγ(
t

a(s)
), which is determined by the

parametersγ anda(s), can be used to approximateFs(t).
The ML estimator aims to determine the parameters which makethe observed data most likely to

occur [30]. Specifically, given a set ofL independent observationst1, t2, .., tL (drawn fromHγ(
t

a(s)
)), the

ML estimator determines values ofγ anda(s) that maximize the joint probability that these observations
will occur. Formally, lethγ,a(s)(t) = ∂Hγ(t/a(s))

∂t
be the PDF (Probability Density Function) ofHγ(

t
a(s)

). Thus
we have

hγ,a(s)(t) =
1

a(s)

(
1 + γ

t

a(s)

)−
1

γ
−1

. (13)

Therefore, the joint density function for allL independent observations is as follows,

hγ,a(s)(t1, t2, .., tL) = ΠL

i=1hγ,a(s)(ti). (14)

Eq. (14) is also calledlikelihood function. The goal of the ML estimator is to find the values ofγ anda(s)
that maximize the likelihood when given the observationst1, t2, .., tL. Namely,

{γ̂MLE , â(s)MLE} = argmax
γ,a(s)

ΠL

i=1hγ,a(s)(ti). (15)

Equivalently, one can maximize the logarithm of the likelihood function, calledlog-likelihood, as following,

{γ̂MLE , â(s)MLE} = argmax
γ,a(s)

L∑

i=1

log hγ,a(s)(ti). (16)
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In order to obtain the estimation that maximizes the likelihood, one can set the partial derivatives of the
log-likelihood function (Eq. (16)) with respect toγ and a(s) to zero. Therefore, using Eq. (13), one can
obtain the ML estimation forγ anda(s) by solving the following system of equations,






∂ log hγ,a(s)(t)

∂γ
= 0,

∂ log hγ,a(s)(t)

∂a(s)
= 0.

(17)

Namely,





L∑

i=1

1

γ2
log

(
1 +

γ

a(s)
(ti)

)

−
L∑

i=1

(
1

γ
+ 1

) ti
a(s)

1 + γ
a(s)

ti
= 0,

−
L∑

i=1

1

a(s)
+

L∑

i=1

(
1

γ
+ 1

) γ
a2(s)

ti

1 + γ
a(s)

ti
= 0.

(18)

Now back to the problem of estimating the extreme value indexand the scale factor using ML estimator.
When given a set of order statistics of random variablesT r

1,N , .., T r
N,N , the distribution of the set of random

variables
{
(T r

N−k+i,N − T r
N−k,N)|i = 1 . . . k

}
given T r

N−k,N , Fs(t), can be approximated by the distribution
of an ordered sample ofk i.i.d. random variables with CDFHγ(

t
a(s)

), wheres = T r
N−k,N . According to

Eq. (18), one thus can obtain the ML estimators for the extreme value indexγ and the scale factora(N
k
)

by solving the following system of equations,





k∑

i=1

1

γ2
log

(

1 +
γ

a(N
k
)
(T r

N−i+1,N − T r
N−k,N )

)

−
k∑

i=1

(
1

γ
+ 1

) 1
a(N

k
)
(T r

N−i+1,N − T r
N−k,N)

1 + γ

a( N
k

)
(T r

N−i+1,N − T r
N−k,N)

= 0,

k∑

i=1

(
1

γ
+ 1

) γ

a(N
k

)
(T r

N−i+1,N − T r
N−k,N )

1 + γ

a( N
k

)
(T r

N−i+1,N − T r
N−k,N)

= k.

(19)

There are only two unknown variables in Eq. (19), which areγ and a(N
k
), and their solutions are the

ML estimators for the extreme value index and scale factor, denotedγ̂MLE and âMLE(N
k
) respectively.

Discussions on obtaining the solutions of Eq. (19) numerically can be found in [31].
Under certain technical conditions [29], fork = o(log2 N) → ∞ and N → ∞, γ̂MLE and âMLE are

shown to asymptotically converge to the actual values,γ anda(N
k
).

Remarks:
1) Both the moment and ML estimators needonly the largestk + 1 order statistics (ofN samples) to

estimateγ anda(N
k
), a significant source of savings for our protocols as shown next.

2) It is possible to use the EVT estimators to collect data from multiple realizations (pages) to improve
the estimation quality. However, we show that the estimation has small variance (see Section VI-A) even
if the collection is restricted to one realization.

3) According to [11], different choices of the intermediatenumber k result in different estimation
variances. The discussion of tuning the parameters of the EVT estimators is presented in Section VI-B.
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V. BROADCASTING PROTOCOLS WITHL IMITED FEEDBACKS

In practical applications, one of the crucial steps to startthe estimation is to collect sample data, which
is referred to thelearning phase in this paper. The estimation will then be used to determine the required
redundancy for the remaining pages, which are distributed in the transmission phase of our protocols.

In the learning phase, the source disseminates the first pageto the network and then collects individual
completion times (T r

ns) from the receivers. Upon collecting enough responses, the source estimates the
δ-reliable volume using either the moment estimator based on Eq. (8) and Eq. (9), or the ML estimator
based on Eq. (19). The estimate oftδ is used to determine how many packets to transmit in the transmission
phase.

It is important to minimize the communication overhead of our protocol (in terms of the duration and the
number of feedbacks) in order to maintain scalability, especially when there is a large number of receivers.
We propose two methods for managing this overhead -Random Sampling (RS) and Full Sampling with
Limited Feedback (FSLF).

A. Random Sampling

1) Learning Phase: In our first approach,Random Sampling, the source restricts the amount of feedbacks
by only collecting completion times from a small set (N ′) of receivers chosen uniformly at random among
N receivers, whereN ′ ≤ N .

In order to collect feedbacks fromN ′ random receivers, the source attaches a random seed to the first
page, and then encodes and transmits packets as usual. The common seed is used by all receivers to
generate the same set ofN ′ pseudo-random integers uniformly distributed on[1 . . . N ]. Only receivers with
IDs within this common set send their completion time back tothe source. The source continues to send
packets until it receivesN ′ feedbacks. It then uses the feedbacks to estimatetδ. In practice, the feedback
channel itself may be faulty, in which case one may designatesome smaller threshold of feedback packets
that must be received before attempting estimation.

As discussed in Section IV, to quantifytδ, one can either estimate theδ-quantile ofPr{Tr ≤ t} = F N(t),
or estimate theτ -quantile,τ = δ

1

N of Pr{T n
r ≤ t} = F (t). In our case, we will estimate theτ -quantile,

since the source collects completion timesT r
n during the dissemination process.

According to Eq. (5), withN ′ data samples,T r
1,N ′, .., T r

N ′,N ′ , the source first sorts the data and then
obtains the number of transmissions required using the following estimator:

T̂RS(δ) = Û

(
N ′

k

)
+ â

(
N ′

k

)
(

1

1−δ
1

N

· k
N ′

)bγ

− 1

γ̂
. (20)

The result will be one of two differentδ-reliable volume estimators,T̂M
RS(δ) corresponding to the moment

estimator orT̂MLE
RS (δ), corresponding to the ML estimator.

We will show through simulation in Section VI-A that randomly choosingN ′ = 50 out of N = 104

receivers is sufficient to achieve good estimation.
2) Transmission Phase: The source first broadcasts data packets as estimated in the learning phase.

Receivers that cannot recover the page, sense the channel and, if no other request is overheard first, reply to
the source with a request for additional data packets. The source transmits2i−1η additional packets in the
i-th round of its transmissions, whereη is an integer. This multiplicative factor is important in reducing the
number of requests, and our simulations show that it does nottypically result in transmission of unnecessary
data packets. If there is no request for a predefined length oftime Treport, the source moves on to the next
page. In our sensor mote implementation (Section VII), we use η = 1 andTreport = 500 (ms).
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B. Full Sampling with Limited Feedbacks

A simple way to improve the quality of estimations using theRS is to collect more feedbacks, e.g.,
increasingN ′ towardsN . However, this approach does not scale as the number of receivers N becomes
large and may cause feedback implosion, precisely the problem we try to avoid in the first place.

By exploiting the inherent properties of the EVT estimators, we devise here a sampling approach called
Full Sampling with Limited Feedbacks which is able to collect all the completion times needed fromthe
receivers, with an almost fixed amount of feedbacks. Consequently, an appealing property ofFSLF is that,
given a fixed amount of feedbacks, the estimators become moreaccurate when the network has more
receivers, since the source collects more useful data samples.

FSLF exploits the fact that the EVT estimators only need thek +1 (recallk is the intermediate number)
largest order statisticsT r

N−k,N , T r
N−k+1,N , .., T r

N,N , as inputs for the estimation. Therefore, if the sorting
process can be performed before the collecting process, andthe source only collects thek + 1 largest
individual completion times from the network, then this is equivalent to the case where the source collects
all the data, sorts them, and then use thek + 1 largest order statistics as inputs for the extreme estimators
to quantifyδ-reliable volume.

In order for the source to collect thek + 1 largest completion times, we assign higher priority to the
receivers with larger completion times in sending feedbacks. This is achieved as follows. The source
transmits the first page using theRS method. Ideally, after the page is successfully disseminated, all receivers
know the network completion timeT r = max

n=1,..N
T r

n . Each receiver then sets a random timer with length

inversely proportional to the difference between its own completion timeT r
n and the network completion

time T r. Before the timer expires, each receiver records the numberof overheard feedbacks with completion
time larger than or equal to its own. When the timer expires, areceiver reports its own completion time
T r

n if less thank + 1 feedbacks are recorded, or suppress it otherwise.
The timer of each receiver is set as follows. RecallTreport is the interval of time allotted to receivers to

report the feedbacks. We set the length of the timer to be a random variable uniformly distributed during this
interval between Treport

T r−M+1
(T r − T r

n) and Treport

T r−M+1
(T r − T r

n + 1). Therefore, a receiver with larger individual
completion timeT r

n will report its completion time sooner. After waiting for the end of the report interval,
the source estimates theδ-reliable volume using thek + 1 largest order statistics.

In practice, each receiver may not necessarily know the network completion time and the source may not
be able to collect allk + 1 largest completion times, due to lossy channels. We let eachreceiver consider
the time when overhearing the last data packets as the network completion time, and use it in lieu ofT r.
In the case where the source collectsk′ (k′ < k + 1) feedbacks, the source will underestimatetδ since it
considers thek′ feedbacks as the largestk′ completion times. However, recall the source already has an
estimation fromRS when sending the first page. Therefore, it can compare both estimates and keep the
larger one.

The estimators forFSLF are slightly different fromRS. With FSLF, although the source collects only
k + 1 completion times, it is equivalent to the case where it collects the completion times from all the
receivers, sorts them and then use thek + 1 largest order statistics as inputs for the extreme estimators.
Thus, the sample size forFSLF is N . One can first createN data by setting thek + 1 largest ones to the
samples collected, and the rest to zero, then obtain the estimation of tδ as following,

T̂FSLF (δ) = Û(
N

k
) + â(

N

k
)
( 1

1−δ
1

N

· k
N

)bγ − 1

γ̂
. (21)

We again have two differentδ-reliable volume estimators,T̂M
FSLF (δ) and T̂MLE

FSLF (δ), depending on the
estimators used (moment or ML). After the estimation, the system enters the transmission phase and behaves
the same way as described in theRS method.
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In summary, an importantly property ofFSLF is that given the same amount of feedbacks, it achieves
higher accuracy as the number of the receivers becomes larger. FSLF helps to mitigate the problem of
feedback implosion in the learning phase, as it restricts the number of feedbacks to be close tok + 1.
Therefore, thanks to its scalability and increasing accuracy, this approach is ideal for broadcasting in dense
networks.

C. Overhead Analysis of Extreme Value Estimators

We next summarize the overhead of the EVT estimators and compare it with that of classical approaches.
We look at the number of feedbacks needed for the estimation as well as the number of pages, which
corresponds to the time needed.

According to the discussion in Section IV-A, to estimatetδ, a classical estimator needs to know the
completion time of 1

1−δ
pages to get a valid estimation. Therefore, the learning phase of classical estimators

requires the transmission of at least1
1−δ

pages and the collection of the completion time for each page.
For EVT estimators, the learning phase for bothRS and FSLF requires the transmission of only one

page to estimatetδ. During the learning phase ofRS, only N ′ receivers report their completion times.
Therefore the number of feedbacks needed forRS estimation isN ′. In the learning phase ofFSLF, the
source transmits the first page usingRS, and then collects thek + 1 largest completion times. Therefore,
the number of feedbacks needed forFSLF is N ′ + k + 1.

Note that these comparisons are for the best case of all estimators. In practice, the difference between
them can be even larger as shown by our simulations and experiments.

VI. N UMERICAL RESULTS

A. Performance of Extreme Value Estimators

We first investigate the overhead and accuracy of the EVT estimators proposed in Section V in the
learning phase, as well as the benefit of applying the estimation to thetransmission phase, in terms of
reducing feedback requests and maintaining the minimum required δ-reliable volume, tδ, whereδ = 99%.

In this simulation, a two-page file is disseminated toN (ranging from102 to 104) receivers. Each page
consists ofM = 1000 packets. For receivern, the corresponding packet loss ratepn, unknown to the
source, is a uniformly distributed random variable in the range [0, 0.2]. The δ-reliable volume estimations
are obtained from Eq. (20) and Eq. (21) forRS andFSLF, respectively. The extreme value index and scale
factor are estimated by the moment estimator (Eq. (8) and Eq.(9)), and the ML estimator (by solving
Eq. (19) using Matlab).

For RS, the source collects feedbacks fromN ′ = 50 random receivers. The intermediate number is
k = 20. Since the solution of the system of equations for the ML estimator yields complex solutions when
N ′ is small (similar issue is reported in [11]), we omit the ML estimation here. ForFSLF, the values of
k for the moment estimator and the ML estimator are set to20 and50, respectively. The results shown in
the following figures represent an average over 1000 iterations.

Fig. 2(a) shows that the overhead of the estimators (i.e., the number of packets collected for the estimation)
marginally increases as the number of receiversN grows. As discussed in Section V-C, the smallest possible
overhead forRS andFSLF to perform estimation isN ′ andN ′ + k + 1 feedbacks, respectively. The result
shows that the overhead for both estimators is close to minimum and remains almost a constant as the
number of receivers increases. Note that the overhead ofFSLF is slightly higher thanRS, sinceFSLF needs
to collect thek + 1 largest completion times at the end of the learning phase. Since a small intermediate
number,k, for the ML estimator yields to complex solutions, it is set to 50 for the ML estimator, larger than
the one for the moment estimator, which is 20. Recall for theFSLF sampling technique, the intermediate
number corresponds to the number of samples the source needsto collect from the receivers. Therefore,
FSLF with the ML estimator has higher overhead thanFSLF with the moment estimator in the learning
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Fig. 2. Performance of EVT estimators. (a) Learning phase: the overhead of quantile estimation, (b) Learning phase: theaccuracy of the
estimators, (c) Transmission phase: the amount of feedback, (d) Transmission phase: the ratio of extra packets sent to the minimum packets
needed.

phase, as shown in Fig. 2(a). Next we will show that this extracommunication cost trades off with higher
accuracy in estimating theδ-reliable volume.

Fig. 2(b) shows the accuracy of the estimators by comparing the estimations with the empirical quantile.
The empirical quantile is obtained from the classical quantile estimator in Eq. (1) by running105 identical
iterations, bringing this estimate close to the actual value. The accuracy of theRS approach decreases as
the number of receivers increases. Recall that estimatingδ-quantile,tδ, of F N(t) is equivalent to estimating
the τ -quantile,t′τ , τ = δ

1

N of F (t) (see Section IV). Therefore, increasing the number of receivers requires
greater extrapolation to estimate higher quantiles. SinceRS fixes the number of feedbacks toN ′ = 50, its
accuracy thus decreases.

On the other hand, the accuracy ofFSLF-based estimators improves as the number of receivers grows,
because the source collects more useful data with increasing N . Correspondingly, the EVT estimates
converge to the actual value asN → ∞. Further, the overhead ofFSLF barely increases asN grows,
as shown in Fig. 2(a), confirming the scalability ofFSLF.

Next, we study the benefit of applying the estimation in reducing control traffic during the transmission
phase. We record 1), the number of feedback requests and 2), the extra number of data packets transmitted
compared to a pure ARQ scheme, where the source only transmits when requested and so the number of
data packets transmitted is minimum.

Fig. 2(c) shows the average number of feedbacks for encoded packets during the transmission phase.
While transmitting a page withM = 1000 packets toN = 104 receivers usingRS with moment estimator,
the average number of requests is only 1.2 per page. It even decreases when usingFSLF, 0.19 for the
moment estimator and 0.04 for the ML estimator. Therefore, in almost all cases, receivers recover the page
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Fig. 3. Performance of extreme value FEC redundancy estimators for different parameters, with 95% confidence interval.(a) N
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Fig. 4. Extreme value estimators for network with small number of receivers with non-i.i.d. packet loss rates. (a) Two state burst channel
model, (b) The amount of feedback, (c) The amount of extra data communication.

using the initially estimatedδ-reliable volume without using feedbacks.
Fig. 2(d) shows that the moment estimator using bothRS andFSLF overestimates the required redundancy

by only 4% (of the total number of packets transmitted). In the ML estimator, the overestimate is relatively
large when the number of receivers is small, but decreases toa reasonable level for largerN .

Based on the above simulations, we conclude thatFLSF using the moment estimator provides the best
trade-off along all dimensions of interest (high estimation accuracy and low number of feedbacks).RS
using the moment estimator is accurate when the number of receivers is small. However, the amount of
feedbacks needs to grow with increasingN to maintain accurate estimation. Both protocols drastically
reduce receiver(s)-to-sender traffic and incur only marginal extra communication due to overestimatingtδ.

B. Further Evaluation on FEC Redundancy Estimators

In this part we are going to further study how each parameter (i.e., k, N ′, andδ) affects the accuracy of
the FEC redundancy estimators. We only investigate theRS method, as theFSLF approach is equivalent to
RS whenN ′ = N and yields better accuracy otherwise, as shown in Fig. 2(b).

In this simulation, we focus on the learning phase. The parameters areM = 1000, N = 1000 and
the packet loss rates among receivers are again heterogeneous, and uniformly distributed in the range of
[0, 20%]. The estimations are compared with the empirical result which is obtained from Eq. (1) by running
105 identical iterations. Each point in the figures represents an average over 100 independent estimations.
A 95% confidence interval is also plotted in the figures.
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1) Varying intermediate number k: We first investigate the accuracy of the estimators by varying the
choice of the intermediate numberk and fixing N ′ = N = 1000, δ = 95%. Fig. 3(a) shows that the
bias of both estimators increases ask increases, which is expected from the properties of extremequantile
estimators [32]. The results show that while a larger value of k leads to a smaller variance for the moment
estimator, it yields a larger variance for the maximum likelihood estimator. Although the moment estimator
has larger variance for small values ofk (e.g.,k = 10, 20), its 95% confidence interval is still small, i.e.,
less than 1% of the estimated quantile.

2) Varying sample size N ′: We next study how the size of data sampleN ′, affects the estimators’
accuracy, by fixingδ = 95%, k = 10, 20 for the moment estimator, andk = 50, 150 for the maximum
likelihood estimator. As expected, Fig. 3(b) shows that theestimators become more accurate and their
variances reduce asN ′ increases. It is worth noting that for the moment estimator,a sample sizeN ′ = 25
is sufficient to achieve good estimation, i.e., within 4% of the empirical value. This implies that the overhead
of usingRS can be made very small, since it roughly corresponds toN ′ feedbacks, as shown in Fig. 2(a).

3) Varying success probability: We verify the accuracy of the estimators over a large range ofdesired
success probabilityδ, ranging from0.7 to 0.9995. The result (Fig. 3(c)) shows that both estimators are
accurate over the entire range. As one could expect, the estimation variance increases with the stringency
of the success probability. However, all the estimation errors are within the order of 5% of the empirical
value.

C. Small Network and Non-i.i.d. Scenarios

We evaluate the estimators under a non-typical EVT scenario, i.e., a network with small number of
receivers that have non-i.i.d. packet loss rates. We consider a two state burst channel model in Fig. 4(a).
When the receivers are in a good channel state their packet loss rates are heterogeneous random variables
uniformly distributed in the range[0, 0.2]. When there is an error-burst (with probabilityPG,B = 0.2), the
channel will switch to the bad state, wherein the packet lossof each receiver is uniformly distributed in
the range[0.6, 0.8]. The channel switches back to the good state with probability PB,G = 0.5 at subsequent
time slots.

Similar to previous simulations, the source first transmitsone page, collects feedbacks, and estimatestδ. It
then transmits the next pages based on the estimate. The parameters are as follows,M = 50, N ranging from
20 to 60,N ′ = 20, k = 10, andδ = 95%. The results in Fig. 4(b) and Fig. 4(c) demonstrate that for these
scenarios, the estimators still significantly reduce feedbacks from the receivers. The extra communication
due to overestimating theδ reliable volume is slightly larger than in i.i.d. packet loss scenarios, butit is
reasonable.

VII. PROTOTYPEIMPLEMENTATION

In this section, we enhance an over-the-air programming protocol for wireless sensor networks using
the proposed extreme value techniques. Our modifications are based on the Rateless Deluge over-the-air
programming protocol [4], which uses random linear codes for efficient file distribution to wireless sensors.
The performance of both protocols is compared using our Tmote sky [12] testbed as well as through the
TOSSIM bit-level network simulator [13].

A. Setup

In our setup a file is divided into pages consisting of twenty 23-byte packets each. The packet loss rate
of each receiver is a uniform random variable in the range [0.1, 0.2]. All sensors are within communication
range and transmit at their highest power setting to ensure agood link, and packet loss at the receiver is
forced by dropping packets uniformly at random according toits own packet loss rate. All results in this
section represent an average of10 independent trials.
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Fig. 5. Tmote Sky sensors testbed with 14 motes.

Fig. 6. Rateless Deluge vs. EV-QE Deluge: 20 pages,N = 12, M = 20, heterogeneous packet loss.

A sensor requests encoded packets from the sender if it discovers that its neighbors have new data. The
request message specifies the page number and the number of packets needed. When a sensor receives
enough packets, it can decode the page successfully. A sensor suppresses its request if it has overheard
similar requests by other sensors recently.

Here, we augment the original Rateless Deluge with the extreme value quantile estimation technique, and
refer to the new protocol as EV-QE Deluge. To ensure a fair comparison, minimal modifications are made
to Rateless Deluge. EV-QE Deluge operates in the same manneras Rateless Deluge when disseminating the
first page, referred to thelearning phase in Section V. The source then uses theRS approach to collectN ′

random feedbacks from the receivers and estimate theδ-reliable volume corresponding to success probability
δ = 0.95.

In the transmission phase, the source initially disseminates a page based on the estimated δ-reliable
volume. After that, it waits for a certain amount of time (Treport = 500 (ms)). In the case that a receiver
requests additional encoded packets during this interval,the packets are transmitted. Otherwise the source
proceeds to the next page.

B. Tmote Sky Sensor Testbed

The performance of EV-QE Deluge and the original Rateless Deluge is first evaluated on a testbed
consisting of 14 Tmote Sky sensors. One sensor serves as the file-sending base station and 12 other sensors
are receivers. The last sensor is used to record network traffic. PC into the base station to

The size of the file is 8518 bytes, which corresponds to 20 pages using Rateless Deluge and EV-QE
Deluge. We monitor the network traffic due to the encoded packets transmitted and due to the encoded
packet requests. We also record the overall completion timeof disseminating the file. Since the number
of receivers here is small (12 sensor motes), we have the source collect the feedbacks from every receiver
after disseminating the first page. Namely,N ′ = N = 12 in the first experiment. The intermediate number
k is set to 5.

The results in Fig. 6 show that EV-QE Deluge sends out slightly more encoded packets (about 6%).
However, it drastically reduces the amount of feedbacks, which is only 17.3 on average. Note that this
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Fig. 7. Rateless Deluge vs. EV-QE Deluge, TOSSIM simulation: 9 pages,M = 20, heterogeneous packet loss, varying the number of
receiversN . (a) Total packets transmitted: forward and feedback channels, (b) Completion time, (c) Average energy consumption per receiver.

number includes the overhead messages in the learning phasefor the estimation oftδ, which is 12, as
well as the request messages when the source transmits the first page using the original Rateless Deluge,
which is 3.9 on average, as shown in Fig. 6. Therefore, with EV-QE Deluge, in the transmission phase,
the average number of feedbacks is about 1.4 for 19 pages in total, indicating that most of the time the
entire network finishes receiving enough packets after the source’s first set of transmissions for each page.
Being able to accurately estimatetδ, EV-QE Deluge effectively reduces the overall data dissemination time
by about 30%.

C. Large Scale Network Simulation with TOSSIM

We next compare the performance of both protocols in TOSSIM for a larger scale experiment. The energy
consumption (due to CPU and Radio) for both protocols is alsomonitored through PowerTOSSIM [33].
The parameters for theRS method are set toN ′ = 30, k = 20.

The simulation results for varying number of receiversN , are shown in Fig. 7(a), 7(b) and 7(c). As
expected, the number of data packets sent out by EV-QE Delugeis slightly higher than Rateless Deluge.
However, asN increases, the number of feedbacks of EV-QE Deluge remains almost constant at about 50,
including theN ′ = 30 initial feedbacks for the source to estimateδ-reliable volume. On the other hand,
the number of feedbacks of Rateless Deluge increases withN . By reducing the control overhead, EV-QE
Deluge is able to effectively reduce the overall completiontime and energy consumption per receiver by
about 30%, as shown in Fig. 7(b), and Fig. 7(c).

VIII. A PPLICATION TO REAL TIME OBLIVIOUS (RT) RATELESSCODES

A. RT Codes

To further emphasize the general applicability of our results, we describe in this section application of
extreme value estimators to real time (RT) oblivious codes.RT codes are erasure correcting rateless codes
which use a feedback channel from the receiver to the source in order to efficiently encode packets at the
source. As compared to other rateless codes that require very few redundant packet transmissions, RT codes
trade communication efficiency (encoded packets transmitted, feedbacks) for lower processing overhead and
lower memory requirement at the receivers. To achieve this,a receiver discards any encoded packet that
cannot be decoded immediately; therefore RT encoded packets are designed to maximize the decoding
probability of encoded packets when they are received.

The RT encoder creates each encoded packet by combining (XORing) d randomly-chosen input packets
out of theM total input packets (d ≤ M), whered is the degree of the encoded packet. Letm be the
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number of input packets already decoded at the receiver and reported to the source (encoder) via feedback.
The degreed is determined as follows

d =

{
M if m = M − 1⌊

M+1
M−m

⌋
otherwise, (22)

The encoder continues transmitting encoded packets as described above until the receiver has decoded
all the input packetsi.e.,until m = M . Using the construction in Eq. (22) the authors in [14] show that
the expected number of encodings required for decodingM input packets is less than2M . The expected
number of feedback messages from the receiver to the source is O(

√
M), and the total expected decoding

complexity of RT codes isO(M log M).
A receiver can decode a degreed encoded degree packet if anyd− 1 input packets used its construction

are already available (previously decoded) at the receiver; because XORing the encoded packet with these
d − 1 input packets reveals an unknown input packet. Otherwise the encoded packet is discarded by the
receiver (instead of being stored for decoding at a later time, as is the case, for example, in LT [8] decoding).
When an input packet is successfully decoded the receiver may elect to send its decoding progress (the
updated number of input packets decoded,m) to the source if doing so changes the degreed of encoded
packets in Eq. 22.

Consider the scenario of extending this to the case of a source transmittingM input packets toN receivers
in a wireless communication environment with i.i.d. packetloss rates across the receivers. The value ofm
across the receivers may vary significantly during decoding. In order to accommodate all theN receivers,
the source has to encodes packets using the smallest value ofm collected from the receivers. Otherwise,
some receivers will not be able to decode the packets.

However, the most significant problem with this approach is that the number of feedbacks from receivers
to the source grows asO(N

√
M), as we shall demonstrate in Section VIII-C. For large receiver populations,

as is often the case in dense cellular and sensor networks, the source would be overwhelmed by the number
of feedbacks

B. Broadcasting Version of RT code

To improve the applicability of RT codes in a broadcasting scenario, we incorporate use of extreme value
estimation techniques. Thus, instead of collecting feedbacks from the receivers to adjust the RT degree
distribution of the encoded symbols2, we propose to have the source accurately predict these timings. We
consider the same problem as in the previous sections, i.e.,broadcasting a file with multiple pages from
a source toN receivers within its communication range. Each page consists of M packets. Encoding is
done at the packet level using an RT code. In the broadcastingversion of RT code, the source adjusts the
degree of encoded packets according to the number of decodedpackets of each receiver using Eq. (22).
Specifically, let the number of input packets decoded at receiver n to bemn (n = 1, .., N ), then the source
creates a degreed encoded packet according to the following equation,

d =

{
M if minn mn = M − 1⌊

M+1
M−minn mn

⌋
otherwise. (23)

In our approach the source collects feedback in the form of sample data from a few receivers and estimates
the transition points when the encoded packets’ degrees areto be incremented. In effect, the source
broadcasts encoded packets and adjusts their degrees according to the total number of encoded packets
already broadcast instead of relying on continuous feedback from the receivers.

Note that this problem differs from the previous sections inthat here the estimation is performed to
predictmultiple transition points at a time. Specifically, denote byθn,m the number of encoded packets the

2The terms ‘symbol’ and ‘packet’ are used interchangeably inthis text.
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source needs to broadcast for noden to be able to decodem input packets. The source can determine the
degree of the encoded packets with information aboutθn,m from all receivers. For example, if according
to the original RT code design, the degree of the encoded packet should bed when all receivers have
decodedm packets, then alternatively, the source can adjust the degree to bed when maxn θn,m packets
have been sent. Therefore, the problem becomes to estimatemaxn θn,m by only collecting a small amount
of feedbacks during the transmission of the first page ( instead of continuously collecting feedbacks from
all receivers for each page).

Our goal is to sample and analyze a fixed number of feedback packets in the broadcast of the first page of
a file, in order to estimate theδ-reliable volume tδ of each instance in the RT code design when the degree
of encoded symbols changes. We can then reduce the amount of feedbacks while transmitting subsequent
pages by having the source broadcast encoded packets according to the estimation instead of feedback from
the receivers.

The sampling technique used here is random sampling, i.e.,RS as described in Section V-A. For simplicity,
we only consider the moment estimator. Similar to EV-QE Deluge, our proposed RT code with EVT
estimation technique first obtains estimations by transmitting the first page. It then uses these estimations
for the transmission of the rest of the pages. If after the transmission of a page, there remain one or more
receivers which have not finished receiving it, the source switches back to the original RT code.

C. RT Codes Simulation Results

We evaluate the performance of our EVT-based broadcasting version of RT code, namely, RTB scheme
(labeled EVT estimation in the figures). The number of receivers in the network isN = 100. We assume
the packet loss rates across the receivers are heterogeneous, unknown, and they are i.i.d and uniformly
distributed between 10% and 20%. The sample size ofRS is 15 and the intermediate number for extreme
value estimator isk = 10. The success probability associated with each transition point that we are trying
to estimate isδ = 99%. The simulation results shown here represent an average over 100 independent
identical iterations.

In the following simulations we evaluate the performance ofthe original RT code, RTB and RT code
with another simple estimation technique (labeled MAX estimation). With the MAX estimation, the source
determines the degree by simply taking a maximum of the givenN ′(N ′ ≤ N) sample data,θ1,m, .., θN ′,m,
collected during the transmission of the first page. Namely,instead of performing extrapolation using Eq. (5),
the MAX estimation simply uses the largest order statistic,i.e.,max1,..,N ′ θn,m to estimate the actual shifting
point,max1,..,N θn,m. Note that while this approach is simple, it generally underestimates the transition point,
since the sample size is much smaller than the number of receivers in the network. Moreover, this simple
approach does not provide any relationship between the number of packets broadcasted by the source and
the probability of successfully delivering the pages.

Figs. 8 and 9 plot the average number of encoded packets and the average number of feedbacks needed
to guarantee completion across all receivers for the original RT code, EVT estimation and MAX estimation.
Both estimation techniques need slightly more encoded packets than the original RT codes. The difference
in the number of encoded packets required by EVT estimation and the original RT code remains almost
constant even as the number of input packets (M ) increases. However, both the EVT and MAX estimation
techniques drastically reduce the amount of feedback required as compared to the original RT codes.

MAX estimation transmits less encoded packets than EVT estimation because it underestimates the time
to change the degree. This is because MAX estimation may failto take into account very slow receivers,
and may therefore be too optimistic about the decoding rate of the estimated slowest receiver. This results
in receivers falling back to the original RT scheme more often with MAX estimation and, consequently,
significantly more feedbacks.



19

20 40 60 80 100
50

100

150

200

250

300

350

Number of input symbols

N
u

m
b

e
r 

o
f 

e
n

c
o

d
e

d
 s

y
m

b
o

ls
 r

e
q

u
ir
e

d

Original RT code

RT with EVT estimation

RT with MAX estimation

Fig. 8. Expected number of transmissions from the source.N = 100 receivers, packet loss rates are distributed uniformly at random from
10% to 20%, varying the number of input packets. 95% confidence interval. Averaged over 100 iterations.
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Fig. 9. Expected number of feedbacks while varying the number of input symbols.M = 100 input packets, packet loss rates are distributed
uniformly at random from 10% to 20%, varying the number of receivers. 95% confidence interval. Averaged over 100 iterations.

In Figs. 10 and 11, we compare the performance of the different schemes while varying the number of
receivers. We report the average number of encoded packets required and the number of feedbacks needed
to guarantee completion.

For all sizes of receiver populations, the number of encodedpackets transmissions required by the EVT
and MAX estimation techniques is slightly larger (10%∼ 20%) than that required by original RT codes,
and appears to grow sub-linearly with the number of receivers. On the other hand, the number of feedbacks
required using the estimation techniques is drastically smaller (revealing a reduction by a multiplicative
factor of 60 with MAX to 150 with EVT) than the number of feedbacks required by the original RT codes.

IX. CONCLUDING REMARKS

In this paper, we propose novel, on-line prediction mechanisms for FEC-coded data dissemination in wireless
networks with heterogenous packet loss probabilities. Ourmechanisms, based on the (asymptotically exact)
moment and ML estimators in extreme value theory, offer major scalability benefits because (1) estimation
of per-receiver packet loss probabilities is not required;(2) the number of feedbacks used to estimate
redundancy is nearly constant; (3) accuracy improves with growth in the number of receivers.

We introduce two new protocols,RS and FSLF, for wireless data broadcasting. Our simulation results
show that theFSLF protocol, in conjunction with the moment estimator, provides a good trade-off between
the number of feedbacks used to estimate redundancy, the redundancy transmitted, and the number of extra
encoded packet transmission requests. Further, we verify that our approach provides reasonable performance
even when the assumptions of i.i.d. packet loss probabilityand large number of receivers are relaxed.
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Fig. 11. Expected number of feedbacks while varying the number of receivers.M = 100 input packets, packet loss rates are distributed
uniformly at random from 10% to 20%, varying the number of receivers. 95% confidence interval. Averaged over 100 iterations.

We demonstrate practical feasibility of our proposed approach by integratingRS into the Rateless Deluge
OAP protocol on a testbed of T-sky sensor motes. Our experimental and simulation results indicate a 30%
reduction in latency and energy consumption, an improvement of particular significance for battery-limited
wireless devices.

Finally, we incorporate use of EVT estimation into RT codes under a broadcasting scenario. We employ
EVT to estimate the transition points (i.e., the number of packets transmissions), at which a source changes
the degree of encoded packets. Our simulations show that such an approach reduces the total number of
feedback packets by a factor of 100 compared to original RT codes. These results demonstrate the wide
applicability of our protocols to improving the performance of any broadcasting application making use of
feedback.
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