Rateless Deluge:
Over-the-Air Programming of Wireless Sensor
Networks using Random Linear Codes

Andrew Hagedorn, David Starobinski, and Ari TrachtenbegpD of Electrical and
Computer Engineering
Boston University, Boston, MA 02215
Email: {achag,staro,tracht¢@bu.edu

Abstract

Over-the-air programming (OAP) is a fundamental servicggnsor networks that relies upon reliable broadcast
for efficient dissemination. As such, existing OAP protacbecome decidedly inefficient (with respect to energy,
communication or delay) in unreliable broadcast environteesuch as those with relatively high node density or
noise. In this paper, we consider OAP approaches based elesatcodes, which significantly improve OAP in
such environments by drastically reducing the need for gcdbroadcasting. We thus design and implement two
rateless OAP protocols, rateless Deluge and ACKless Dehugé of which replace the data transfer mechanism
of the established OAP Deluge protocol with rateless amal&égperiments with Tmote Sky motes on single-hop
networks with packet loss rates of 7% show these protocoate significantly in communication over regular
Deluge (roughly 15-30% savings in the data plane, and 50-BO%e control plane), and multi-hop experiments
reveal similar trends. Simulations further shows that oew protocols scale better than standard Deluge (in terms
of communication and energy) to high network density. Ti®y@ode for our implementation can be found at
http://nislab.bu.edu.

A version of this paper appeared as:
« A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Ratsluge: Over-the-Air Programming of

Wireless Sensor Networks Using Random Linear Codes”, ledings of the International Conference
on Information Processing in Sensor Networks (IPSN 2008y;l2008, pp. 457-466.

I. INTRODUCTION

Sensor networks distinguish themselves in their uniqualsitifty of gathering detailed information in
remote, isolated, and often harsh environments. Yet, saretoorks’ software often needs to be updated
after deployment for a variety of reasons, such as fixingwso# bugs, modifying tasks of individual
nodes or of the entire network, and patching security haMthin this context, over-the-air programming
(OAP) protocols play a key role as an enabling technologyuimerous sensor network applications, and
several protocols and algorithms have been specificalligded for this purpose.

Although existing OAP protocols have many merits, they esufrom fundamental limitations that
can significantly impair their use in future systems. Chietive performance of existing OAP protocols
quickly degrades when the network size and density get laagd even more so when packet loss is
high. The survey work in [1] reports simulation results, édon TOSSIM, where the completion time
of Deluge [2] and MNP [3], two popular OAP protocols, can gatake close to an hour on a 100-node
network. This lack of scalability can largely be attributedthe high control-plane overhead associated
with reliability requirements, and most specifically witkgative acknowledgment (NACK) mechanisms.
These mechanisms require every destination to contend baradchannel to notify the source about its
missing packets, producing the so-called “NACK implosiagnktem”.

Our main contribution in this work is to devise and fully inephent a fundamental solution to the
aforementioned scalability challenges faced by OAP. Oyr@gch relies on the use of rateless coding
to eliminate the need to convey control information abwhich packets require retransmission; with this
approach, a node need only receive a sufficient number ahdisencoded packets to recover a transmitted
program. Implementing rateless codes in the resource reomstl environment of a wireless sensor requires
the design of efficient mechanisms to reduce latency, caatipnal complexity, and memory overhead.
To demonstrate the effectiveness of using rateless code®@A®, we propose and implement two new
protocols. The first protocol, callethteless Deluge, significantly alters the transfer mechanism of the
OAP Deluge protocol to allow for the rateless transfer ofgoeon images. The second protocol, called
ACKless Deluge, augments the rateless Deluge protocol with a packet |lerglard erasure correction
(FEC) mechanism that aims at eliminating the need for egtas control packets. ACKless Deluge
transmits extra encoded packets that prevent, with highagbitity, the need for packet retransmissions.

In this paper, we provide a detailed description of the imp@atation of these two new rateless-based
OAP protocols. In particular, we shed light on the variousd&-offs that arise in implementation of
rateless OAP on a sensor networks, such as the tradeoff &etthe size of program pages and the size
of the underlying finite field used for computation. We prariektensive numerical results evaluating the
performance of our protocols, based both on real networkexents with Tmote Sky sensors and also on
simulations. We show that precoding, whereby new packeteacoded in anticipation of future requests,
can be exploited to substantially speed-up the data tramséehanisms of the rateless protocols. Our
results further indicate that the new protocols achievaigant savings of energy and communication
with respect to the standard version of Deluge (over 50% inyr@ases). Their overall completion times
are comparable in low network densities or low packet lossrenments, but better than original Deluge
as packet loss rate or network density increases.

A. Paper organization

The rest of this paper is organized as follows. We first brieflyiew state-the-of-art OAP protocols
and provide background on random linear codes in SectioasdIlll. Next, in Section 1V, we describe
the implementation of the rateless OAP protocols, with aigpéocus on the memory and computational
overheads that they entail. We also describe the design oFBC technique that reduces the effects
of packet loss and prevents requests for re-transmissioBettion VI we compare the efficiency of the
original Deluge to the rateless implementations througbheexnents on our testbed and simulations. Our
conclusions are presented in Section VIII.

b bits

@
@
i @
original file

encoded file

Fig. 1. lllustration of random linear encoding

[I. RELATED WORK

We survey here work directly related to OAP protocols. A nembf such protocols have been proposed
in the last few years. Among them, the Deluge protocol [2s4jurrently thede facto standard. In Deluge,
each node periodically advertises the most recent verdidts program, and nodes request (and receive)
program updates based on these advertisements using a MAS#d protocol for reliability. In order to
reduce contention on the shared channel, Deluge implenagwmesti sement and NACK suppression, which
aim at avoiding redundant transmissions of control packetaddition, to enablgipelining, a program
is divided into fixed-size segments (or pages), which in @ divided into packets. As soon as a node
receives an entire segment, it can forward it on to its nesghbln [4], forward error correction in the
form of Reed Solomon codes and Tornado Codes is proposed ateiatipl optimization of the Deluge
protocol, but these codes have a fixed rate and thereforereetine retransmission of entire pages if too
many packets are lost.

OAP protocols that preceded Deluge include XNP, used inQyor single-hop reprogramming, and
Multi-hop Over-the-Air Programming (MOAP) [5]. MOAP is sitar to Deluge, but does not divide a
program into pages. More recent protocols include Mulfp-iNetwork Programming(MNP)[3], Infuse [6]
and Sprinkler [7]. MNP implements sender selection to lithie number of concurrent transmissions in
each neighborhood. Both Infuse and Sprinkler propose tauped TDMA schedule to reduce packet
collisions. A detailed description and comparison of thesthods and a few others is provided in [1].

While our implementations are based on the Deluge protogelexpect that the new rateless cod-
ing transfer mechanisms described in this paper could bélayesl on any of the above protocols to
substantially improve their performance.

Significant efforts have recently been devoted in develppiew macro-programming methods and
middleware to reduce the amount of data needed to update addynprograms; see e.g., [8-10]. This
paper’s contribution should be viewed as complementarhésé efforts.

I1l. BACKGROUND ONRATELESS ANDRANDOM LINEAR CODES

Rateless codes provide an efficient means of addressingiehaontention in sensor networks, while
at the same time minimizing control messages, such as tlogehuting to the ACK/NACK implosion
problem. Fundamental to this strategy is the fact that vecgido not need to indicate which specific
packets require retransmission; instead, they just haveedeive a sufficient number of independent
packets, which can then be used to decode the original mesRateless coding, thus, yields several key
benefits, namely: communication and energy savings, andrloantrol overhead.

Traditional:
Request Lost Packets: Transmit Lost Data:

Source Source

Rateless Codes:

Request Lost Packets: Transmit Lost Data:

Nodell Nodenl Nodell Nodenl

Fig. 2. A motivating example of the best-case gain achievabth rateless codes. If each receiver misses a differeckgiathe traditional
mode requires the tranmission of requests andw retransmissions. However, with rateless codes only 1 tgaled 1 retransmission is
required.

Random linear coding provides a simple method for file digsation. In this model, a long fileX
is split into £ segmentsX;, X, ... X}, each of which can be thought of as an element in a finite field
F. These segments are then encoded imto> k£ messageqYi,Ys,...Y,,} as the following random
linear combinationsy; = Z;‘?:l Bi;X;, wherej; ; are randomly chosen elements in the finite fi&ld
The parameterg, ; of the encoding can be easily adjusted so that the oS 5, o, . .. 5,] are linearly
independent with high probability. Thus, any host that ek of the Y;’s can solve the corresponding
system of linear equations to determife Figure 1 graphically demonstrates the encoding process.

This technique sports two features useful to OAP: (i) it hasdecoding inefficiency; and (ii) it is a
rateless code. In classical block codes, the encoding length neetie ttetermined priori. In this case,
however, if them encodingsy; ...Y,, prove insufficient (due to poor channel conditions, for egéaj
then the encoding node can easily generate a number of eatketsY; by using newly constructed
random elementg.

A. Motivating Example

As a simple example of the best-case gain achievable witiess codes, consider a one-hop clique
consisting of a base station andsensor nodes. Suppose that the base station broadcdsis packets
and each node in the network fails to receive a different padk traditional data dissemination protocol,
such as Deluge, would require that each sensor transmit®rienshared broadcast channel) a NACK
control packet with the ID of its missing packet. Upon re@aptof thesen NACKSs, the base station
would have to retransmit atb data packets.

On the other hand, with rateless coding only one sensor riegdgquest the transmission of an additional
encoded packet (assuming the other nodes can overheaethadst). Once the base station transmits one
new packet, each node can use this packet to recover the Riateless coding thus yields anfold
reduction in communication cost dioth the control and data planes in this case.

V. IMPLEMENTATION OF RATELESSOAP

The implementation of a rateless OAP involves two cruciehednts. The first element is the design
of the rateless code to minimize latency, computational glerity, communication, and energy use. In
general, these design choices are influenced by underhangwiare restrictions, such as the amount of

memory available and the processor architecture and sgdedsecond element involves re-engineering
the OAP data transfer mechanism. The new rateless datddranechanism must naturally integrate with
the existing OAP protocol. This portion of the design is hygspecific to the OAP selected (in our case,
Deluge).

A. Finite Fields

The selection of the finite field size of field £, has a considerable impact on the performance of
the system in terms of the computational complexity and ghodlly to decode successfully. Decoding
fails when thek rows of the randomly chosel x £ matrix are linearly dependent. The probability of
decoding failure is based on well-known considerationshef hnumber of linearly independeht x £

matrices: ,
(¢" = DI (" —¢' = 1)
q*’

Increasing the field size also increases probability of proper decoding at the expearisincreased
computational complexity for finite field arithmetic. Foryareasonable field size, performing arithmetic
on the fly is computationally demanding, since multiplioatis performed modulo an irreducible poly-
nomial and division requires an application of the extenBedlidean algorithm [1£] This computation
complexity can be traded off for memory by precomputing iplittation or inverse tables. We chose
a field of sizeq = 28 (corresponding to byte-length elements), which requix&s bytes of memory to
store inverses and has a probability of decoding failure-d#.00392. By way of comparison, the next
byte-aligned field size off = 2'¢ requires a65K B table, which surpasses tH&KB memory on the
Tmote Sky motes.

Pr(failure) = 1 —

B. Random Linear Codes

Our implementation of random linear codes is divided into arts: encoding and decoding. During
encoding, a random number generator is seeded with a kegydhmyr all nodes and a unique packet
identifier to create random coefficients for encoding a gipacket (if security is a requirement, then
the shared key should be kept secret and distributed usiregwares key distribution scheme). Once the
current page is encoded into a packet, that packet and itgifide are transmitted over the channel.
Including the identifier in each transmission allows theatkeg mote to recreate the row of the random
matrix used to encode the data packet; the identifier and keeg@nbined to form a seed for the random
number generator. Once all rows of the matrix have been g&tbrthe decoding process uses Gaussian
elimination with back substitution to solve the set of lineguations and retrieve the data. If decoding
fails, the process recovers gracefully by only discardhmgse packets that are linearly dependent (indicated
by zero rows in the reduced decoding matrix). The decodingemuaust retrieve enough new packets to
replace the dependent packets, and then it can generaterteemonding new rows of the random matrix.
The node repeats the decoding process until it has obtainedrly independent packets and decoding
succeeds.

The performance of random linear coding depends on the nuamksize of the packets being decoded
(i.e., the size of the matrix). Both of these values are camstd by the resources available to the motes:
the default maximum data payload size for TinyOS2¢sbytes and there is a fixed amount of RAM.
The default value for Deluge is & packet page, where each packet cont@gsdytes of data. This
data payload size represents a worst case in terms of cotigmatacomplexity for our algorithm; if the
payload is smaller and the number of packets per page rertte@rsame, both encoding and decoding will
take less time. Due to the use of Gaussian elimination, tieedieg time? is O(k?*), where the size of

There are more efficient approaches to finite field arithmeticch as using special bases or picking trinomial irredasibbut the
fundamental issues remain.

2pgain, more asymptotically efficient row-reduction teaumés are known in the literature, but they do not appear isedcfor
implementation in constrained sensor motes.

Request

Proc(page)

Load(data)

if valid
if loaded
Encode()
else
Load(first)

—

if all loaded
Encode()

else
Load(next)

Precode()

if next
Proc(next)

Encode()

else
Done

if sent all

Precode()
L_:T‘ else
Encode()

Done

Fig. 3. State diagram at the source for a valid request forta gacket. Upon reception of the request the source loadiatd, encodes,
and transmits encoded packets. After transmitting theiredunumber of encoded packets the source precodes the agatipavailable.

the random matrix i x k. This means that the page size should be kept small to redumputational
complexity. For example, on Tmote Sky motes requis&® seconds, on average, to decodélgpacket
page. Reducing the page size2tbpackets per page decreases the average decoding tilr@#&tseconds.

C. Rateless Deluge

We next describe the full implementation of our first OAP puul called rateless Deluge. Rateless
Deluge modifies the original Deluge protocol in that it usateless codes to transmit data. This change
causes significant structural changes to the mechanisnmefpresting and transferring data so that com-
munication in the control and data planes are reduced. Torerssfair comparison, all the other aspects
of original Deluge such as image advertisement and dataggoare kept identical. Hence, the only
difference between the two implementations lies in theinsfer mechanisms.

The change to the request mechanism is fairly simple. Retddeluge does not require knowledge of
the specific packets missed and therefore the transfer of eebtor of missed packets is unnecessary.
Only the number of missed packets must be transferred which can be repezbasta single byte. This
means that for the page size (in bytes), rateless Deluge reduces the size of the requedtep by
[loga(P — 8)] bytes forP > 8. For0 < P < 8 the packet sizes are the same. This difference results in a
slight change to the request suppression method as wellelage, if a node overhears a request packet,
it suppresses its own requests if the overheard bit vectar ssperset of its own bit vector. Otherwise,
the node transmits its own request to the source. In rat&essge, a node requests more packets only
if it does not overhear another request containing a largenber of requested packets.

The change to the mechanism for transferring data is muche rmobstantial. The original protocol
examines the bit vectors it has received and transmits padaresponding to the union of all those
bit vectors. For this, the sending node retrieves a singta gacket from Flash memory and transmits
it. This process repeats until all the requested packete baen sent. Upon reception of a useful data
packet, nodes immediately write that packet to the Flash engrmwait for additional packets, and request
retransmission as needed. This model is unrealistic f@legas implementations because the entire page
(composed of: individual data packets) is required for the encoding pssc&imilarly, decoding requires
k linearly independent encoded packets to obtain the oligiage. Therefore significant changes must
be made to the page transfer state machine, both at the sandcthe receiving nodes.

At the source, the transfer state machine must load, encodebeobadcast the encoded packets. A
simplified state diagram of the new mechanism at the sourggven in Figure 3. While it would be
possible for the source to load each data packet indiviguaid have the same RAM overhead as the
original Deluge, the number of Flash memory accesses waulgrthibitive. For a page df data packets,

Data Packet

Receive()

Decode()

num++
if num=n
Decode()

B

if correct

Write(data)

Write(data)
else
Discard()

Discard()

for all data

if all written
done

else
Write(next)

if dependent|

delete
Wait
Wait —pe

Done

Fig. 4. State diagram at the receiving node for a valid datketa Once the node has receiviedncoded packets it attempts to decode.
If decode is successful the node writes the data to Flaster@ibe the node discards any linearly independent packetsaaits for more
encoded packets.

the source would have to perforinloads for each encoded packet, since each encoded packetpsited

as Z§:1 5;.;X;, where X; represents packet Hence, this approach would requit§%?*) Flash accesses
to encode each page. A more efficient implementation loagl®thire requested page into memory prior
to encoding and transmits packets so that dnliglash accesses are required, assuming that a buffer in
RAM is large enough to hold the full page. Once the entire gaga memory, the source uses random
linear codes to encode and broadcast packets over the sdarelennel. With this approach, the number
of Flash accesses does not exceed that of original Delugkjsaeven potentially lower in the case of
retransmissions. Indeed, if a retransmission is requitieeln original Deluge will have to reload some
data packets into the RAM. On the other hand, in the case efest Deluge, the working page remains
in the buffer. Note, however, that once a different page heenlrequested, any further request for the
previous page will result in additional Flash loads.

Rateless Deluge further changes the transfer mechanidme aburce by attempting to anticipate future
requests. Once the current request has been fulfilled,essteDeluge exploits the fact that pages are
requested in increasing order by precoding the next pageleVdther nodes are decoding the previous
page, the sending node anticipates requests for the negt ffegg is, it loads the next page into the page
buffer and encode new packets.

However, precoding requires two additional buffers sinus process holds multiple encoded packets
in memory at once. The process requires a buffer to hold tiginat page , one to hold the unique
identifiers of the encoded packets and another to hold thedeuk packets. Encoding on the fly as
described above does not require the latter two bufferss Thibecause once a packet is encoded it is
immediately transmitted over the channel and the same meoaor be used for the next encoded packet.

Precoding at least partially mitigates the delay assogiatéh encoding at the expense of RAM
consumption. That said, in practice, the sending node mastfar a short time period before encoding the
next page to avoid excessive Flash accesses which will iasteand energy. For instance, consider the
situation in which a single receiving mote needs an addilipacket. After a brief time out, this mote will
send a retransmission request to the source. If the sougiesbprecoding the next page immediately, the
page buffer of the source will contain the next page. Theegfthe request for additional data will require
the source to reload the previous page before encoding. prbislem can be avoided by introducing a
waiting period in between the last data packet transmisagsociated with the previous page and the
start of precoding for the next page.

At the receiving nodes, the mechanism for data receptiorh@ged to allow the nodes to receive
encoded packets and decode the page. A simplified stateathagirthe new mechanism at the receiving
nodes is given in Figure 4. The rateless version stores eaobded data packet in RAM along with its

unique identifier. However, this does not require a new uffeRAM. Nodes that are receiving packets
ignore requests to for data until decoding is complete; #tisws the buffer that holds the un-encoded
page during encoding to hold the received packets duringdirg. Once the number of encoded packets
received equals the page size, the unique identifiers acttose-generate the random matrix and all the
packets are decoded. If decoding is successful then thee grage is written to the Flash memory and
the page transfer is complete.

However, if there are linearly dependent packets, thenenptiocess of Gaussian elimination there will
be rows of all zeros in the matrix. The packets corresponding to those rows are diedsadd additional
packets are requested. The same request suppression abatksbove is used here.

D. ACKless Deluge

Our second rateless OAP protocol is referred to as ACKledsideeand it attempts to completely
eliminate the need for NACKs. ACKless Deluge implementstlad structural changes described for
rateless Deluge. However, it differs in two significant waysrst, ACKless Deluge employs a FEC
mechanism at the packet level which sends extra encodectsaickaddition to the requested number of
packets. We do not employ bit-level convolutional or blockies to correct bit errors, but instead enhance
the rateless features of our implementation by adding rédonpackets to account for packet loss. For
example, in a trivial system where it is knovarpriori that one packet will be dropped from each page of
sizek then the FEC mechanism would sehd 1 packets. In doing so each receiving node would receive
k packets and no retransmission would be required. Our FEGhamsm is designed to prevent requests
for retransmission with high probability and how this is ectlished is explored further in Section V.
The second major difference is the length of the waitingqeeassociated with precoding. The rationale
for a waiting period before precoding is that requests ftraresmissions will cause excessive Flash loads.
However, since ACKless Deluge prevents (with high prohigbiretransmissions, the need for a waiting
period is largely eliminated. Therefore, ACKless Delugesua minimum waiting period before precoding.

E. Overhead

It is clear that rateless Deluge adds memory and computdtomerhead with regard to original Deluge.
The magnitude of this overhead depends on many factors, tdst important being the page size. The
impact of the computational overhead can be measured irstef@nergy consumption, which is explored
in Section VII-B, and delay, which is examined here. If thexano packet loss in the network, delay is
easily calculated because it depends only on the encodidglacoding times. This is the case because
all other factors (i.e. the number of transmissions and tiralver of Flash reads and writes) are identical.
Figure 5 depicts the delay incurred with four different sties: i) without precoding, ii) with precoding,
but with no waiting period, iii) with precoding and 0.5 sedowaiting period, and (iv) with precoding
and a 2 seconds waiting period. In each case, the figure st@ssnount of time needed to encode and
decode 48 packets for varying page sizes. The length of thenggeriod determines whether or not
precoding is beneficial or not. When there is a minimum wgitperiod (as is the case with ACKless
Deluge), precoding completely eliminates the time ovedheae to encoding. However, with increasing
waiting periods and page sizes, some packets (possiblywdllnot be encoded during the precoding
stage. For example, Figure 5 shows that with a 2 secondsnggiteriod, no benefit is achieved from
precoding if the page size is less than 28 packets, becaasgettoding process on the receiving nodes
is shorter than the waiting period.

The RAM memory overhead shows a similar trend: the amounxtthenemory consumed increases
with the page size. The major sources of increased RAM useg¢ha table of multiplicative inverses,
the page buffer, the precoding buffer, and the buffer of uaigdentifiers. While the size of the table of
inverses is constant at 256 bytes, the size of each of the btiffers is a linear function of the page size.
For a page size of 20 packets per page this overhead trangitdel196 bytes in RAM which represents

12

» 0O Without Precoding o
-B- Precoding, 2 second delay
10 =+= Precoding, .5 second delay
" Precoding, no delay \\\°
g
3 o /'
- 6 8 ‘:’ b
5 LA
£ O +"m
S 4l - .
S 4 " *
o ’,0’ ‘\,\v
@o’ ,\"v
2 2 g
M“T"@”“;v

5 10 15 25 0 35 40 45
%Jackets per %’age

Fig. 5. Overhead (encoding and decoding) of rateless Deluigle and without precoding and with and without waiting ipelr The figure
shows that precoding can reduce the time overhead of ratBleBige, but the precise amount depends on the waitingcband the page
size.

11.6% of the 10 KB of RAM on a Tmote Sky mote. When the page sizeeases to 48 packets per page
the additional cost is 24.5% of total RAM.

The costs of rateless Deluge which are outlined above imy & page size that is smaller than the
default Deluge page size of 48 packets per page would be beefiowever, there is a trade off because
at some point the reduction in the page size becomes courgdugtive. To illustrate this consider the
extreme case where the page size is 1 packet; both rateldssriggmal Deluge will transmit a single
packet upon a new request and the benefit of rateless DelugstidVhile small page sizes greater than
one will show some benefit, higher page sizes increase thencmication and energy gains of rateless
coding, as shown by our experiments and simulations in thaeedeFigure 5 provides another justification
for using a page large enough. This figure shows that where tisea waiting period before precoding,
then a reduction in the overhead is only seen when the pagessceeds a certain threshold. For these
reasons, all experiments are performed with a page size giazRets.

V. NUMERICAL FECFORACKLESSDELUGE

The FEC mechanism in ACKless Deluge operates at the packalt le sends extra encoded packets
to prevent the need for additional control messages andn®tmission with high probability. In [12], it
is suggested that extreme value theory can be applied tontiei the number of extra transmissions
required. Using knowledge of the number of recipient§),(the number of packets required/{, and
an estimate of the loss probability)(it is shown in Theorem 11 that the number of transmissions is
bounded by random variables converging to the cdf of a nom@@lGumbel distribution ag/ — co. A
Gumbel distribution is of the fornd(z)= exp(—exp(—x). Simulation in [12] shows that even though the
convergence is known only a8 — oo, the number of transmissions is close for relatively 1&%y the
simulation uses the example &f = 100 . However, the formula of Theorem 11 provided in [12] may
not be accurate enough in sparse networks whérean be very small.

Clearly, the FEC mechanism in ACKless Deluge should be flexdo that all values ofV can be
accommodated. To allow for an accurate answer forNgllACKless Deluge numerically computes the
solution for small values ofV, as explained next. In [12], the time for userto receive M packets,
denoted by the variabl&;,, is shown to be negative binomially distributed. By defmiti P(7,, < t) =
F(t) =1(1 —p,M,t — M) where I(z,a,b) is the regularized beta function. If you assume that each
node loses packets independently of all other nodes, theapiiity that the maximum is less thanis
the following:

Primax_, vy 7: <t) = (F@)"

10

40f -© - ACKless, with Precoding

-& - ACKless, without Precoding

-6~ Rateless Deluge, with Precoding
-0~ Rateless Deluge, without Precoding

w
o

Time to Disseminate (s)
w
o

4 5 6 7
Percentage of Packets Lost

Fig. 6. Average dissemination time of rateless Deluge andla€s Deluge, as a function of the packet loss. Precodingceslthe
dissemination time over a single hop for both rateless vassi

By selectingt appropriately high, one can determine the number of exarstnissions needed to guarantee
success with high probability.

Similarly to extreme value FEC, knowledge &fandp is necessary for the computation. A conservative
estimate of the packet loss can be obtained by active oryegapsbbing. For instance, a passive probing
approach is to periodically transmit pages without extrakpés. The number of packets requested for
retransmission can be then used to estimate the packetriasalylity. The number of neighbors can easily
be determined by keeping a table of known neighbors basedvernead advertisements and requests.
Advertisements by nodes happen systematically regardieise amount of data present on the nodes
and are therefore a good way to gain an estimate of the nunfbeodes in range. To accommodate
network topology changes, the table could be refresheagbeslly. The accuracy of the estimates /gf
andp has an effect on the amount of communication required. Ampwenservative estimate will cause
excessive transmission of data packets and a low estimditeamse additional requests. The effects of
using numerical FEC in sparse networks and accurate estintdtthe parameterd andp are explored
in Section VI-C.

VI. EXPERIMENTAL RESULTS

The experiments in this section evaluate the performancatefess Deluge and ACKless Deluge with
respect to the original Deluge protocol. All the experinseaite performed on a test bed of 2.4 GHz Tmote
Sky motes. Packet loss is generated in two different wayemi#ing on the experiment: i) forced packet
loss, which is the practice of dropping packets uniformlyaetdom at a certain rate; in this case the motes
transmit at their highest power setting over short distartoeensure a good link; and ii) natural packet
loss, which induces packet loss by transmitting at the lowewer setting in the presence of interference.
Interference is provided by motes transmitting over theeatisement, data, and control channels; the
delay between transmissions is chosen uniformly at randetwden 3 and 7 milliseconds.

A. Sngle Hop

All single-hop experiments are performed on a 16-moteséesthat form a fully connected graph.
At the beginning of the experiment a 9-pages image is preserdne mote (i.e., the base station). The
experiment ends once every mote has the entire image in.HAegh is collected in two ways. A single
mote is connected to a PC and records all network activity @mch node in the network logs local
statistics and stores them to Flash memory. Each data pepmésents the average over five trials. The
experiments are conducted under forced packet loss.

Two single hop experiments are performed. The first expernshows the benefits of precoding,
namely, the practice of anticipating future requests tdgaie the cost of encoding. Figure 6 shows that

11

30

N
ol
T

8
*-5
*

Time to Disseminate (s)
=
<
Y
AY

-O- Original Deluge
—— Rateless Deluge
% ACKless Deluge

N

S

3
.

3 4 5 6 7 8 9
Percentage of Packets Lost

Fig. 7. Comparison of average dissemination time of a 9-pageage with increasing packet loss for each protocol.

380

-O- Original Deluge
3601 % ACKless Deluge ,,0
—»— Rateless Deluge .

340 == Optimal

w

N

o
T

w
(=]
o
T
\

N
D
o
T
.
.

Network Data Packets
N N
N @
(? o
AY

N

N

o
T

20007

180t == === =g mimimig i i Pl s (===

3 4 5 6 7
Percentage of Packets Lost

Fig. 8. Average number of packets transmitted on the dataepés a function of the packet loss for each protocol.

for both rateless and ACKless Deluge precoding signifigati¢icreases the time to disseminate a file over
one hop; for example, Figure 6 shows that when 7 percent dgta@re lost, precoding reduces the time
to disseminate by 9.1 percent for rateless Deluge and 24c@piefor ACKless Deluge. The reduction for
ACKless Deluge is much larger because it assumes no adalitiansmission is needed and it does not
wait for requests before starting to precode. Looking atgpecific numbers at 7 percent loss, ACKless
Deluge is 6.5484 seconds faster with precoding than ACKDedgge without precoding. At 20 packets per
page, the cost to encode a single packet is on average .0886ids and the encoding cost is 7.0146 for
the entire 9-pages file. In this case, ACKless Deluge hagatéd 93.4 percent of the encoding overhead.
This confirms the calculation of Section IV-E that indicatiwt precoding mitigates the overhead of
encoding. In fact, for the case of ACKless Deluge, the ovedh&lmost completely disappears.

The second experiment compares the original, rateless,A&ifless Deluge protocols in terms of
the time to disseminate the image, the number of data patketsmitted, and the number of requests
transmitted in the network. Figure 7 shows the amount of fimgeconds to disseminate the entire image
to all nodes. Since this experiment is performed on our &ktibhese times include all computational
overhead of our implementation. With minimal packet loggginal Deluge performs significantly better
than either version of rateless Deluge. However, as thegtdoks increases, original Deluge becomes
worse than ACKless Deluge starting from a packet loss ratd.Bfpercent and than rateless Deluge
starting from a packet loss rate of 8.5 percent. Ratelessideehlways performs worse than ACKless
Deluge because of the waiting period it uses to prevent skee$lash loading.

The transmissions in the data plane for each version as weheminimum number of transmissions
are shown in Figure 8. The minimal number of packets is 180esthere are 20 data packets per page

12

©
o

-O- Original Deluge .0
Ll =% Rateless Deluge -=-7]
% ACKless Deluge o-
[| '== Optimal <

o]
o

~
o

al (o2}
o o
T
.
Q
.

N
o
T

w
o

T =W, -
;:
*
*
'
T

Network Request Packets

N

Percentage of Packets Lost

Fig. 9. Average number of packets transmitted on the comtiaoie as a function of the packet loss for each protocol.

and 9 pages in the image. At low packet loss, rateless Deleg®rms near optimal while the other
two versions perform similarly. However, as packet losgeases, original Deluge requires significantly
more data packets to disseminate the image. As expectetegatDeluge transmits less data packets than
ACKless Deluge.

The transmissions in the control plane for each version hadrtinimal number are shown in Figure 9.
The minimum number of packets is 9, one for each page in thggemhm this case, original Deluge
always performs worse than both rateless versions. ACKledage uses near optimal transmissions for
all rates of packet loss and rateless Deluge performs indmtwACKless and original Deluge.

The conclusions to be drawn from the single hop experimerdstizat with increasing packet loss
rateless and ACKIless Deluge both perform better than tlggnadi version in communication complexity.
Furthermore, as packet loss increases the rateless vemisseminate the image in less time; the reduc-
tions in the communication on the data and control planebefateless version are significant enough to
overcome the inherent overhead of rateless codes. Whenarorgghe two rateless protocols, ACKless
Deluge shows significant reduction of transmissions in tbetrol plane and rateless Deluge performs
better in the data plane. This is an expected result beca@$deAs Deluge adds extra data packets to
eliminate retransmission while rateless Deluge only s¢héesninimum amount of data packets requested.

B. Multi-Hop

The multi-hop experiments are performed with a varying nambof motes and natural packet loss. In
each experiment, one mote possesses the entire 9-pages, iﬁh&gotes are placed a single hop away
from the source, an@£ are placed two hops away from the source. Each data poirgésepts an average
over five trials. Once again, the data is collected in two waysingle mote is connected to a PC and
records all network activity and each node in the networkslégral statistics and stores them to Flash
memory.

The multi-hop experiment compares original, rateless, AGdless Deluge in terms of the time to
disseminate the image, the number of data packets traesinéhd the number of requests transmitted in
a low density network. Figure 10 shows the amount of time in seconds tedigsgate the image over two
hops; in the figure, the number of motes shown on the x-axis/idetl evenly between the two hops. The
figure shows that both rateless Deluge and ACKless Delugermpeslower than original Deluge over two
hops. However, as the number of motes increases the aveissgamihation time of both rateless versions
increases noticeably slower than that of original Delugkis irend suggests that at higher density the
rateless versions would disseminate the image faster,rtunfately our testbed is not large enough to
verify this conjecture. Scalability to higher density netks is explored further in Section VII-A.

The results for the communication complexity on data andtrobrplanes show that, even at low
density, the rateless versions significantly reduce theusainof transmissions on the multi-hop network.

a
o

Iy
a
T

=
o
T

40k
O)

o 35¢ b
g

'E 30% oo e ¥
o e o
@ 25 o--m-m " O ------- o-]
a @-----"7°

o 20p

®

£ 15-

—

r % ACKless Deluge

—— Rateless Deluge

(=2

-@ - Original Deluge

4

Fig. 10. Average time to disseminate an image over a two-tegpark for each protocol, as a function of the network size.

5 7 8 9
Number of Motes

11 12

400

w
a1
o

H -#%*- Numerical 3 Motes

-%- Extreme Value FEC
-&- Numerical 12 Motes
-B- Numerical 9 Motes

-©- Numerical 1 Mote
- - - Optimal (In Expectation)

w

o

o
T

13

N
a1
=]

T
\

\
\

\

\

Data Packets to Disseminate
e
\
A}
u
‘\
\
S

Fig. 11. Comparison of numerical FEC and extreme value FEX] ifi terms of data packet transmissions versus packet Msserical
FEC allows for reduced communication of the data plane.

Both rateless protocols transmits fewer data packets thigmal Deluge as the number of receiving motes
increases. Similarly to single hop, rateless Deluge trétssiewer data packets than ACKless Deluge. Both
rateless versions perform far better than original Deluge¢hie control plane, and once again, ACKless
Deluge is near optimal.

C. FEC

As explained in Section V, using numerical FEC is approprigince the extreme value theory bound
of [12] is not accurate for smalV. For these experiments we have selected Pr(;max 7; <t) = .95.

The number of extra packets sent with each transmissionperdkent on the number of neighbors and the
probability of loss. Figure 11 shows the reduction in datekeés transmitted to distribute a 9-pages image
in sparse networks. The experiments uses forced packetalu$s/arying network densities and shows
that the numerical method reduces the amount of data tréeshsignificantly compared to the analytical

one. Additionally, as would be expected, increasing netwimnsity causes the number of packets to be
sent to converge towards the analytical expression emglbyethe extreme value approach.

Section V also indicates that ACKless Deluge requires kadgeé of two parameters: the probability
of loss, p, and the number of neighborgy. To explore the sensitivity to these parameters consider a
network in which the source has 8 single hop neighbors andéteork has a loss probability of 5%. In
this case ifp is assumed to be correct ard is slightly overestimated as 12 the number of data packets
increases by 4.2% and the number of request packets is the. $dowever, if N is estimated as 100
then the number of data packets increases by 32%. Whés underestimated as 1, the number of data

14

1400

-G - Original Deluge ‘ ‘ ‘ ‘ ‘ [
—% ACKless Deluge e
1200/ % Rateless Deluge e

[y

0001 '/

@
o
o
T
N
~

Network Data Packets
2
=
N

400f @--"

o T E T T e

10 20 30 40 50 60 70 80 90 100
Number of Nodes
Fig. 12. Average number of packets transmitted on the daaephs function of the network density, for each protocol.

700

-@ - Original Deluge 1
—%— ACKless Deluge -
600/ -4 Rateless Deluge Pt
12} -
9] .
f‘% 5001 -
o °
@ 4001 .
g .
o ,
¢ ’
o 300 -
b= .
s .
£ 200r K
(]
z > .0
wl o |

70 80 90 100

10 20 30

40 50 60
Number of Nodes

Fig. 13. Average number of packets transmitted on the cbptame as a function of the network density, for each pratoco

packets decreases by 2.4% and the number of requests ieereps38%. This shows that significantly
over estimatingV causes a large increase in the number of data packets, lyua eanhall under estimation
causes a significant increase in the number of control packeatt. If NV is assumed to be correct and

p is overestimated as 9% packet loss, the number of data gasi@eases by 14.3% and the number
of requests is approximately the same. Wheis underestimated as 1% packet loss the number of data
packets decreases by 12.7% and the number of requestssesregp 7.7%. These examples reflect large
error in the estimate ofV andp, but it should be noted that the algorithm is tolerant to $reabrs in

the estimate. Overall, when the goal of using the protoctd iseduce the amount of transmission in the
control plan, a overestimation of either parameter inaesdabe number of data packets sent, but maintains
the amount of control packets sent.

VIlI. SIMULATION
A. Scalability

The preceding experiments have shown that at low networkitlest and packet loss, rateless Deluge
transmits fewer data and control packets than original @=liHowever, to be an effective solution, rateless
Deluge must also scale well with increasing network den3itysimulate these conditions we have used
the TinyOS simulator, TOSSIM, and configured it so that alltesoare within one hop of the source
and packets are dropped at a rate of 7 percent. Only the nsnobelata and control packets transmitted
have been collected for these simulations. No timing dasaldegen collected because TOSSIM considers
all processing to happen instantaneously. This does ndtitself to a fair comparison since all of the
overhead of rateless Deluge is due to processing and, trmddvioe ignored.

15

-O- Original Deluge
% ACKless Deluge
40007 —— Rateless Deluge

3500+ e

Energy (mJ)
8
8

25001

20007 g LI *

1500
10 20 30 4 0 70 80 90 100
?\Iumger of ?\?odes

Fig. 14. Average energy use per node over a single hop witte@sing network density.

Figure 12 shows the number of data packets transmitted gemimate a 9-pages image at varying
network densities. At low density the simulation performsiikarly to the experiments on the motes;
rateless Deluge has near optimal performance while ACK&ss original Deluge perform similarly.
However, as the number of receiving nodes increases, atigheluge rapidly increases the amount of
packets it sends while ACKless Deluge keeps transmittingresistent amount. The amount transmitted
by rateless Deluge appears to converges to that by ACKlekgy®eThe number of control plane packets
transmitted is shown in Figure 13. As the density increaessamount of control packets transmitted by
the original version of Deluge, increases rapidly, while timount transmitted by rateless and ACKless
Deluge increases much more slowly.

B. Energy Savings

The amount of energy used to disseminate an image is anahemportant metric that can be used to
compare the behavior of the different protocols. Indeedelss sensor networks are (generally) powered
by batteries and lower energy usage will extend the lifetohéhe network. To get an idea of the energy
savings over a single hop, simulations are run using the powleling capabilities of PowerTOSSIM,
an extension of TOSSIM. Since PowerTOSSIM does computeepsiitg energy it provides a valid
comparison. In our simulation, a 9-pages image is dissdsdnt a varying number of modes over a
single hop with a packet loss rate of 7 percent.

The results of our simulation are presented in Figure 14ckwishows the average energy consumed
in millijoule (mJ) per node at different network densitiéghe total energy of the original protocol is
substantially larger than each of the rateless versions iBhbecause the original protocol expands a
larger amount of communication on both the data and contesigs. At lower densities, rateless Deluge
performs better than ACKless Deluge, but as the number oésiottreases the energy use of each rateless
protocol begins to converge.

VIII. CONCLUSION

In this paper, we have shown the benefits of using randomrlioedes for over-the-air programming
of sensor networks. Compared to Deluge, one of the most wideéd OAP protocol at present, our
implementations (i) reduce communication on both the dath eontrol planes, (ii) reduce latency at
moderate levels of packet loss, (iii) are more scalable tsdeetworks, and (iv) generally consume far
less energy, a premium resource in wireless sensor networks

We have presented two rateless OAP protocols, namely saté&eluge and ACKless Deluge. Although
ACKless Deluge adds communication on the data plane, itriscpkarly efficient on the control plane

16

as it almost completely eliminates the needs for retransionsrequests by receiving nodes and packet
retransmissions by sources. Since it unlikely that noddélsr@gquest packets belonging to a previous page,
ACKless Deluge is able to take full advantage of precodind) yeed-up data transfer. We have provided
a simple mathematical approach to determining the numbexiwé packets needed by ACKless Deluge
in order to guarantee, with high probability, that all thedee receive enough packets to decode a page.
Overall, this work has shown that rateless Deluge, augmeniin our FEC mechanism, achieves excellent
performance with respect to almost all the metrics relevantireless sensor networks. More generally,
we expect rateless code transfer mechanisms, similar s@theesented in this paper, to be practical and
useful for any communication protocol in wireless sensdmwoek that must overcome traffic congestion
and packet loss due to packet broadcast.

IX. ACKNOWLEDGEMENTS

The authors wish to thank the reviewers for their editonmgduts. This work is partially funded by the
National Science Foundation under grants CNS-0435312 &#@29158 and by a grant from Deutsche
Telekom Corp.

REFERENCES

[1] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming wirelessse¢ networks: Challenges and approach¢éEEE Network Magazine,
vol. 20, no. 3, pp. 48-55, May-June 2006.

[2] J.W. Hui and D. Culler, “The dynamic behavior of a dataseisination protocol for network programming at scale.,”"SamSys 04,
Baltimore, Maryland, USA, Nov. 2004.

[3] S. Kulkarni and L. Wang, “Mnp: Multihop network reprograming service for sensor networks,” 25th IEEE International Conference
on Distributed Computing Systems, 2005, pp. 7-16.

[4] Adam Chlipala, Jonathan Hui, and Gilman Tolle, “Deludata dissemination for network reprogramming at scaledsSl|Project,
http://www.cs.be rkeley.edujwhui/research/deluge/cs262/cs262a-report.pdf, Fali32

[5] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remaidecupdate mechanism for wireless sensor networks,” Teeh.,RICLA,
2003.

[6] S. Kulkarni and M. Arumugam, “Infuse: A TDMA-based datssemination protocol for sensor networks,” November 20B2thnical
Report MSU-CSE-04-46, Department of Computer Sciencehidan State University.

[7]1 V. Naik, A. Arora, P. Sinha, and H. Zhang, “Sprinkler: Aligble and energy efficient data dissemination service fioeless embedded
devices,” in26th |IEEE Real-Time Systems Symposium, 2005.

[8] P. Levis and D. Culler, “Mate: A virtual machine for tinyetworked sensors,” Oct. 2002, pp. 85-95.

[9] N. Reijers and K. Langendoen, “Efficient code distriloutiin wireless sensor networks,” WSNA, 2003.

[10] T. Liu and M. Martonosi., “Impala: A middleware systerarfmanaging autonomic, parallel sensor systems,”AGM S GPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP’03), June 2003.

[11] V. Shoup,A Computational Introduction to Number Theory and Algebra, Cambridge University Press, 2005.

[12] D. Starobinski, W. Xiao, X. Qin, and A. Trachtenberg, éar-optimal data dissemination policies for multi-chdnsmgle radio wireless
sensor networks,” iINEEE INFOCOM, 2007.

