
1

Identifying Codes and Covering Problems
Moshe Laifenfeld and Ari Trachtenberg

Abstract

The identifying code problemfor a given graph involves finding a minimum set of vertices whose neighbor-
hoods uniquely overlap at any given graph vertex. Initiallyintroduced in 1998, this problem has demonstrated
its fundamental nature through a wide variety of applications, such as fault diagnosis, location detection, and
environmental monitoring, in addition to deep connectionsto information theory, superimposed and covering codes,
and tilings. This work establishes efficient reductions between the identifying code problem and the well-known set-
covering problem, resulting in a tight hardness of approximation result and novel, provably tight polynomial-time
approximations. The main results are also extended tor-robust identifying codes and analogousset (2r + 1)-
multicoverproblems. Finally, empirical support is provided for the effectiveness of the proposed approximations,
including good constructions for well-known topologies such as infinite two-dimensional grids.

Index Terms

Identifying codes, robust identifying codes, hardness of approximation, set cover, test cover, distributed algo-
rithms.

A version of this paper is scheduled to appear as:
• M. Laifenfeld and A. Trachtenberg, “Identifying Codes and Covering Problems”, IEEE Transactions

on Information Theory, September 2008.

I. I NTRODUCTION

An identifying code is a subset of vertices in a graph with theproperty that the (incoming) neighborhood
of any vertex has a unique intersection with the code. For example, a three dimensional cube (as depicted
in Figure 1) has a three-vertex identifying code (labeled{1, 2, 3} in the figure). The neighborhood of each
vertex in the graph intersects uniquely with this code, and such an intersection is called anidentifying
set1; given an identifying set, one can thus uniquely identify the vertex in the graph that produced it. In
this case, the code provided is also optimal, because one needs at leastlg 8 = 3 code vertices to produce
8 distinct identifying sets (corresponding to the8 vertices of the cube).2 The goal of theidentifying code
problemis to find an identifying code of minimum cardinality for any given graph.

Identifying codes have been studied extensively since their introduction in 1998 [1], and they have
formed a fundamental basis for a wide variety of theoreticalwork and practical applications.

This work was supported in part by the National Science Foundation under grants CCR-0133521, CNS-0435312 and CCF-0729158, and in
part by DTRA grant HDTRA1-07-1-0004. The material was presented in part at the 44th Allerton Conference on Communication, Control,
and Computing, September 2006.

The authors (moshel@bu.edu and trachten@bu.edu, respectively) are with the department of Electrical and Computer Engineering, Boston
University, Boston MA 02215. The first author is also with thedepartment of Aeronautics and Astronautics, Massachusetts Institute of
Technology, Cambridge MA 02139.

1Unlike traditional identifying codes, the empty set is considered a valid identifying set here.
2As is common, we use the notationlg(x) to denotelog2(x).

2

0

1

2

3

4

5

6

7

{1,2}

{0,1}

{0,1,2}

{0,2}

{ }

{2}

{0}

{1}

Fig. 1. Identifying code example. Solid vertices representthe code{1, 2, 3}. The unique intersections of the vertices neighborhoods with
the code (identifying sets) appear in braces.

1) Applications: The initial application for identifying codes was to fault diagnosis in multiprocessor
systems [1]. In this application, testers are positioned inthe system according to an identifying code so
that faults can be localized to a unique processor by considering only which testers detect faults within
their neighborhood [1].

Identifying codes have since been extended and applied to location detection in hostile environments [2–
4], to energy balancing of such systems [5], and to dynamic location detection agents [6]. In the first
example, a coverage area is quantized into a finite number of clusters. In the mathematical model, the set
of clusters corresponds to vertices in a graph, and edges represent averaged radio connectivity between
clusters. Beacons are then placed in the clusters accordingto an identifying code, allowing a user traversing
the coverage area to detect her location (cluster) according to the set of beacons she receives.

More recently, these codes were extended to applications for environmental monitoring [7], and joint
monitoring and routing in wireless sensor networks [8]. In the former, sensors are placed in a subset of
junctions of a utility network such as an air ventilation system, a water supply network, or a river bed, etc,
in order to detect pollutants. Based on the timing and natureof the sensors’ reports, a centralized processor
is able to detect and determine the pollution source. The problem of placing the smallest number of sensors
was found to be a variant of the identifying code problem [9].For wireless networks, the identification
property of identifying codes was used to uniquely label sensors in a network, providing natural means
of routing on top of the traditional monitoring functionality [8].

2) Theoretical connections:From a theoretical perspective, identifying codes are closely linked to error-
correcting codes, specifically, super-imposed codes [1, 10], covering codes [1, 6], and locating-dominating
sets [11]. The intimate relationship between identifying codes and super-imposed codes was initially
pointed out in [1] and further developed in [10, 12–14], providing optimal constructions and tight bounds
on code size. Locating-dominating sets are very similar to identifying codes with the subtle difference
that only the vertices not in the locating-dominating set are required to have unique identifying sets [15].
Unlike identifying codes, every graph admits a trivial locating-dominating set - the entire set of vertices.
Links to other well-studied problems can be found in the literature: to the 3-satisfiability problem in [16],
to the set cover problem in [9, 17], to the dominating-set andalarm placement problems in [18, 19], and
to the set multicover and test cover problems in [9]. The testcover problem is, in fact, a generalization
of the identifying code problem, and some of its results apply throughout.

Many variants of identifying codes have emerged since they were first introduced. In radius(ρ > 1)
identifying codes [1], the neighborhood ofv is redefined to include all vertices at distance≤ ρ from v. The
(1,≤ l)-identifying codes [10, 13] can simultaneously identify any subset of at mostl vertices. Dynamic
identifying codes are identifying codes whose codewords form a walk through the graph. This variant
was studied in [6] with applications to dynamic agents for fault detection in multiprocessor arrays.Robust
identifying codes were suggested in [4] for applications oflocation detection in harsh environments, where

3

vertices and connecting edges are likely to fail. Intuitively, an r-robust identifying code is a code that
maintains its identification property in the event of a removal or insertion of up tor different vertices
from all identifying sets. In the example of Figure 1, the setof all vertices forms a 1-robust identifying
code for the cube. The observation thatr-robust identifying codes are error correcting codes of minimum
Hamming distance of2r + 1 was made in [4]. Theoretical bounds closely related to covering codes, and
some efficient constructions for periodic geometries were further developed in [6]. Finally, the source
identification problem, a variant through which the source of pollutant (traveling according to a given
graph) is to be identified, has been shown to be NP-complete for both the general version [9] and a
time-constrained version [7].

3) Approximating the optimal identifying code:In the most general situation, finding a minimum size
identifying code for arbitrary undirected and directed graphs was proven to be NP-complete in [16, 20],
based on a reduction from the 3-satisfiability problem [21].An exception to this result is the specific case
of directed [22] and undirected trees, for which there exists a polynomial-time algorithm for finding a
minimum radius1 identifying code.

Significant efforts in the research of identifying codes andtheir variants have focused on finding efficient
constructions in two dimensional lattices, grids and Hamming spaces (see [12, 23–26], and [6] for a sum-
mary of recent results). Until recently, little has been published towards a polynomial time approximation
algorithm for arbitrary graphs. In [2, 4] a polynomial-timegreedy heuristic and its distributed variant were
suggested for obtaining an identifying code in an arbitrarygraph, and simulations showed it to work well
over random graphs. Unfortunately, no guarantees for the quality of the obtained solution were presented,
and Moncel later proved in [27] that no such guarantees exist.

Independently and in parallel, several groups have been looking into the question of approximability of
identifying codes [9, 17, 18], obtaining polynomial-time approximations within anO(log |V |) factor of the
optimal solution. In [18] the authors tied identifying codes to the dominating set problem, thereby showing
that, under common complexity assumptions, approximatingidentifying codes within a sub-logarithmic
factor is intractable. More precisely, it has been shown that identifying codes can be approximated within
O(log |V |) factor, but they can not be approximated in polynomial time within 1 + α log |V | factor for
someα > 0. In our initial work [9], we have provided an explicit value for α by demonstrating that
identifying codes are not approximable within aln |V | factor unless NP⊂ DTIMElog log |V |; our result
is based on a reduction from the set cover problem, and we use it to carry over the hardness result of
Feige [28]. In this paper we further show that this bound is tight by adapting an algorithm developed by
Berman et al. in [29] that attains this bound within a small additive constant. Using our reduction and
with some additional work, other set cover hardness results(e.g., [30]) may also be applied, obtaining
related, but distinctly different, results. We also address the approximability of robust identifying codes
by establishing a link to the set multi-cover problem.

A. Contributions

The main contribution of this work is to provide good polynomial time approximations to the identifying
code problem, and to address the fundamental theoretical limits of such approximations. Specifically, we
show that no polynomial-time algorithm can approximate identifying codes onarbitrary graphswithin a
ln |V | factor under commonly used complexity assumptions. Moreover, we show that a known test covering
approximation [29] can be adapted to find identifying codes whose size is within a1 + ln |V | factor of
optimal. The same fundamental questions were researched byothers in parallel and independently [17,
18] providing similar, but weaker, results.

Our second contribution in this work is to provide good approximations to the robust identifying codes
problem by tying it to the set multicover problem. Our approximation is guaranteed to produce robust
identifying codes that are within a factor of 2 of the theoretical limit. We also develop two flavors of
distributed algorithms that may be used for practical implementations in network applications.

4

B. Organization

The rest of the paper is organized as follows: We give formal definitions of the identifying code and
the set cover problems in Section II. In Section III, we show areduction from the set cover problem.
In Section IV, we provide anO(log n)-approximation algorithm for the identifying code problem, based
on our reduction, and we show that this approximation ratio is tight. We then generalize this result in
Section V, providing a hardness of approximation result forthe identifying code problem, together with an
approximation (based on [29]), which attains this bound up to a small additive constant. In Section VI, we
discuss robust identifying codes and provide an approximation based on their relation to the set multi-cover
problem. Finally in Section VI, we provide distributed implementations of our approximation algorithm,
in addition to simulations results on random graphs and grids.

II. FORMAL DEFINITIONS AND RELATED WORK

A. Identifying codes

Given a directed graphG = (V,E), the incoming ballB+(v) consists of vertices that have an edge
directed towardsv ∈ V , together withv; likewise, theoutgoing ballB−(v) consists of vertices that have
an edge directed away fromv, together withv. For undirected graphs, we shall simply use the notation
B(v) = B+(v) = B−(v).

As such, an identifying code is a set of vertices in a graphG with the property that any incoming ball
in G has a unique intersection with the identifying code. More precisely, a non-empty subsetC ⊆ V is
called acodeand its elements arecodewords. For a given codeC, the identifying setIC(v) of a vertex
v is defined to be the codewords directed towardsv, i.e., IC(v) = B+(v) ∩ C (if C is not specified, it is
assumed to be the set of all verticesV). A codeC is thus anidentifying codeif each identifying set of
the code is unique, or in other words∀u, v ∈ V u = v ←→ IC(u) = IC(v). Note that this definition
does not include the standard assumption (which we will makein Section VI) that all identifying sets are
non-empty.

1) Random graphs:Recently, random graphs and random geometric graphs were studied in the context
of identifying codes [14, 31]. In [14] it was shown that for asymptotically large random graphs, any subset
of a certain threshold size (logarithmic in the size of the graph) is almost surely an identifying code. It
was also shown that the threshold is asymptotically sharp,i.e., the probability of finding an identifying
code of slightly smaller size asymptotically approaches zero. Unit disk geometric random graphs, in which
vertices are placed on a two-dimensional plane and connected if their distance is less than some unit,
were studied in [31]. There it was shown that, unlike large random graphs, most of the large unit-disk
geometric random graphs do not possess identifying codes.

In contrast to very large random graphs, finding a minimum size identifying code for arbitrary undirected
and directed graphs was proven to be NP-complete in [16, 20],based on a reduction from the 3-satisfiability
problem.

2) Approximations:An initial attempt to develop a polynomial-time approximation was made in [2, 4].
Although the approximation worked well over random graphs it was later proven in [27] to have no general
guarantees for the quality of the obtained solution. More recently, several groups have been independently
looking into the question of approximability of identifying codes and dominating - locating sets [9, 17,
18], providing hardness of approximation results and polynomial time algorithms that approximate the
optimal identifying code within aO(log |V |) factor.

B. Covering problems

1) Set cover:Let U be a base set ofm elements and letS be a family of subsets3 of U. A cover
C ⊆ S is a family of subsets whose union isU. Theset cover problemasks to find a coverC of smallest
cardinality. The set cover problem is one of the oldest and most studied NP-hard problems [21]. It admits

3The term “family of subsets” is used to refer to a set of subsets

5

the following greedy approximation: at each step, and untilexhaustion, choose the heretofore unselected
set inS that covers the largest number of uncovered elements in the base set.

The performance ratio of the greedy set cover algorithm has also been well-studied. The classic results
of Lovasz and Johnson [32, 33] showed thatsgreedy/smin = Θ(ln m), wheresmin and sgreedy are the
minimum and the greedy covers, andm is the size of the base set. Later Slavik [34] sharpened this ratio
further, reaching a difference of less than1.1 between the lower and upper bounds on the performance
ratio. Recent studies on the hardness of approximation of the set cover problem can be found in [28, 30].
Raz and Safra [30] showed that the set cover problem is NP-hard and that it can not be approximated
by a polynomial algorithm within aO(log m) factor from an optimal solution unless P=NP. A tighter
result was obtained by Feige [28] who showed that for anyǫ > 0, no polynomial-time algorithm can
approximate the minimum set cover within(1 − ǫ) ln m factor unless NP has deterministic algorithms
operating in slightly super-polynomial time,i.e., NP⊂ TIME

[

mO(log log m)
]

, suggesting that the greedy
approach is one of the best polynomial approximations to theproblem.

2) Multicover: The minimum setk-multicoverproblem is a natural generalization of the minimum set
cover problem, in which one is given a pair(U,S) and seeks the smallest subset ofS that covers every
element inU at leastk times (we defer more formal definitions to section VI). Oftenthis problem is
addressed as a special case of a more general family of integer optimization problems - thecovering
integer problem[35, 36].

The set multicover problem admits a similar greedy heuristic to the set cover problem: in each iteration
select the set which covers the maximum number of nonk-multicovered elements. It is well known [36]
that the performance guarantee of this heuristic is upper bounded by1 + log α, whereα is the largest
set’s size.

3) Test cover:Another closely related problem is thetest cover problem. This problem asks to find
the smallest setT of given testsTi ⊂ U such that any pairx, y ∈ U is differentiated by at least one test
Ti ∈ T (i.e., |{x, y} ∩ Ti| = 1). The test covering problem appears naturally in identification problems,
with roots in an agricultural study more than 20 years ago, regaining interest recently due to applications
in bioinformatics [37, 38].

Garey and Johnson [39] showed the test cover problem to be NP-hard and later Moret and Shapiro [40]
suggested greedy approximations based on a reduction to theset cover problem. More recent work [37,
38] studied different branch-and-bound approximations and established a hardness of approximation by
extending the reduction in [40], and using a result of Feige [28]. Berman et al. [29] also suggested a novel
greedy approximation and showed its performance ratio to bewithin a small constant from the hardness
result of [38].

The test cover is clearly a general case of the identifying code problem, with tests corresponding to
outgoing balls, and as such many of its results can be applieddirectly e.g., [29]. Other results, such as
the hardness of approximation, require some work due to the dependencies imposed by graph geography
on nearby identifying sets. As such, the approach we use in Section IV bears some clear similarities to
that of [37].

III. I DENTIFYING CODES AND THE SET COVER PROBLEM

In this section, we establish a reduction between the identifying codes and the set cover problems. This
reduction will serve as a basis for our subsequent approximation algorithms.

Formally, we connect the following problems:
a) SET-COVER:

INSTANCE: SetS of subsets of a base setU .
SOLUTION: A set S ′ ⊆ S such that∪s∈S′s = U .
MEASURE: The size of the cover:|S ′|.

6

b) ID-CODE:
INSTANCE: GraphG = (V, E).
SOLUTION: A set C ⊆ V that is an identifying code ofG.
MEASURE: The size of the identifying code:|C|.

A. ID-CODE≤P SET-COVER

We first show a reduction from the minimum identifying code problem to the set cover problem. We
state the main theorem first and then we provide several definitions and lemmas that are used in its proof.

Theorem 1 Given a graphG of n vertices, finding an identifying code requires no more computations
than a set cover solution over a base set ofn(n−1)

2
elements together withO(n3) operations (scalar

multiplications, additions, or comparisons) on lengthn binary vectors.

Intuitively, the reduction to a(U,S) set cover problem is established by settingU to contain all pairs
of distinct vertices andS = {Sv∈V } to be the set ofSv subsets that contain all pairs such thatv is in the
incoming ball of exactly one of them. We start with some notation and formal definitions to bootstrap the
reduction.

Definition 1 The difference setD(u, v) is defined to be the symmetric difference between the incoming
balls of verticesu, v ∈ V :

D(u, v)
.
= B+(u)⊕ B+(v)

=
[

B+(u)−B+(v)
]

∪
[

B+(v)−B+(u)
]

,

where subtraction denotes set difference. We shall also denote byDC(u, v) the intersection of the codeC
with D(u, v), namelyDC(u, v) = D(u, v) ∩ C.

It is easy to see thatDC(u, v) is the symmetric difference between the identifying sets ofvertices
u, v ∈ V , namely

DC(u, v) = IC(u)⊕ IC(v).

We shall also useU to denote the set of all pairs of distinct vertices,i.e., U = {(u, z)|u 6= z ∈ V }.
Finally, thedistinguishing setof a vertexv ∈ V is the set of vertex pairs(u, z) for whichv is a member

of their difference set:
δv = {(u, z) ∈ U | v ∈ D(u, z)}.

Note that the distinguishing set is independent of the codeC.
The following Lemma follows trivially from the definition ofan identifying code.

Lemma 1 A codeC is an identifying code iff∅ 6∈ {DC(u, z)|(u, z) ∈ U }.

Alternatively, we can define an identifying code in terms of distinguishing sets.

Lemma 2 C is an identifying code iff the family of the distinguishing sets of its vertices coversU =
{(u, z) ∈ V 2 |u 6= z}.

Proof: From Lemma 1 forC to be an identifying code all difference sets should have at least one
member. From the definition of distinguishing sets it then follows that for any(u, v) ∈ U there exists
somec ∈ C such that(u, v) ∈ δc. Hence

⋃

c∈C
δc = U . The other direction follows similarly.

Proof of Theorem 1: Consider the following construction of an identifying code.
ID(G)→ C.
1) Compute the identifying sets{I(u) | u ∈ V }.

7

2) Compute the distinguishing sets∆ = {δu |u ∈ V }.
3) ComputeC← Minimum− Set− Cover(U , ∆).
4) OutputC ← {u ∈ V | δu ∈ C}, i.e., vertices corresponding to distinguishing sets in the minimum

cover.
The resulting code,C, is guaranteed by Lemma 2 to be an identifying code, and the optimality of the
set cover in step 3 guarantees that no smaller identifying code can be found. To complete the proof, we
observe that computing the identifying setsI(u) naively requiresΘ(n2) additions of binary vectors, and
computing∆ requiresn operations for each of then(n−1)

2
elements in|U |.

As a simple example of the construction behind Theorem 1, consider the graph in Figure 1. The
identifying sets and distinguishing sets of the vertices are:

v ∈ V I(v) δv

0 {0,1,2,4}{(0,3),(0,5),(0,6),(0,7),(1,3),(1,5),. . .}
1 {0,1,3,5}{(0,2),(0,4),(0,6),(0,7),(1,2),(1,4),. . .}
2 {0,2,3,6}{(0,1),(0,4),(0,6),(0,7),(1,0),(1,2),. . .}
3 {1,2,3,7}

4 {0,4,5,6}
...

5 {1,4,5,7}
6 {2,4,6,7}
7 {3,5,6,7}

The corresponding set-cover problem would be taken over a base set{(u, z)|0 ≤ u 6= z ≤ 7} and
subset family consisting of all theδv in the table.

B. SET-COVER≤P ID-CODE

We next reduce an identifying code problem to a set cover problem.

Theorem 2 Given a base setU of m elements and a family of subsetsS of cardinality s = |S|, finding
the optimal set cover requires no more computation than finding an identifying code over a directed graph
of n ≤ 2 max(s, m + 1) + lg(m + 1) vertices with additionalO(m + s) operations.

The following version of this theorem for undirected graphswill be presented in Section V.

Corollary 1 Finding an optimal set cover with a base set of at least 4 elements, requires no more
computation than finding an identifying code over anundirectedgraph of 2m + max(s,m + 1) ≤ n ≤
3m + max(s,m + 1) vertices with additionalO(ms2) operations.

To prove Theorem 2, we first provide and analyze a construction of a specific directed graph (that will
be used in the reduction) from an instance of the set cover problem.

Construction 1 Let U = {u1, ..., um} be a base set andS = {S1, ...,Sm+1} be a family of subsets of
U. Then we construct a directed graphG(V, E) with n = 2m + 1 verticesV = {v1, . . . , vn} and edges
E such that

1) The outgoing ball of each vertexv1 . . . vm+1 is constructed to be

B−(vi) =

{

f(Si) if ui ∈ Si

V − f(Si) otherwise.
(1)

where the one-to-one mappingf : U → V is defined byf(ui) = vi for all i ≤ m and f(S) =
∪u∈Sf(u).

8

U v{= 1 v , 2 v , 3 S } 1 v{= 1 S ,} 2 v{= 1 v, 2 S ,} 3 v{= 2 S ,} 4 v{= 1 v, 3}

v1

v2

v3

v5

v6

v7

v4

v{ 1 v , 2 v , 3 v, 5}

v{ 2 v , 4 v, 6}

v{ 3 v , 7}

v{ 3 v , 4}

v{ 3 v , 4 v, 5}

v{ 3 v , 4 v, 6}

v{ 3 v , 4 v, 7}

Fig. 2. An example of our reduction framework. Incoming balls are noted near their corresponding vertices.

2) The outgoing balls of the remaining verticesvm+2 . . . vn are constructed to be:

B−(vi) = {vi, vi−m−1}.

We next provide several properties of an arbitrary identifying codeC for the graphG(V,E); it might be
useful to refer to Figure 2, which demonstrates our construction on a simple example, when reading these
properties. Recall that we use the notationD(vi, vj) to denote the difference set of the pair(vi, vj) ∈ V ,
and the notationδvi

to denote the distinguishing set of vertexvi. We introduce as additional notation the
set
←→
U = {(vi, vi+m+1) | i ≤ m} and corresponding operator

←→
δ = δ ∩

←→
U .

Property 1 Any identifying code ofG(V, E) must contain all verticesvm+2 . . . vn.

Property 2 For all k ≥ m + 2, the distinguishing set
←→
δvk

is empty.

Property 3 C is an identifying code if and only if{vm+2 . . . vn} ⊆ C and {
←→
δvi
| i ≤ m + 1 and vi ∈ C}

is a cover of
←→
U .

Proof of Properties 1-3: By constructionB+(vm+1) does not contain any vertex of index larger than
m+1, namelyB+(vm+1)∩{vm+2, ..., vn} = ∅. For the rest,i.e., j ≤ m+1, vj is in B+(vm+1) if and only
if vj ∈ B+(vi) for all i ≥ m + 2. It follows that the difference setsD(vm+1, vi) = {vi} for all i ≥ m + 2.
To complete the proof of Property 1 we use Lemma 2 that impliesthat{vi|i ≥ m+2} must be contained
in any identifying codeC .

Property 2 is straightforward.
To prove the forward direction of Property 3, note that Lemma2 implies that

←−→
δv∈C covers

←→
U . However,

Property 2 gives that
←→
δvk

= ∅ for all k > m + 1, and what remains, together with Property 1 completes
this direction of the proof.

For the converse direction, we show that the latter two conditions in the property statement imply that
all difference sets are non-empty, so that Lemma 1 applies toshow thatC is an identifying code. We
first considerDC(vi, vj) where (vi, vj) ∈

←→
U ; for such pairs in

←→
U , our construction provides thatvi is

either in the identifying setIC(vi) or else inIC(vj), so thatDC(vi, vj) 6= ∅ for all (vi, vj) ∈
←→
U . For pairs

(vi, vj) 6∈
←→
U and allC , we observe that

D(vi, vj) ∩ {vm+2, ..., vn} 6= ∅, (2)

by considering two possibilities fori (assumed< j without loss of generality): (i)i ≤ m, whereinIC(vi)
containsvi+m+1 andIC(vj) cannot; or (ii)j > m + 1, whereinIC(vj) containsvj andIC(vi) cannot.

9

Note that Property 3 produces a one-to-one correspondence between identifying codes and set covers
using distinguishing sets, so that, in fact, a minimum identifying code produces a minimum set cover. We
next make use of this property to relate identifying codes tothe original subsetsS.

The family of distinguishing sets{
←→
δvi
|i ≤ m + 1} over the support

←→
U is equivalent to the original

family of subsetsS over the supportU. We use this to develop the following lemma.

Lemma 3 C is an identifying code ofG(V,E) if and only if {vm+2 . . . vn} ⊆ C and {Si | vi ∈ C, i ≤
m + 1} is a set cover of(U,S).

Proof: Based on Property 3, all we need to show is that there is a one-to-one mapping between the
family of distinguishing sets{

←→
δvi
|i ≤ m + 1} over the support

←→
U and the original family of subsetsS

over the supportU. In the following the indicesi, j are taken to bei ≤ m+1, andj ≤ m. By construction
if uj /∈ Si then verticesvj and vj+m+1 are either both in or both not inB−(vi) . Otherwise ifuj ∈ Si

then only one of them is inB−(vi). It follows that (vj, vj+m+1) ∈ δvi
if and only if uj ∈ Si, completing

the proof.

Proof of Theorem 2: Given a base setU of sizem and a family of subsetsS of sizes, we trivially
produce setsU′ and S ′ that fit Construction 1 as follows: (i) ifs < m + 1, thenU

′ is derived fromU

by padding it withx new items, wherex is the smallest integer satisfyingm + x + 1 ≤ s + 2x, andS ′ is
derived fromS by addingm+x+1−s distinct subsets of these new items (note thatx < 1+lg m+1); (ii)
otherwise,U′ is derived fromU by padding it withs− 1−m new items, and these items are also added
to each set inS to form S ′. Lemma 3 then assures that a minimum identifying code of the generated
graph corresponds to a minimum set cover of(U, S).

IV. A PPROXIMATING THE

OPTIMAL IDENTIFYING CODE

Given a base setU of sizem and a family of subsetsS, there is a well-known greedy approximation
of the optimal resulting set cover. This polynomial-time algorithm repeatedly picks (until exhaustion) an
unused set inS that covers the largest number of remaining elements ofU. The performance ratio of this
algorithm was shown by Slavik [34] to be

sgreedy

smin
= lnm− ln lnm + Θ(1), (3)

wheresmin andsgreedy represent the minimum and greedily produced set covers, respectively.
The reduction in Theorem 1 thus provides a straightforward method of translating the greedy set covering

algorithm into the greedy identifying code construction inAlgorithm 1.

Algorithm 1 Greedy ID-codeID− GREEDY(G)

We start with a graphG = (V, E). The greedy set cover approximation is denotedSC− GREEDY(U,S).

ID− GREEDY(G)→ Cgreedy

1. Compute{I(u)|u ∈ V }.
2. Compute∆ = {δu|u ∈ V }.
3. C← SC− GREEDY(U, ∆)
4. OutputCgreedy ← {u ∈ V | δu ∈ C}

The remainder of this section is devoted to proving that the reduction in Theorem 1 is tight enough
to maintain the approximation guarantees of the set cover solution. This result is formalized with the
following theorem.

10

Theorem 3 There exists a non-negative constantc1 such that, for every graphG of n vertices,
cgreedy

cmin
< c1 ln n,

wherecmin and cgreedyare the sizes of the minimum and greedy identifying codes, respectively.
Furthermore, there exists a non-negative constantc2 < c1 and a family of graphs for which

cgreedy

cmin
> c2 ln n.

The upper bound of Theorem 3 follows from the fact that the transformation in Theorem 1 maps
identifying codes onn vertices to set covers over base sets of sizen(n−1)

2
. As such, since the greedy set

cover algorithm has an approximation guarantee of
sgreedy

smin
< c′1 ln m, we have that

cgreedy

cmin
< c′1 ln

n(n− 1)

2
< 2c′1 ln n. (4)

We will prove the lower bound of the theorem by providing a specific example that attains it in Section IV-
B and thereafter.

As a basis for the lower bound example, we first provide some definitions and technical lemmae.

A. Groundwork for the lower bound

The following lemma will be instrumental in our lower bound construction.

Lemma 4 Consider a collection4 of cardinality m of non-empty sets,M = [M1, ...,Mm], over a base
set U = {u1, . . . , uk} of size lg(m) + 2 ≤ k ≤ m. Then there is a family of2m different subsets
I = {I1, ..., I2m} such that:

• ui ∈ Ii for all i ≤ k, and
• Mi = Ii ⊕ Ii+m for all i ≤ m.

Proof: Our proof constructively generatesI. We start by considering the first set inM1 and arbitrarily
adding toI a pair of setsI1 andI1+m whose symmetric difference isI1⊕I1+m = M1. Note that there are
at least2lg(m)+1 ≥ 2m such pairs, since the first set in the pair can be any subset of the base set containing
u1, and the second set in the pair would thus be determined uniquely by the desired symmetric difference.
As such, we can safely continue to addm distinct pairs of sets inI with the property thatI2i⊕I2i+1 = Mi.

For expediency, we shall henceforth assume, without loss ofgenerality, that the elements ofI are
arranged so thatIi ⊕ Ii+m = Mi for all i ≤ m.

B. Lower bound construction

We now develop the construction that will provide our desired approximation lower bound. Our
construction transforms certain instances of the set coverproblem into an identifying code problem.
The salient point of the construction is that it provides an explicit link between the cardinalities of the
minimum (or greedy) set covers in one problem and the minimum(or greedy) identifying codes in the
other problem. We shall then make use of an existing result inthe literature to show that the desired set
cover instances exist. The construction is followed by a detailed example.

Construction 2 Let (U = {u1, ...um},S = {S1, ...S2m−k}) be a set cover problem. Furthermore, letSmin,
Sgreedy, smin, andsgreedybe a minimum and greedy set covers and their corresponding cardinalities, and

4We use the term “collection” to represent a multiset, whose contents can have multiplicities. The contents of a collection are enclosed in
square brackets,e.g., [1, 1, 3, 2, 2].

11

assume thatm = 2k and smin ≥ k + 2. Without loss of generality, assume that the subsetSmin appears
first in S, namelySmin = {S1, ...,Ssmin

}.
We then generate a graphG from (U,S) as follows. The graph will haven = 2m vertices, with vertex

vi corresponding to setSi for i ≤ m. To determine the edges of the graph, we shall make use of two
collections:

• M = [Mi] is the collection ofm sets defined byMi = {vj |Sj ∈ Smin and ui ∈ Sj}.
• M = [Mi] is the collection ofm sets such thatMi = {vj |Sj /∈ Smin and ui ∈ Sj}.

Provided thatk > 1, Lemma 4 implies the existence of the set:
• I = {Ii} having2m distinct sets over the support{v1, ..., vsmin

} such that:
– Ii ⊕ Ii+m = Mi for all i ≤ m, and
– vj ∈ Ij for all j such thatSj ∈ Smin.

We can also simply generate the following list:
• I = [Ii] having2m sets over the support{vsmin+1, ..., v2m−k} such that:

– Ii ⊕ Ii+m = Mi for all i ≤ m, and
– vj ∈ Ij for all j such thatSj 6∈ Smin.

This is done by settingIi = ∅ andI i+m = Mi for i ≤ m, and then toggling the existence ofui andui+m

in setsIi and Ii+m so as to satisfy the stated properties.
The edges ofG are then defined in terms of the incoming balls of its vertices:

B+(vi) = Ii ∪ Ii ∪ pi−1 (mod m) (5)

wherepi are uniquely chosen subsets over the support{v2m−k+1 . . . v2m} ensuring that all balls include
the vertices themselves,i.e., vj ∈ B(vj) for j ≥ 2m− k + 1. This can be done by choosing the(i + 1)-th
set in the power setP ({v2m−k+1 . . . v2m}), where the power set elements are ordered so that them− j-th
set containsvm−j for j ≤ k.

C. Example of Construction 2

Consider the base setU = {u1, u2, u3, . . . u8} and the set

S = {{u1, u2}, {u4, u3}, {u5, u6}, {u1, u7}, {u1, u8},

{u2, u3}, {u4, u5}, {u1}, {u2}, {u3},

{u4}, {u5}, {u6}}

In the terminology of Construction 2, we havek = 3, m = 8, and it is clear that the smallest set covering
for (U,S) is of sizesmin = 5 because (i) the sets{u1, u7} and{u1, u8} are the only sets containingu7

andu8 and, thus, must be in a set cover; and (ii) after including these sets, there remain five base elements
that must be covered, but no set contains more than two elements (i.e., at least three additional sets are
needed).Smin = {{u1, u2}, {u4, u3}, {u5, u6}, {u1, u7}, {u1, u8}} is an example of an optimal set cover.

We then generate a graphG = (V, E) corresponding to this set cover problem, with2m vertices
v1 . . . v2m. Following the construction, we first compute the collectionsM andM to be:

M = [{v1, v4, v5}, {v1}, {v2}, {v2}, {v3}, {v3}, {v4},

{v5}]

M = [{v8}, {v6, v9}, {v6, v10}, {v7, v11}, {v7, v12},

{v13}, ∅, ∅].

Intuitively, the i-th set inM represents the sets that cover the base elementui in the minimum set cover,
whereas thei-th set inM represents the sets that coverui but are not in the minimum set cover.

12

M(U,S) =































































I I P
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

v1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
v2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
v3 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
v4 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1
v5 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0
v6 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1
v7 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0
v8 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1
v9 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0
v10 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1
v11 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0
v12 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1
v13 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0
v14 1 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1
v15 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0
v16 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1































































Fig. 3. The adjacency matrix of a graphG(U,S) from Construction 2.

Utilizing Lemma 4, we also construct the setI and the collectionI:

I = { {v1}, {v2}, {v2, v3}, {v2, v4}, {v3, v5},

{v1, v3, v4}, {v1, v4, v5}, {v1, v2, v3, v5},

{v4, v5}, {v1, v2}, {v3}, {v4}, {v5},

{v1, v4}, {v1, v5}, {v1, v2, v3} }

I = [{v9}, {v10}, {v11}, {v12}, {v13}, {v6}, {v7},

{v8}, {v8, v9}, {v6, v9, v10}, {v6, v10, v11},

{v7, v11, v12}, {v7, v12, v13}, {v6, v13}, {v7},

{v8}].

Note thatI andI are not unique, in the sense that there is a variety of such collections that are consistent
with the construction.

Finally, applying (5) with the power set

P ({v14, v15, v16}) = {p0, ..., p7}

= {∅, {v16}, {v15}, {v15, v16},

{v14}, {v14, v16}, {v14, v15},

{v14, v15, v16}}

provides the edges of the graph in terms of incoming balls of vertices, the first few of which are:

B+(v1) = {v1, v9}

B+(v2) = {v2, v10, v16}

B+(v3) = {v2, v3, v11, v15}

13

It is easier to conceptualize the graph in terms of its adjacency matrix, as depicted in Figure 3. In
this matrix, each row represents the incoming ball of a vertex. We shall prove with Properties 1- 3 that
cmin = smin andcgreedy= sgreedy+k for this graph, wherecmin andcgreedyare the minimum and greedy
identifying code cardinalities forG(U,S).

D. Lower bound

We next provide some properties of Construction 2 that will be crucial in completing the proof of the
lower approximation bound of Theorem 3. Here

←→
U = {(vi, vm+i)|i ≤ m}, and recall that

←→
δ = δ ∩

←→
U .

Property 4 Given a set cover problem(U,S) with |U| = 2k = m, |S| = 2m − k, and smin ≥ k + 2,
Construction 2 produces a graphG with the following properties:

1) The verticesVmin = {v1, ..., vsmin
} associated withSmin form an identifying code ofG = (V, E).

More precisely,Vmin contains exactly verticesvi, wherei is such thatSi ∈ Smin.
2) The distinguishing sets of̂V = {v2m−k+1, ..., v2m} ⊆ V cover all pairs of distinct vertices except
←→
U . More precisely,

⋃

i∈{2m−k+1...2m} δvi
=

{(vu, vz) | z 6= u + m and 1 ≤ u < z ≤ 2m}.

3) The modified set cover problem(
←→
U , {
←→
δv1

. . .
←−−→
δv2m−k

}) is equivalent to the original problem(U,S).

As such, the functionf :
←→
U −→ U wheref ((vi, vi+m)) = ui has the property that

f(
←→
δvi

) = Si,

with the usual understanding thatf(S) = ∪s∈Sf(s). Note that this also provides an equivalence
between covers in the modified problem and covers in the original problem.

It may be beneficial to refer to Figure 3 while reading the proof.
Proof: The first property follows from the fact that, by design, the sets inI are all different, meaning

that the symmetric difference ofB+(vi) ∩ Vmin andB+(vj) ∩ Vmin is non-empty for all distinct vertices
vi andvj . Lemma 1 thus implies thatVmin is an identifying code.

To prove the second property, note that, by construction,B+(vi) ∩ V̂ is unique for every1 ≤ i ≤ m,
and similarly for everym + 1 ≤ i ≤ 2m. In fact, only forj = i + m is B+(vi)∩ V̂ = B+(vj)∩ V̂ , hence
proving the property.

To prove the third property, we note that, by definition,(vj , vj+m) ∈
←→
δvi

means thatvi ∈ D(vj, vj+m).
By construction the supports ofI andI are disjoint, and their union is{v1, . . . , v2m−k}. Furthermore, by
the construction ofI (andI), (vj, vj+m) ∈

←→
δvi

if and only if vi ∈Mj (andMj) wherej ≤ m andvi is
taken over the support ofI (I). Therefore by the definition ofM andM it follows that (vj , vj+m) ∈

←→
δvi

if and only if uj ∈ Si, completing the proof. Note that this property can be extended to the set of all
distinguishing sets,i.e., {

←→
δv1

. . .
←−−→
δv2m−k

}, if we allow paddingS of the original set cover problem withk
empty subsets.

For the next property we need some additional definitions. A code C is said to be a partial code if
C ⊂ C is not an identifying code. Any partial codeC partitions the set of vertices into indistinguishable
subsets,{INDISTi(C)}, where allv ∈ INDISTi(C) have an identical identifying set.

We also need to make aconsistency assumptionin the implementation ofSC− GREEDY, the greedy set
covering algorithm. Specifically, recall thatID− GREEDY calls SC− GREEDY with a base set{(vi, vj)|i 6=
j} and a family of subsets{δu}. Our assumption, without loss of generality, will thus be that when
SC− GREEDY must choose between subsetsδu andδv, both covering an equal number of uncovered base el-
ements, it will break ties in favor of the first vertex to appear in the precedence list[v2m−k+1, . . . , v2m, v1, . . . , v2m−k].

14

Property 5 Vertices{v2m−k+1, ..., v2m} are guaranteed to appear in the greedy identifying code, ifSC− GREEDY

(in ID− GREEDY) breaks ties in favor of the distinguishing sets that correspond to these vertices.

Proof: In each iteration ofSC− GREEDY (as part ofID− GREEDY) a codeword is added to a partial
code C, which partitions the set of vertices into indistinguishable subsets{INDISTi}. A vertex v /∈ C
distinguishes exactly

∑

i |INDISTi ∩ B−(v)||INDISTi \ B−(v)| undistinguished pairs so far. Clearly this
expression is maximized when|INDISTi ∩ B−(v)| = |INDISTi \ B−(v)| for all i, meaning that the added
codeword partitions each indistinguishable set of vertices into two equally-sized indistinguishable subsets
(i.e., one subset containing the codeword in their identifying set, and the other not). In fact, the partial
codeC = {v2m−k+1, . . . , v2m} exhibits this best-case behavior, in that its vertices, considered one after
another, always split the existing indistinguishable setsexactly in half. As such, assuming ties are broken
in favor of these vertices,SC− GREEDY will always choose the vertices ofC before any other vertex in
our constructed graph.

The following corollary is a direct consequence of Properties 4 and 5.

Corollary 2 The directed graphG generated by Construction 2 has the following properties:
1) cmin = smin, and
2) cgreedy= sgreedy+ k.

Proof: Property 4.1 implies thatcmin ≤ smin. To prove the other direction by Lemma 1 the distinguishing
sets
←−→
δv∈C should cover

←→
U for any identifying code,C. Since by Property 4.3 this set cover problem is

equivalent to the original one, it implies thatcmin ≥ smin, thus proving thatcmin = smin.
Under our consistency assumptionSC− GREEDY breaks ties in favor of the first vertex to appear in

the precedence list[v2m−k+1, . . . , v2m, v1, . . . , v2m−k]. In this way, we are guaranteed (by Property 5) that
ID− GREEDY will first select verticesv2m−k+1 . . . v2m, which under Property 4.2 will leave only|

←→
U | = m

pairs to be covered, and then by Property 4.3 it will select vertices corresponding to a greedy set cover
over the original problem, giving a total ofsgreedy+ k vertices.

We may now conclude the main proof of this section.
Proof of lower bound of Theorem 3: Slavik [34] demonstrated that there exist set cover problems

(U,S) with greedy covers of any sizesgreedyand minimum covers of sizesmin ≥ 2 as long as the size
|U| = m can be lower bounded by the functionN(sgreedy, smin), where

ln N(k′, l) ≤

ln l + 2l−1
2l(l−1)

[

(k′ − l) + (l − 2)
(

1−
(

l−1
l

)k′−l
)]

,

for any k′ ≥ l ≥ 2,

(6)

which can be (weakened and) simplified toln l + k′

l−1
. As such, we can see that, forsgreedy≥ smin ≥ 2,

if
ln m ≥ ln smin +

sgreedy

smin− 1
, (7)

thenm > N(sgreedy, smin), and a corresponding set cover problem exists.
In order to apply Construction 2 to a set cover problem(U,S) produced by Slavik’s construction, we

need to ensure that the construction’s assumptions are satisfied, namely that (i)m = 2k, (ii) smin = k +2,
and that (iii)|S| = 2m−k. In addition, we need the constructed graph to have the property that

cgreedy
cmin

≥

15

c lnn = c lnm + c ln 2 for some constantc in order to have our performance bound; under Corollary 2,

this corresponds to a condition (iv) that
sgreedy+k

smin
= c ln m + c ln 2, which reduces to

sgreedy= ck2 + 2ck + 2c ln 2. (8)

Thus, if we have set cover problems satisfying conditions (i)-(iv), then we can create an identifying code
instance satisfying the lower bound of Theorem 3.

Slavik’s construction trivially satisfies conditions (i) and (ii) since (7) holds for any givenm, smin ≥ 2.
Reconciling (7) with (8), we see that condition (iv) is satisfied whenck2 + 2ck + 2c ln 2 ≤ k2 + (ln 2−
ln(k + 2))k − ln(k + 2), which will clearly hold for any0 ≤ c < 1 whenk is sufficiently large. Finally,
we can transform a set cover problem(U,S) satisfying conditions (i),(ii), and (iv) into a problem(U,S ′)
satisfying (i)-(iv) as follows:

If |S| < 2m− k, then we can padS with empty sets to getS ′ of cardinality2m− k without breaking
Construction 2.

If |S| > 2m− k, then we can takeS ′ = Smin∪ Sgreedywithout violating any conditions. This new set
will have cardinality|S ′| ≤ smin + sgreedy≤ (k +2)+ ck2 +2ck +2c ln 2, which is clearly≤ m for c = 1
and largek.

V. HARDNESS OFAPPROXIMATION

We next manipulate the reductions of Theorem 2 to carry set cover hardness results over to the
identifying code problem. Our work is based on the work of Feige [28] proving that (for anyǫ > 0)
no polynomial-time approximation of set cover can attain a performance ratio of(1 − ǫ) ln m unless
NP⊂DTIME(mlg lg m). Our proof differs from the more general hardness result of[38] for the test cover
problem because of the constraints imposed by the (undirected) graph structure on which identifying codes
are defined (rather than the arbitrary “tests” permitted in the test cover problem).

Theorem 4 For any ǫ > 0 the identifying code problem has no polynomial time approximation with
performance ratio(1− ǫ) lnn (for directed and undirected graphs) unless NP⊂DTIME(nlg lg n).

In order to prove the hardness result for undirected graphs (and hence also for directed graphs) we first
provide a proof of Corollary 1 for the undirected graph case.Recall that Corollary 1 states that solving
a set-cover problem is computationally equivalent to finding the optimal identifying code over undirected
graphs. We will then extend the proof to carry over the set cover hardness result of Feige [28]. Other
hardness results with looser complexity assumptions can also be applied to get slightly weaker results.
For example, the work in [30] can be applied under the assumption P 6= NP) to show inapproximability
within a factor ofc ln n for some smaller constantc.

A. Notation

For convenience of exposition, we shall represent an undirected graph by a binary symmetric matrixG.
In this matrix, rows or columns arecharacteristic vectorsof correspondingballs, in that theiri-th entries
are 1 if and only if the i-th vertices are in the corresponding ball. Note that this matrix coincides with
the adjacency matrix of the graph if all its vertices have self loops. Therefore we will refer toG as the
adjacencymatrix, bearing in mind that its diagonal is all ones. Selecting codewords for an identifying
code can thus be viewed as selecting columns to form a matrix of size n × |C|. We will refer to this
matrix as thecodematrix. It is easy to see that the rows of the code matrix are the characteristic vectors
of the corresponding identifying sets. A code is thus identifying if all the rows in the code matrix are
unique, or equivalently, if theHamming distancebetween every two rows in the code matrix is at least
one. Note that this definition of identifying code differs from the traditional one by allowing the all zero

16

G =











100
010 Bs

001
000
111
101 Bm

011











,

C7

Bs =

[

0 110
0 101
0 111

]

Bm =

[

1 011
0 100
1 010
1 001

]

Fig. 4. An example of the construction ofB with m = 4, s = 3. The codeCm+s corresponds to the solid vertices indexed 5,6 and 7.

row in the code matrix. We say that a columndistinguishes or coversa pair of rows if it contributes
to their Hamming distance. Hence a code is identifying if thecorresponding set of columns covers all
possible pairs of rows.

For example consider the graph in Fig. 4 and its adjacency matrix G. The last 3 columns denoted by
C7 represent 3 vertices that constitute a code matrix. Since all the rows ofC7 are unique sequences, and
hence the minimum Hamming distance is at least 1, the code is guaranteed to be identifying. Note thatC7

corresponds to the minimum identifying code, since at least3 = ⌈lg 7⌉ columns are required to represent
7 different binary sequences. The role ofm ands in the figure will become clear in the next section.

We shall also use matrix notation to represent the set cover problems. Specifically, we can translate a
set cover problem(U,S) of m base elements into a binary matrixA ∈ {0, 1}m×s whose columns are
the characteristic vectors of thes subsets in the setS. As such, solving the set cover problem trivially
corresponds to finding a minimum set of columns ofA with the property that every row has at least one
non-zero element (see Fig. 5). In this formulation, each rowof the matrix corresponds to an element in
the set cover problem, and we say that a columncoversa row if their intersecting entry of the matrix
contains a1.

S =







{1, 2, 3, 5},
{1, 3, 4, 6},
{2, 3, 4, 7}







⇔ A =



















110
101
111
011
100
010
001



















Fig. 5. Example of matrix notation,A, of a set cover problem with the base set{1, 2, .., 7} and a family of subsets,S.

B. Proof of Corollary 1 for undirected graphs

The proof is based on a construction of an undirected graphG (out of a given arbitrary set cover
problem,A), whose minimum identifying code has a one-to-one mapping to a minimum set cover of the
given problem.

In the construction ofG we use the well known fact [27] that an undirected graph ofn vertices can be
constructed with an identifying code of size⌈lg n⌉ (assuming that an empty set is a valid identifying set).
Let Cn ∈ {0, 1}

n×⌈lg n⌉ denote the columns that correspond to such a code, and letB ∈ {0, 1}m+s×m ⊇
Cm+s be them last columns of anm + s adjacency matrix of an undirected graph possessing a size-
lg(m + s) identifying codeCm+s (see Figure 4). Note that we assume here thatm ≥ lg(m + s), an
assumption that will be justified later. We further divideB into two matrices,Bs andBm, which include
the firsts and lastm rows of B, respectively. Note thatBm is symmetric by definition.

The first step in the construction is to tie the arbitrary dimensions of the set cover problemA (i.e.,
the number of base elementsm and the number of subsetss) while keeping the minimum set cover
unchanged. Toward this end we say that set cover problems(U, S̃) and (U,S) are equivalentif S ⊆ S̃,

17

and if no minimum set coverS̃C of (U, S̃) includes subsets from̃S − S. Equivalently we can say that
equivalent set cover problems have identical minimum set covers.

Given an arbitrary set cover problemA, we generate an equivalent set cover problem,Ã, by adding
empty subsets, or equivalently by adding zero columns toA. We denote the number of columns ofÃ by
s̃, and we use the notationcm×n to denote anm× n matrix whose entries are allc.

Construction 3 Given a set cover problemA ∈ {0, 1}m×s with s < 2m − 2m, let s ≤ s̃ ≤ 2m − m.
Generate the binary matrices̃A =

(

A 0
m×(s̃−s)

)

, Bs̃, andBm, and construct the followingn = 2m + s̃
undirected graph with adjacency matrixG:

G =





1
s̃×s̃ ÃT + Bs̃ Bs̃

Ã + BT
s̃ Bm Bm

BT
s̃ Bm Bm



 ,

where summation is overGF (2) and a superscript T denotes the transpose operation.

We observe that the matrixG is a valid representation of an undirected graph for our purposes, as it
is symmetric with ones along its main diagonal, and we index the columns and rows ofG from 1 up to
2m + s̃ and label corresponding vertices withv1, ..., v2m+s̃.

The following are some basic properties of this construction. Recall that we say that a columncovers
a pair of rows if it contributes to their Hamming distance.

Property 6 Only columns1, ..., s can cover the pairs of rows indexed(i, i + m), for i = s̃ + 1, ..., s̃ + m.
Moreover, any set of columns,SC, covers these pairs of rows if and only if the same set of columns is a
set cover of the original problem.

Property 7 The ⌈lg(m + s̃)⌉ columns ofCm+s̃ that are contained inB can cover all the pairs of rows
but the ones indexed(i, i + m), for i = s̃ + 1, ..., s̃ + m.

Property 8 Only columns̃s + 1, ..., 2m + s̃ can distinguish between the mixed pairs of rows1, ..., s̃.

Proof of Properties 6-8: Observe that the bitwise XOR of all row pairs(i, i+m), for i = s̃+1, ..., s̃+m,
results in a row that contains thei-th row of matrix Ã followed by 2m zeros. If we stuck thesem rows
together they will form the block matrix(Ã 0

m×2m) = (A 0
m×2m+s̃−s). Hence any identifying code,

which by definition must cover all pairs of rows and in particular all (i, i + m) pairs, must contain a
nonempty subset of the firsts columns,SC. Moreover, since(A 0

m×2m+s̃−s) and A are equivalent it
follows thatSC is also a valid set cover of the original problemA. Property 6 follows trivially from this
observation.

Similarly, Property 8 follows trivially from observing thebitwise XOR of the mixed pairs of rows
1, ..., s̃. All the

(

s̃

2

)

resulting row vectors will have zeros in their first̃s elements. Hence the first̃s
columns (and henceSC) cannot cover these pairs of rows. To see why Property 7 is true, recall that
Cm+s̃ corresponds to an identifying code of a graph which containsB. As such, it must cover all mixed
pairs of rows ofB. The property follows from the observation that all pairs ofrows but (i, i + m), for
i = s̃ + 1, ..., s̃ + m, contain some mixed pair of rows ofB.

Let C, Smin, cmin and smin denote an optimum identifying code for the graphG and a minimum set
cover of the original problemA and their sizes, respectively.

Lemma 5
smin + ⌈lg s̃⌉ ≤ cmin≤ smin + ⌈lg(m + s̃)⌉

Proof: Given a set cover problemA satisfying the conditions of Construction 3, letSmin be its minimum
set cover of cardinalitysmin, and letG be the graph of Construction 3. By Lemma 2 every identifying

18

code ofG must cover the difference sets of all the pairs of distinct vertices,U = {(u, z) ∈ V 2 | u 6= z}.
PartitionU into the pairs indexedU1 = {(i, i +m)| i = s̃+1, ..., s̃ +m}, and the restU \U1. Property 6
asserts that any cover of the pairsU1 is also a cover of the original set cover problemA. Therefore (i)
a feasible cover ofU1 is the set of columns (denoted bySC) that corresponds toSmin, and furthermore
(ii) due to the optimality ofSmin there is no smaller set of columns that can coverU1.

To prove the upper bound combine (i) above with Property 7 to generate a feasible identifying code
by the set of vertices corresponding to the union ofCm+s̃ andSC.

To prove the lower bound, we observe that by property 8SC cannot cover any of the mixed pairs of
rows indexed1, ..., s̃, and therefore it cannot be an identifying code by itself. By(ii) above and since
we need at least⌈lg s̃⌉ columns to cover all of the mixed pairs of rows indexed1, ..., s̃, the lower bound
follows.

Proof of Corollary 1: Given a set cover problem(U,S) with m ≥ 4, and an algorithm for solving
the identifying codes problem over undirected graphs,ID− UNDIR : G→ C, perform the following:

1) Removeredundantsubsets inS to produceS ′ and construct matrixA out of it. A subsetSi ∈ S is
redundant if there existj 6= i s.t. Sj ∈ S, andSi ⊆ Sj .

2) Construct the undirected graphG according to Construction 3 with̃s that satisfies⌈lg(m + s̃)⌉ =
⌈lg s̃⌉.

3) C← ID− UNDIR(G)
4) Output{Si|vi ∈ C, 1 ≤ i ≤ s}

We first prove correctness. Step 1, which can be completed byO(ms2) operations, is necessary to
make sure that the conditions < 2m − 2m in Construction 3 is satisfied. It is obvious that the set cover
problems(U,S) and (U,S ′) are equivalent (every removed subsets that may be inSmin of the original
problem can be replaced by the subset that contains it while keepingSmin a valid set cover). The largest
size of such un-redundantS ′ is

(

m

⌈m

2 ⌉
)

<
√

22m

π
√

m
, and it can be verified numerically thatm ≥ lg(2m+ |S ′|)

is satisfied form ≥ 4. Next, since the imposed requirement⌈lg(m + s̃)⌉ = ⌈lg s̃⌉ can be satisfied with

m + 1 ≤ s̃ ≤ s + m

the second condition in Construction 3,i.e., s̃ ≤ 2m − m, is met. Finally, Property 6 assures that the
output of the reduction is a set cover of(U,S).

To see why it is a minimum set cover, we use Lemma 5 and the fact that in our construction
⌈lg(m + s̃)⌉ = ⌈lg s̃⌉ (and henceSC is of the size of a minimum set cover of the original problem).

To complete the proof we observe that the size of the graphG, n = 2m + s̃, is bounded by2m +
max(s, m + 1) ≤ n ≤ 3m + max(s, m + 1).

Construction 3 together with Lemma 5 can serve as a basis for ahardness result by generating̃s
disjoint copies of the original set cover problem before plugging it into Construction 3. Particularly, Raz
and Safra’s result [30] can be applied in this manner to show that no polynomial-time approximation that
performs within a factor ofO(log n) from an optimal identifying code exists, unless P=NP. A similar
approach is taken in the next section, which uses an explicitconstruction, and the hardness result of
Feige [28] to yield a tighter result.

C. Proof of Theorem 4

We next prove Theorem 4 for the undirected graph case (and hence for directed graphs as well). We
extend Construction 3 tok disjoint copies of the original set cover problem. This construction is then
used to carry over the set cover hardness result of Feige [28], i.e., for any ǫ > 0 there is no polynomial

19

Gk =



























I I + ÃT · · · I + ÃT ÃT + Bs̃ BT

s̃
· · · BT

s̃
Bs̃

I + Ã I
. . .

... Bs̃ ÃT + Bs̃

. . .
... Bs̃

...
. . .

. . . I + ÃT
...

. . .
. . . BT

s̃

...
I + Ã · · · I + Ã I BT

s̃
· · · BT

s̃
ÃT + Bs̃ Bs̃

Ã + BT

s̃
BT

s̃
· · · BT

s̃
Bm Bm · · · Bm Bm

Bs̃ Ã + BT

s̃

. . .
... Bm Bm Bm Bm

...
. . .

. . . BT

s̃

...
. . .

...
...

Bs̃ · · · Bs̃ Ã + BT

2 Bm Bm · · · Bm Bm

BT

s̃
BT

s̃
· · · BT

s̃
Bm Bm · · · Bm Bm



























red1

red2

...
redk

blue1

blue2

...
bluek

white

Fig. 6. The adjacency matrix of the graphGk in Construction 4.

time algorithm that can approximate the minimum set cover within the performance ratio(1 − ǫ) ln m
unless NP⊂DTIME(mlg lg m).

Our construction requires that the number of subsetss is at mostm. This assumption is valid as the
set-cover hardness proof in [28] uses a reduction to MAX 3SAT-5 problem from a set cover problem
over a family of problems called apartition system. In this family there arem elements in the base set,
U, and a setS of subsets each of sizem/k, with k being a large constant. Each subset is associated
with k − 1 other pairwise disjoint subsets of sizem/k that together partitionU into k equal parts. A
”good” cover ofU by disjoint subsets requires onlyk subsets. A ”bad” cover needs roughlyd subsets,
not belonging to the same partition where(1 − 1/k)d ≃ 1/m. As k grows,d tends tok lnm, resulting
in the desired ratio ofln m. The partition system consists ofL partitions, resulting in a total ofs = Lk
subsets. To construct the partition system Feige used a deterministic construction by Naor et al. [41] with
the following parameters,k is an arbitrary large constant,L = 2l, m = (5n)

2l

ǫ , with ǫ≪ 1 and wheren
is the number of variables in the MAX 3SAT-5 problem, andl = Θ(log log n). Clearly the ratio of the
number of subsets to base elements scales ass

m
= n−O(l) < 1.

In the context of our construction we henceforth assume without loss of generality thats ≤ m.
Let I be them×m identity matrix and recall thatB ∈ {0, 1}m+s×m is them last columns of anm+ s

adjacency matrix, which also includeCm+s, and that we further divideB into Bs and Bm, respectively
the firsts and lastm rows of B.

Construction 4 Given a set-cover problemA ∈ {0, 1}m×s, with s ≤ m, we generate an undirected graph,
Gk, of sizen = (2k + 1)m for some positive integerk as follows.

1) Pad A with m − s zero columns to get the matrix̃A with s̃ = m, and generateBs̃ and Bm, all
square matrices of sizem×m.

2) Generate an undirected graph with the adjacency matrixGK as shown in Figure 6.

We first observe thatGk is a valid adjacency matrix of an undirected graph.
To make our next observations clearer we divide the rows of the adjacency matrixGk into 3 blocks

which we denote by colorsred, blue andwhite. red rows are the firstkm rows, blue rows arekm rows
km + 1, ..., 2km. and the white rows are the lastm rows. We further divide thered and blue rows into
k sub blocks ofm rows each,redi, bluei, for i = 1, ..., k, and thej-th row in a sub block is denoted by
redi(j).

We denote by(redi, bluej) the set ofm pairs{(redi(1), bluej(1)), ..., (redi(m), bluej(m))}.
We divide the columns ofGk into blocks ofm columns,coli, for i = 1, ..., 2k + 1. Recall thatcol2k+1

include1 + ⌈lg m⌉ columns,C2m, which form an identifying code for a graph of size2m.
The proof of the following properties is similar to that of Properties 6, 7 and is omitted.

Property 9 Only columnscoli can cover the pairs of rows(bluei, white), for i = 1, ..., k. Moreover, any
set of columns,SCi ⊆ coli, covers the pairs(bluei, white) if and only ifSCi is a set cover of the original
problem (taking the indices of the columns modulom).

20

Property 10 The set of pairs(redi, redj) and (bluei, bluej), for all i < j, are covered by
⋃k

l=1 SCl.

Property 11 All the pairs other than the ones mentioned in Properties 9,10 are covered by a subset of
columns incol2k+1, which corresponds toC2m.

Let cmin, smin be the sizes of the minimum identifying code forGk and the minimum set cover of the
original problem.

Lemma 6
cmin≤ ksmin + ⌈lg m⌉+ 1

Proof: By properties 9,10,11 all the pairs of rows ofGk are covered by the union ofSCi, for i = 1, ..., k
andC2m, hence forming an identifying code. Since by property 9 every SCi is a set cover of the original
problem and|C2m| = 1 + ⌈lg m⌉, the Lemma follows.

Suppose next that there is a polynomial time algorithm that approximates the identifying code within
a performance ratioσ = (1 − ǫ′) ln n for some ǫ′ > 0. We can apply it onGk, with k = ln2 m, to

get an approximation of size at mostc ≤ σcmin ≤ σksmin

(

1 + ⌈lg m⌉
ksmin

)

≤ σksmin
(

1 + O(ln−1 m)
)

. By
property 9 we can select then the minimum sizeSCi as our approximation to the original set cover
problem,

SC∗ = arg min
SCi|1≤i≤k

|SCi|,

whose size is at mostsc = |SC∗| ≤ c
k
. Hence the performance ratio of our set cover algorithm is:

sc

smin
≤ (1 − ǫ

′) ln n
`

1 + O(ln−1
m)

´

= (1 − ǫ
′) ln

`

m(2 ln2
m + 1)

´ `

1 + O(ln−1
m)

´

≤ (1 − ǫ
′) ln m

„

1 + O

„

ln lnm

lnm

««

`

1 + O(ln−1
m)

´

,

and for large enoughm we can write for someǫ > 0
sc

smin
≤ (1− ǫ) lnm

contradicting [28].

D. An identifying code approximation with tight guarantees

The identifying codes problem is actually a special case of the test cover problem [40]. Recall that a test
cover problem asks to find the smallest setT of testsTi ⊂ U such that any pairx, y ∈ U is distinguished
by at least one testTi (i.e., |{x, y} ∩ Ti| = 1). Then simply consider the base set to be the set of vertices
of the graph,i.e., U = V , and its outgoing balls as the set of tests,T = {B−(v)|∀v ∈ V }. Every pair of
vertices will be distinguished by a code if and only if the corresponding set of tests constitutes a test cover
of (U,T). It follows that test cover approximations can be applied toproduce ”good” identifying codes.
One such greedy approximation was recently devised by Berman et al. [29] using a modified notion of
entropy as the optimization measure. This greedy approximation was proven to have a performance ratio
of 1 + ln n, wheren is the number of elements in the base set. Applying this algorithm to graphs of size
n guarantees identifying codes with the same performance ratio, closing the gap (up to a small constant)
from the lower bound of Theorem 4.

Although this performance guarantee outperforms our set-cover based approximation, it is not obvious
how to generalize the algorithm of Berman et al. to robust identifying codes. In the next section we discuss
a natural way of generalizing our identifying code approximation of Theorem 1 to robust identifying codes.

21

0

1

2

3

4

5

6

7

0

B

B

B

B

B

B

B

B

@

1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

1

C

C

C

C

C

C

C

C

A

Fig. 7. A 1-robust identifying code (codewords are solid circles) andthe graph’s adjacency matrix. The identifying set of vertex1 is
{0, 1, 5}.

VI. ROBUST IDENTIFYING CODES AND THE SET MULTICOVER PROBLEM

In this section, we provide a polynomial-time greedy approximation of the NP-complete [16, 20] robust
identifying code problem. The graphs considered in this section are undirected graphs henceB(v) =
B+(v) = B−(v). Our approximation is based on an efficient reduction to the set k-multicover problem,
for which a greedy approximation is known.

The minimum setk-multicoverproblem is a natural generalization of the set cover problem, in which
given (U,S) we are seeking the smallest subset ofS that covers every element inU at leastk times
(more formal definitions are in Section VI-B). Often this problem is addressed as a special case of the
covering integer problem[36]. The setk-multicover problem admits a similar greedy heuristic to the set
cover problem, with a corresponding performance guarantee[36] of at most1 + log (maxSi∈S(|Si|)).

Recall that a non-empty subsetC ⊆ V is called acode, and for a given codeC, the identifying set
IC(v) of a vertexv is defined to be the codewords directed towardsv, i.e., IC(v) = B(v)∩C (if C is not
specified, it is assumed to be the set of all verticesV). A codeC is an identifying codeif each identifying
set of the code is unique, in other words

∀u, v ∈ V u = v ←→ IC(u) = IC(v).

Robustidentifying codes were suggested in [4] for applications oflocation detection in harsh environ-
ments where nodes (codewords) are likely to fail. Intuitively an r-robust identifying code,C , maintains
its identification property even when anyr codewords are either inserted or removed fromC .

Definition 2 An identifying codeC over a given graphG = (V,E) is said to ber-robust if IC(u)⊕A 6=
IC(v)⊕D for all v 6= u and A, D ⊂ V with |A|, |D| ≤ r. Here ⊕ denotes the symmetric difference.

Consider a three dimensional cube as in Figure 7 and letC = {0, 1, 2, 4, 5, 6, 7}. Clearly, the identifying
sets are all unique, and hence the code is an identifying code. A closer look reveals thatC is actually a
1-robust identifying code, so that it remains an identifyingcode even upon removal or insertion of any
codeword into any identifying set.

Note that this definition differs from thevertexrobust identifying codes of [6], where it is additionally
required that|IC(v)| ≥ r for all v ∈ V .

A. Reduction intuition

Similarly to Section V we turn to the graph’s adjacency matrix to provide an alternate perspective to
the identifying code problem. Recall that in this matrix, rows or columns arecharacteristic vectorsof
corresponding balls, in that theiri-th entries are1 if the i-th element ofU is in the corresponding ball.
Selecting codewords is equivalent to selecting columns to form a codematrix of sizen × |C|. A code
is thus identifying if theHamming distancebetween every two rows in the code matrix is at least one
(recall that the Hamming distance of two binary vectors is the number of ones in their bitwise XOR).
Similarly, if the Hamming distance of every two rows in the code matrix is at least2r + 1 then the set
of vertices isr-robust.

22

We next form then(n−1)
2
× n differencematrix by stacking the bitwise XOR results of every two

different rows in the adjacency matrix. The problem of finding a minimum sizer-robust identifying code
is equivalent to selecting a minimum number of columns to form a code matrix for which the Hamming
distance between any pair of distinct rows is at least2r + 1. Or equivalently: selecting the minimum
number of columns in the difference matrix such that all rowsin the resulting matrix have Hamming
weight of at least2r + 1. This equivalent problem is nothing but a set(2r + 1)-multicover problem, if
one regards the columns of the difference matrix as the characteristic vectors of a family of subsetsS
over the base set of all pairs of rows in the adjacency matrix.

In the next subsection we formalize this intuition into a rigorous reduction.

B. Reduction

In this section, we formally reduce the problem of finding thesmallest sizedr-robust identifying code
over an arbitrary graphG to a (2r + 1)-multicover problem.

Formally we connect the following problems:
c) SET MULTI-COVER (SCk):

INSTANCE: SubsetsS of U , an integerk ≥ 1.
SOLUTION: S′ ⊆ S such that for every element u ∈ U , |{s ∈ S ′ : u ∈ s}| ≥ k.
MEASURE: The size of the multicover:|S′|.

d) Robust ID-CODE (rID):
INSTANCE: GraphG = (V, E), and integerr ≥ 0.
SOLUTION: An r-robust identifying codeC ⊆ V .
MEASURE: The size|C|.

Theorem 5 Given a graphG of n vertices, finding anr-robust identifying code requires no more
computations than a(2r + 1)-multicover solution over a base set ofn(n−1)

2
elements together withO(n3)

operations of lengthn binary vectors.

Recall that thedifference setDC(u, v) is the symmetric difference between the identifying sets of
verticesu, v ∈ V . In addition, recall that thedistinguishing setδc is the set of vertex pairs inU for which
c is a member of their difference set whereU = {(u, z)|u 6= z ∈ V }.

As indicated in [4], a code isr-robust if and only if the size of the smallest difference setis at least
2r + 1. Equivalently, a code isr-robust if and only if its distinguishing sets(2r + 1)-multicover all the
pairs of vertices in the graph.

Lemma 7 GivenG = (V,E) the following statements are equivalent:
1) C = {c1, ..., ck} is an r-robust identifying code.
2) |DC(u, v)| ≥ 2r + 1, for all u 6= v ∈ V
3) The set{δc1 , ..., δck

} forms a(2r + 1)-multicover ofU = {(u, v) | ∀ u 6= v ∈ V }.

Proof of Theorem 5: Let SMC be a set multicover algorithm and consider the following construction
of an r-robust identifying code.

rID(G, r)→ C

1. Compute{I(u)|u ∈ V }.
2. Compute∆ = {δu|u ∈ V }.
3. C← SMC(2r + 1,U ,∆)
4. OutputC← {u ∈ V |δu ∈ C}

The resulting code,C, is guaranteed by Lemma 7 to be anr-robust identifying code, and the optimality
of the set cover in step 3 guarantees that no smaller identifying code can be found. To complete the proof
we observe that computing the identifying setsI(u) naively requiresΘ(n2) additions of binary vectors,
and computing∆ requiresn operations for each of then(n−1)

2
elements inU .

23

Algorithm 2 Greedy robust ID-coderID− GREEDY

Let G = (V,E) be a given graph, and letSMC− GREEDY(k,U,S) be the greedy set multicover algorithm,
then given integerr the r-robust identifying code greedy algorithm is:rID− GREEDY(G, r)→ Cgreedy

1) Compute{I(u)|u ∈ V }.
2) Compute∆ = {δu|u ∈ V }.
3) C← SMC− GREEDY(2r + 1,U ,∆)
4) OutputCgreedy ← {u ∈ V |δu ∈ C}

C. Approximation algorithm

The set multicover problem admits a greedy solution: in eachiteration select the set which covers the
maximum number of nonk-multicovered elements. We use this heuristic together with Theorem 5 to
introduce anr-robust identifying code algorithm (Algorithm 2).

It is well known [36] that the performance guarantee of the heuristic of the set multicover problem
(defined as the ratio of the sizes of the greedy and minimum multicovers) is upper bounded by1 + lnα,
whereα is the largest set’s size, namely

|SMC− GREEDY(k,U,S)|

|SMC(k,U,S)|
≤ 1 + lnα (9)

for any set multicover problem(k,U,S).

Theorem 6 Given a graphG = (V, E), ofn nodes, letcgreedy, cmin be the sizes of the greedy (rID− GREEDY)
and minimumr-robust identifying codes, respectively, then

cgreedy

cmin
≤ 1 + log n + log bmax

wherebmax is the ball’s size closest ton
2

Proof: δv contains all pairs of vertices, whichv appear exactly in one of their incoming balls. Therefore
v distinguishes between all pairs having one vertex inv’s outgoing ball,B(v), and the second from
V − B(v). Hence the size of a distinguishing set is given by|δv| = |B(v)| (n− |B(v)|). It is easy to
see that the vertex with the largest distinguishing set is the one whose outgoing ball size is closest ton

2
.

Denote this outgoing ball bybmax, and based on Theorem 5 andrID− GREEDY algorithm plug the size
of its distinguishing set into the bound of Equation (9) to get

cgreedy

cmin
≤ 1 + log(n− bmax) + log bmax

< 1 + log n + log bmax.

D. Localized robust identifying code and its approximation

It was observed in [4, 5] that anr-robust identifying code can be built in a localized manner,where each
vertex only considers its two-hop neighborhood. This localization is possible when the identifying codes
are required to produce only non-empty identifying sets5. In this section and henceforth we introduce this
requirement, and call the resulting codes -localized identifying codes. These codes and their approximation
algorithm are critical to the development of the distributed algorithms of the next section. Note that by
definition the localized identifying codes are also dominating sets.

5In fact this definition of identifying codes is the traditional definition (e.g., [1])

24

Algorithm 3 Localizedr-robust coderID− LOCAL(r, G)

We start with a graphG = (V, E) and a non-negative integerr. The greedy set multicover approximation
is denotedSMC− GREEDY(k,U,S).

1) Compute{D(u, v)|u ∈ V, v ∈ B(u; 2)}
2) Compute∆2 = {δ2

u|u ∈ V }.
3) C←SMC− GREEDY(2r + 1,U 2, ∆2)
4) OutputClocal ← {u ∈ V |δ2

u ∈ C}

Let G = (V,E) be an undirected graph; we define the distance metricρ(u, v) to be the number of edges
along the shortest path from vertexu to v. The ball of radiusl aroundv is denotedB(v; l) and defined
to be {w ∈ V |ρ(w, v) ≤ l}. So far we encountered balls of radiusl = 1, which we simply denoted by
B(v).

Recall that a vertex cover (or dominating set) is a set of vertices, such that the union of their balls
of radius 1 coversV . We further extend this notion and define anr-dominatingset as a set of vertices,
which r-multicoversV (these sets are closely related toµ-fold 1-covering codes [42]).

Note that the definition of difference sets and hence identifying codes still involves only radius one
balls, unlike the radius(l > 1) identifying codes discussed in [1].

Lemma 8 Given a graphG = (V, E), an (r + 1)-dominating setC is also anr-robust identifying code
if and only if |DC(u, v)| ≥ 2r + 1 for all u, v ∈ V such thatρ(u, v) ≤ 2.

Proof: The forward implication is an application of Lemma 7. For thereverse implication we takeC
to be anr +1 dominating set and assume that|DC(u, v)| ≥ 2r +1 for ρ(u, v) ≤ 2; we will show that this
assumption is also valid forρ(u, v) > 2. This is because, forρ(u, v) > 2, we have thatB(v)∩B(u) = ∅,
meaning that|DC(u, v)| = |B(v) ∩ C|+ |B(u) ∩C|. SinceC is anr + 1 dominating set, it must be that
|B(y) ∩ C| ≥ r + 1 for all verticesy, giving that |DC(u, v)| > 2r + 1. Applying Lemma 7 we thus see
that C must ber-robust.

The localized robust identifying code approximation Lemma 8 can serve as the basis for a reduction
from an identifying code problem to a set cover problem, similar to the one in Theorem 5. The main
difference is that we will restrict base elements to vertex pairs that are at most two hops apart, and we
then need to guarantee that the resulting code is stillr-robust.

Towards this end we defineU 2 = {(u, v) | ρ(u, v) ≤ 2}, the set of all pairs of vertices (including(v, v))
that are at most two hops apart. Similarly, we will localize the distinguishing setδv to U

2 as follows:

δ2
v = (δv ∩ U

2) ∪ {(u, u)|u ∈ B(v)},

The resultinglocalized identifying code approximationis thus given by Algorithm 3 and can be shown
to provide anr-robust identifying code for any graph that admits one (we omit the proof due to space
considerations).

Theorem 7 Given an undirected graphG = (V, E) of n vertices, the performance ratiorID− LOCAL is
upper bounded by: cgreedy

cmin
< ln γ + 1,

whereγ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)|+ 1).

Proof: Recall thatδv includes all vertex pairs where one vertex is in the outgoingball of v and the other
is not. The size of the intersection ofδv and U

2 can be upper bounded by|B(v)|(|B(v; 3)| − |B(v)|),
which becomes an equality when all vertices inB(v; 3) are within distance 2 of each other. Finally,

25

δ2
v includes also|B(v)| pairs of the same vertex(u, u). Therefore|δ2

v | ≤ |B(v)|(|B(v; 3)| − |B(v)|+ 1),
which at its maximum, can be applied to the performance guarantee of Equation (9) to complete the proof.

In the next subsection we present a distributed implementation of the identifying code localized ap-
proximation. The following lemma supplements Lemma 8 by providing additional “localization”. At the
heart of this lemma lies the fact that each codeword distinguishes between its neighbors and the remaining
vertices.

Lemma 9 The distinguishing setsδ2
v and δ2

u are disjoint for every pair(u, v) with ρ(u, v) > 4.

Proof: Clearly, δ2
v includes all vertex pairs(x, y) ∈ U

2 wherex is a neighbor ofv andy is not. More
precisely,(x, y) ∈ δ2

v if
x ∈ B(v) andy ∈ B(x; 2)− B(v). (10)

Moreover, for all such(x, y), ρ(x, v) ≤ 1 and ρ(y, v) ≤ 3. On the other hand, for(x′, y′) ∈ δ2
u with

ρ(u, v) > 4, eitherx′ or y′ must be a neighbor ofu, and hence of distance> 3 from v. Thus,δ2
u andδ2

v

are disjoint.

Lemma 9 implies that when applying the greedy algorithm, a decision on choosing a codeword only
affects decisions on vertices within four hops; the algorithm is thus localized to vicinities of balls of
radius four.

VII. D ISTRIBUTED APPROXIMATION TO ROBUST IDENTIFYING CODES

Several parallel algorithms exist in the literature for setcover and for the more general covering integer
programs (e.g., [35]). There are also numerous distributed algorithms for finding a minimum (connected)
dominating set based on set cover and other well known approximations such as linear programming
relaxation (e.g., [43]). In a recent work, Kuhn et al. [44] devised a distributed algorithm for finding a
dominating set with a constant runtime. The distributed algorithm uses a design parameter which provides
a tradeoff between the runtime and performance.

Unfortunately, the fundamental assumption of these algorithms is that the elements of the base set are
independent computational entities (i.e., the nodes in the network); this makes it non-trivial to applythem
in our case, where elements correspond to pairs of nodes thatcan be several hops apart. Moreover, we
assume that the nodes are energy constrained so that reducing communications is very desirable, even at
the expense of longer execution times and reduced performance.

We next provide two distributed algorithms. The first is completely asynchronous, guarantees a perfor-
mance ratio of at mostln γ + 1, and requiresΘ(cdist) iterations at worst, wherecdist is the size of the
identifying code returned by the distributed algorithm andγ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1|).
The second is a randomized algorithm, which requires a coarse synchronization, guarantees a performance

ratio of at mostln γ + 1, and for some arbitrarily smallǫ > 0 operates withinO

(

γn
K+2+ǫ

K−1

K

)

time slots

(resulting in O(cdistmaxv∈V |B(v; 4|)) messages). The valueK ≥ 2 is a design parameter that trades
between the size of the resultingr-robust identifying code and the required number of time slots to
complete the procedure.

In the next subsection we describe the model and initialization stages that are common to both distributed
algorithms.

A. Model and initialization

With a model similar to [4], we assume that every vertex (node) in a graph is an independent processing
entity that is pre-assigned a unique serial number and can communicate reliably and collision-freely

26

Fig. 8. Asynchronous distributed algorithm state diagram in nodev ∈ V

(perhaps using higher-layer protocols) over a shared medium with its immediate neighborhood. In [4] the
entities were sensors and the edges in the graph representedRF connectivity. Every node can determine
its neighborhood from the IDs on received transmissions, and higher radius balls can be determined by
multi-hop protocols. In our case, we will need to knowG(v; 4) - the subgraph induced by all vertices of
distance at most four fromv.

Our distributed algorithms are based on the fact that, by definition, each nodev can distinguish between
the pairs of nodes which appear in its corresponding distinguishing setδ2

v that initially can be determined
by (10). This distinguishing set is updated by removing pairs that get covered2r + 1 times (i.e., that
have2r + 1 elements in their difference set), as new codewords are added to the identifying code being
constructed; their presence is advertised by flooding theirfour-hop neighborhood.

B. The asynchronous algorithmrID− ASYNC

The state diagram of the asynchronous distributed algorithm is shown in Figure 8. All nodes are
initially in the unassignedstate, and transitions are effected according to messages received from a node’s
four-hop neighborhood. Two types of messages can accompanya transition:assignmentanddeclaration
messages, with the former indicating that the initiating node has transitioned to theassignedstate, and
the latter being used to transmit data. Both types of messages also include five fields: thetype, which is
either “assignment” or “declaration”, theID identifying the initiating node, thehop number, theiteration
number, anddata, which contains the size of the distinguishing set in the case of a declaration message.

Following the initialization stage, every node declares its distinguishing set’s size. As a node’s declara-
tion message propagates through its four hop neighborhood,every forwarding node updates two internal
variables,IDmax andδmax, representing the ID and size of themost distinguishingnode (ties are broken
in favor of the lowest ID). Hence, when a node aggregates the declaration messages initiated by all its
four hop neighbors (we say that the node reached itsend-of-iterationevent),IDmax should hold the most
distinguishing node in its four hop neighborhood. A node that reaches an end-of-iteration event transitions
to either thewaitfor assignmentstate or to the finalassignedstate depending if it is the most distinguishing
node.

The operation of the algorithm is completely asynchronous;nodes take action according to their state
and messages received. During the iterations stage, nodes initiate a declaration message only if they
receive an assignment message or if an updated declaration (called anunassignmentmessage) is received
from the most distinguishing node of the previous iteration. All messages are forwarded (and their hop
number is increased) if the hop number is less than four. To reduce communications load, a mechanism
for detecting and eliminating looping messages should be applied.

Every node,v, terminates in either an “unassigned” state with|δ2
v | = 0 or in the “assigned” state.

Clearly, nodes that terminate in the “assigned” state constitute a localizedr-robust identifying code.
1) Performance evaluation:

27

Algorithm 4 Asynchronousr-robust algorithm (rID− ASYNC)
We start with a graphG, with vertices labeled byID, and a non-negative integerr. The following distributed
algorithm run at nodev ∈ V produces anr-robust identifying code.
PRECOMP:

• Computeδ2
v using (10).

• Initiate a declaration message and set state = “unassigned”.
• Set IDmax = ID(v), δmax = |δ2

v |, andms to be an empty assignment message.
ITERATION:

• Incrementhop(ms) and forward all messages ofhop(ms) < 4.
• if received an assignment messagems with state 6= assigned then

– Updateδ2
v by removing all pairs covered2r + 1 times.

– Initiate a declaration message and set state = “unassigned”.
– Reinitialize IDmax = ID(v) andδmax = |δ2

v |.
• if state = waitfor assignment and received anun-assignmentmessage then initiate a declaration

message.
• if received a declaration messagems with state 6= assigned then

– if δmax < data(ms) or (δmax = data(ms) andIDmax > ID(ms)) thenδmax = data(ms), IDmax =
ID(ms)

• if end-of-iterationreached then,
– if IDmax = ID(v) and |δ2

v | > 0 thenstate = assigned, initiate an assignment message.
– otherwisestate = waitfor assignment.

1

2

3

|V|

Fig. 9. Worst case topology for the asynchronous distributed r-robust algorithm in terms of runtime.

Theorem 8 Algorithm 4 (rID− ASYNC) requiresΘ(cdist) iterations and has a performance ratio

cdist
cmin

< ln γ + 1,

whereγ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)|+ 1|).

The first part of the Theorem follows from Theorem 7 and the fact that only the most distinguishing
sets in a four hop neighborhoods is assigned to be a codeword.To see the number of iterations of the
algorithm, we first note that in each iteration at least one codeword is assigned. The case of a cycle graph
(Fig. 9) demonstrates that, in the worst case, exactly one node is assigned per iteration.

It follows that the amount of communications required in theiteration stage isΘ(cdist|V |max(|B(v; 4)|)),
which can be a significant load for a battery powered sensor network. This can be significantly reduced if
some level of synchronization among the nodes is allowed. Inthe next section we suggest a synchronized
distributed algorithm that eliminates declaration messages altogether.

28

Algorithm 5 Synchronousr-robust algorithm (rID− SYNC)
We start with a graphG and non-negative integerr. The following distributed algorithm run at node
v ∈ V produces anr-robust identifying code.
PRECOMP:

• Set:slot = sF , subslot = L, state = unassigned.
• Calculate the assignment slot.

ITERATE: while state = unassigned andslot ≥ s1 do,
• l = random{1, ..., L}
• if received assignment message,ms then,

– if hop(ms) < 4 forward ms with hop(ms) + +.
– Recalculate the assignment slot.

• else if subslot = l andslot = as then,
– state = assigned
– Transmitms with id(ms) = id(v), andhop(ms) = 1

C. A low-communications randomized algorithmrID− SYNC

In this subsection, we assume that a coarse time synchronization among vertices within a neighborhood
of radius four can be achieved. In particular, we will assumethat the vertices maintain a basic time
slot, which is divided intoL subslots. Each subslot duration is longer than the time required for afour
hop one-way communication together with synchronization uncertainty and local clock drift. After an
initialization phase, the distributed algorithm operateson a timeframe, which consists ofF slots arranged
in decreasing fashion fromsF to s1. In general,F should be at least as large as the largest distinguishing
set (e.g.,F = n(n−1)

2
will always work). A frame synchronization within a neighborhood of radius four

completes the initialization stage.
The frame synchronization enables us to eliminate all the declaration messages of the asynchronous

algorithm. Recall that the declaration messages were required to perform two tasks: (i) determine the
most distinguishing node in its four hop neighborhood, and (ii) form an iteration boundary,i.e., end-of-
iteration event. The second task is naturally fulfilled by maintaining the slot synchronization. The first task
is performed using the frame synchronization: every node maintains a synchronized slot counter, which
corresponds to the size of the currentmost distinguishingnode. If the slot counter reaches the size of a
node’s distinguishing set, the node assigns itself to the code. The subslots are used to randomly break
ties.

1) Iterations stage:Each iteration takes place in one time slot, starting from slot sF . During a slot
period, a node may transmit a messagems indicating that it is assigning itself as a codeword; the message
will have two fields: the identification number of the initiating node,id(ms), and the hop number,hop(ms).
A node assigns itself to be a codeword if itsassignment time, which refers to a slotas and subslotl, has
been reached. Every time an assignment message is received,the assignment slotas of a node is updated
to match the size of its distinguishing set; the assignment subslot is determined randomly and uniformly
at the beginning of every slot.

2) Performance evaluation:Algorithm 5 (rID− SYNC) requires at mostO(n2) slots (O(Ln2) subslots),
though it can be reduced toO(Lγ) if the maximum size of a distinguishing set is propagated throughout the
network in the precomputation phase. The communications load is low (i.e.,O(cdist·maxv∈V (|B(v; 4)|))),
and includes only assignment messages, which are propagated to four hop neighborhoods.

In the case of ties,rID− SYNC can provide a larger code than gained from the localized approximation.
This is because ties in the distributed algorithm are brokenarbitrarily, and there is a positive probability
(shrinking as the number of subslotsL increases) that more than one node will choose the same subslot
within a four hop neighborhood. As such,L is a design parameter that provides a tradeoff between

29

performance ratio guarantees and the runtime of the algorithm as suggested in the following theorem.

Theorem 9 For asymptotically large graphs, AlgorithmrID− SYNC guarantees with high probability a
performance ratio of

cdist
cmin

< K(ln γ + 1),

whereγ = maxv∈V |B(v)|(|B(v; 3)| − |B(v)| + 1|). The algorithm also requiresO

(

γn
K+2+ǫ

K−1

K

)

subslots

to complete for design parameterK ≥ 2 and arbitrarily small ǫ > 0.

Proof: If no more thanK tied nodes assign themselves simultaneously on every assignment slot,
then we can upper bound the performance ratio by a factorK of the bound in Theorem 7, as in the
theorem statement. We next determine the number of subslotsL needed to guarantee the above assumption
asymptotically with high probability.

Let P (K) denote the probability that no more thanK tied nodes assign themselves in every assignment
slot. Clearly,P (K) ≥ (1 − p̄(K))

cdist, where p̄(K) is the probability that, whent nodes are assigned
independently and uniformly toL subslots, there are at leastK < t assignments to the same subslot. One
can see that

p̄(K) =
t
∑

k=K

L

(

t

k

)

L−k

(

1−
1

L

)t−k

≤
t
∑

k=K

(

t

k

)

L1−k ≤
t
∑

k=K

L

(

te

Lk

)k

≤ tL

(

te

LK

)K

,

for e being the natural logarithm and based on the assumption thatte
LK

< 1. Let t = cdist = n (this only

loosens the bound) andL = e
K

n
K+2+ǫ

K−1 . Then,

P (K) ≥

(

1− tL

(

te

LK

)K
)cdist

≥

(

1−
e

K

1

n1+ǫ

)n

→ 1.

VIII. S IMULATIONS

Here we have simulated the centralized, localized and synchronized distributed identifying code algo-
rithms, and applied them to grids (e.g., [6]), random graphs with different edge probabilities [14], and
to geometric random graphs with different nodes densities [31]. As a performance measure, we use the
averaged size of the identifying code. For the case ofr = 0 (i.e., simple identifying code) the simulation
results are compared to the algorithm suggested by Ray et al.in [4]. In addition, we show a combinatorial
lower bound derived first by Karpovsky et al. in [1], and the asymptotic result (inn - the size of the
graph) of Moncel et al. [14], who showed that an arbitrary setof a threshold number of codewords is an
identifying code with high probability, and that this number is asymptotically tight.

30

1− robust
identifying
Code

Identifying
Code

Fig. 10. Examples of efficient constructions of identifyingtiles for the square, king and triangular infinite grids produced by the localized,
rID− LOCAL (triangles), and centralized,rID− GREEDY (circles), algorithms. The constructions densities can befound in Table I.

A. Infinite grids

Significant amount of the study efforts into identifying codes were focused on infinite grids [1, 6].
Many of these studies use tilings to suggest constructive upper bounds on the size of an identifying
codes. Table I compares these tight constructions and bounds with the best outcomes of the centralized,
localized and the distributed algorithms when applied to the square, king, and triangle infinite grids.
Infinite grids were emulated by the use of finite girds with wrapped around edges (torii). The size of
the torus limits the size of the largest tile of the infinite code, and therefore has a large impact on the
resulting codes. The algorithms outcomes were also varied by randomly relabeling the torus nodes in
between runs. Table I summarizes the best results achieved for the different torii sizes, and their matching
constructions appear in Figure 10. Surprisingly, the localized (rID− LOCAL) algorithm outperformed the
centralized (rID− GREEDY) for almost all grids and torii sizes, coming pretty close tothe results in [6].
One reason for this behavior may be that the additional requirement that the code will also be dominating
is not significant when it comes to grids. Therefore the centralized algorithm takes into account many
irrelevant vertices pairs that may influence the optimization step.

Finally, Figure 11 shows that it is sometimes possible to getvery good codes for small graphs through
a pruned exhaustive search (in this case, an adaptation of the branch-and-bound algorithm [45]). The 1-
robust identifying codes in the figure for the hexagonal and triangular finite grids actually have a density
slightly better than those reported in [6].

B. (Geometric) random graphs

Fig. 12(a) shows the theoretic lower bound and the results ofthe centralized greedy algorithm. It can be
seen that a significant enhancement in performance over the algorithm devised by Ray et al. is achieved.
It should be noted that asn grows the curves for basically any algorithm should converge to Moncel’s

31

Density: 52/64 Density=21/36

Fig. 11. Branch and bound algorithm results for 1-robust identifying codes for the hexagonal (left) and triangular (right) grids. The red
circles represent codewords, and the tile is captured by a gray square.

TABLE I

DENSITIES OF IDENTIFYING CODES FOR INFINITE GRIDS TAKEN FROM[6] VS. SIMULATION RESULTS USING OUR APPROXIMATIONS(IN

BRACKETS).

square king triangular

ID code 112

320
(115

320
) 16

72
(17

72
) 27

108
(32

108
)

1-Robust ≤ 40

64
(43

64
) 32

64
(35

64
) ≤ 24

40
(25

40
)

asymptotic result, as illustrated in Fig. 13(a). Still, theconvergence rate appears to be very slow, suggesting
that for reasonably large networks there is a lot to gain fromthe suggested algorithms compared to the
simple approach of arbitrarily picking a code, whose size satisfies the threshold number of [14].

Fig. 12(b) shows the simulation results for the localized and distributed algorithms compared to the
centralized one. Recall that the performance of the asynchronous algorithm,rID− ASYNC, is identical to
the localized approximation. It can be observed that the results of the localized algorithm nearly match
the results of the centralized algorithms. Divergence is evident for low edge probabilities, where it is
harder to find a dominating set. Recall that there is a tradeoff between performance and the runtime of
the synchronized distributed algorithm,rID− SYNC. The smaller the number of subslots parameter,L,
the shorter the runtime and the larger the degradation in performance due to unresolved ties. Degradation
in performance is also more evident when ties are more likelyto happen,i.e., when the edge probability
is approaching0.5. The results of the centralized r-robust identifying code algorithm are shown in
Figure 12(c).

Fig. 13(b) shows the codeword density for geometric random graphs using the localized and distributed
approaches, and the fraction of such graphs admitting an identifying code. It also presents the largest
fraction of indistinguishablenodes,i.e., nodes that share the same identifying set, obtained in the simu-
lation. As can be seen, the localized and distributed approaches (withL = 10) yield very similar code
sizes. The fraction of graphs admitting identifying codes is rather small (less than half the graphs) even
for high node densities. However, the size of indistinguishable nodes sets is still small, suggesting that
the system’s reduction inresolution, i.e. the geometric size of the largest indistinguishable set, is not too

32

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
5

10

15

20

25

30
n=128 random graph

Edge probability

A
ve

ra
ge

 ID
 c

od
e

si
ze

Lower bound (Karpovsky et. al.)

Ray et. al.
Centralized

(a) Centralized greedy algorithm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8

10

12

14

16

18

20

22

24

26
n=128 random graph

Edge probability

A
ve

ra
ge

 ID
 c

od
e

si
ze

Centralized

Distributed

Localized

L=5

L=10

L=20

(b) Localized (and rID− ASYNC) and distributed algorithm,
rID− SYNC, for different subslot (L) values

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

n=128 random graph

Edge probability

A
ve

ra
ge

 g
re

ed
y

ID
 c

od
e

si
ze

r=1

r=0 (IDcode)

r=2

r=7

(c) Centralizedr-robust identifying codes algorithm.

Fig. 12. Average size of the minimum identifying code for random graphs with edge probabilityp, andn = 128 vertices.

high. It should be noted that approaches such that of ID-CODE[4] are not designed to cope with graphs
which do not have identifying codes, resulting in a code of all vertices.

IX. CONCLUSIONS

We have provided connections between identifying codes problems and covering problems, for which
greedy approximation algorithms are known. The connections to traditional identifying codes have been
sufficiently size-preserving to produce an approximation algorithm, and should be useful for the number
of identifying code applications that have been developed in the literature. In addition, we have provided
general hardness of approximation results that show that our approximations are very close to the best
possible. In particular, for the case of (non robust) identifying codes we show that a known approximation
achieves up to a small constant multiple of the best possibleperformance achievable by any polynomial
approximation (under commonly used complexity assumptions). It remains an open question if our
approximation algorithms for the(r ≥ 1)-robust identifying codes are similarly near-optimal.

We have also demonstrated by simulations that the proposed algorithms outperform the existing ap-
proximation algorithm of [4] and that they come close to efficient combinatorial constructions of robust
identifying codes for two dimensional grids, which have been well-studied in the literature. We have
further provided two flavors of distributed algorithms thatmay be used for practical implementations in
network applications.

33

32 64 128 256 384
2

3

4

5

6

7

8

9

10

11

Number of nodes (n)

|C
|/l

og
(n

)

Normailized average size of the identifying code (r=0)
for random graphs with edge probability p=0.1.

Moncel et al
Assymptotic bound

Ray et al

Centralized

Karpovsky et al
Lower bound

(a) Average size of the simple (r = 0) identifying code for
random graphs with edge probabilityp = 0.1, and different
number of vertices.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

nodes density

GRG with different nodes densities

Distributed (L=10)
codewords density

Localized approx.
codewords density

precentage of
 identifying codes

Largest normailized number of
undestinguishable nodes

(b) Normalized size of the code for the localized (and
rID− ASYNC) and distributedrID− SYNC algorithm, fraction
of graphs admitting an identifying code, and maximum frac-
tion of indistinguishable nodes for geometric random graphs
with different node densities.

Fig. 13. Additional simulation results for (geometric) random graphs.

ACKNOWLEDGMENT

The anonymous reviewers at the IEEE Transactions on Information Theory have provided thorough and
significant improvements that have been incorporated into this paper.

REFERENCES

[1] M. G. Karpovsky, K. Chakrabarty, and L. B. Levitin, “A newclass of codes for identification of vertices in graphs,”IEEE Transactions
on Information Theory, vol. 44, no. 2, pp. 599–611, March 1998.

[2] S. Ray, R. Ungrangsi, F. D. Pellegrinin, A. Trachtenberg, and D. Starobinski, “Robust location detection in emergency sensor networks,”
Proceedings INFOCOM, April 2003.

[3] R. Ungrangsi, A. Trachtenberg, and D. Starobinski, “An implementation of indoor location detection systems based on identifying
codes,”Proceedings of the IFIP International Conference on Intelligence in Communication Systems (INTELLCOMM 04), 2004.

[4] S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi, “Robust location detection with sensor networks,”IEEE Journal on Selected
Areas in Communications (Special Issue on Fundamental Performance Limits of Wireless Sensor Networks), vol. 22, no. 6, August
2004.

[5] M. Laifenfeld and A. Trachtenberg, “Disjoint identifying codes for arbitrary graphs,”IEEE International Symposium on Information
Theory, Adelaide, Australia, 4-9 Sept 2005.

[6] I. Honkala, M. Karpovsky, and L. Levitin, “On robust and dynamic identifying codes,”IEEE Transactions on Information Theory,
vol. 52, no. 2, pp. 599–612, February 2006.

[7] T. Y. Berger-Wolf, W. E. Hart, and J. Saia, “Discrete sensor placement problems in distribution networks,”Journal of Mathematical
and Computer Modelling, vol. 42, no. 13, pp. 1385–1396, Dec 2005.

[8] M. Laifenfeld, A. Trachtenberg, R. Cohen, and D. Starobinski, “Joint monitoring and routing in wireless sensor networks using robust
identifying codes,”IEEE Broadnets 2007, September 2007.

[9] M. Laifenfeld, A. Trachtenberg, and T. Berger-Wolf, “Identifying codes and the set cover problem,”Proceedings of the 44th Annual
Allerton Conference on Communication, Control, and Computing, Sept 2006.

[10] S. Gravier and J. Moncel, “Construction of codes identifying sets of vertices,”The Electronic Journal of Combinatorics, vol. 12, no. 1,
2005.

[11] I. Honkala and A. Lobstein, “On identifying codes in binary Hamming spaces,”Journal of Combinatorial Theory, Series A, vol. 99,
no. 2, pp. 232–243, 2002.

[12] Y. Ben-Haim and S. Litsyn, “Exact minimum density of codes identifying vertices in the square grid,”SIAM Journal of Discrete
Mathematics, vol. 19, no. 1, pp. 69–82, 2005.

[13] S. R. T. Laihonen, “Codes identifying sets of vertices,” Lecture Notes in Computer Science 2227, 2001.
[14] J. Moncel, A. Frieze, R. Martin, M. Ruszink, and C. Smyth, “Identifying codes in random networks,”IEEE International Symposium

on Information Theory, Adelaide, 4-9 Sept., 2005.
[15] P. Slater, “Fault-tolerant locating-dominating sets,” Discrete Mathematics, vol. 249, pp. 179–189, 2002.
[16] I. Charon, O. Hudry, and A. Lobstein, “Identifying and locating-dominating codes: NP-completeness results for directed graphs,”IEEE

Transactions on Information Theory, vol. 48, no. 8, pp. 2192–2200, August 2002.
[17] S. Gravier, R. Klasing, and J. Moncel, “Hardness results and approximation algorithms for identifying codes and locating-dominating

codes in graphs,” LaBRI, Technical Report RR-1417-06, November 2006.

34

[18] J. Suomela, “Approximability of identifying codes andlocating–dominating codes,”Information Processing Letters, vol. 103, no. 1,
pp. 28–33, 2007.

[19] K. B. Lakshmanan, D. J. Rosenkrantz, and S. S. Ravi, “Alarm placement in systems with fault propagation,”Theoretical Computer
Science, vol. 243, no. 1-2, pp. 269–288, 2000.

[20] I. Charon, O. Hudry, and A. Lobstein, “Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard,”
Theoretical Computer Science, vol. 290, no. 3, pp. 2109–2120, 2003.

[21] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to Algorithms. MIT Press, 2001.
[22] I. Charon, S. Gravier, O. Hudry, A. Lobstein, M. Mollard, and J. Moncel, “A linear algorithm for minimum 1-identifying codes in

oriented trees,”Discrete Applied Mathematics, vol. 154, no. 8, pp. 1246–1253, 2006.
[23] G. D. Cohen, I. S. Honkala, A. Lobstein, and G. Zémor, “New bounds for codes identifying vertices in graphs.”Electronic Journal of

Combinatorics, vol. 6, 1999.
[24] I. Charon, I. S. Honkala, O. Hudry, and A. Lobstein, “General bounds for identifying codes in some infinite regular graphs.”Electronic

Journal of Combinatorics, vol. 8, no. 1, 2001.
[25] I. Charon, O. Hudry, and A. Lobstein, “Identifying codes with small radius in some infinite regular graphs.”Electronic Journal of

Combinatorics, vol. 9, no. 1, 2002.
[26] I. Charon, I. S. Honkala, O. Hudry, and A. Lobstein, “Theminimum density of an identifying code in the king lattice.”Discrete

Mathematics, vol. 276, no. 1-3, pp. 95–109, 2004.
[27] J. Moncel, “On graphs ofn vertices having an identifying code of cardinality⌈log2(n + 1)⌉,” Discrete Applied Mathematics, vol. 154,

no. 14, pp. 2032–2039, 2006.
[28] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the ACM, vol. 45, no. 4, pp. 634–652, 1998.
[29] P. Berman, B. DasGupta, and M.-Y. Kao, “Tight approximability results for test set problems in bioinformatics,”Journal of Cmputer

and System Sciences, vol. 71, no. 2, pp. 145–162, 2005.
[30] R. Raz and S. Safra, “A sub-constant error-probabilitylow-degree test, and a sub-constant error-probability pcpcharacterization of np,”

in STOC ’97: Proceedings of the twenty-ninth annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM Press,
1997, pp. 475–484.

[31] T. Müller and J.-S. Sereni, “Identifying and locating-dominating codes in (random) geometric networks,” 2007, submittedto
Combinatorics, Probability and Computing. ITI Series 2006-323 and KAM-DIMATIA Series 2006-797.

[32] L. Lovasz, “On the ratio of optimal integral and fractional covers,”Discrete Mathematics, vol. 13, pp. 383–390, 1975.
[33] D. S. Johnson, “Approximation algorithms for combinatorial problems,”Journal of Computer and System Sciences, vol. 9, pp. 256–278,

1974.
[34] P. Slavik, “A tight analysis of the greedy algorithm forset cover,”In Proceedings of the 28th Annual ACM Symposium on Theory of

Computing (Philadelphia, Pa.), pp. 435–439, May 1996.
[35] S. Rajagopalan and V. Vazirani, “Primal-dual RNC approximation algorithms for set cover and covering integer programs,” SIAM

Journal on Computing, vol. 28, pp. 525–540, 1998.
[36] V. Vazirani, Approximation Algorithms. Springer-Verlag, July 2001.
[37] K. M. J. D. Bontridder, B. J. Lageweg, J. K. Lenstra, J. B.Orlin, and L. Stougie, “Branch-and-bound algorithms for the test cover

problem,” inESA ’02: Proceedings of the 10th Annual European Symposium on Algorithms. London, UK: Springer-Verlag, 2002, pp.
223–233.

[38] K. M. J. D. Bontridder, B. V. Halldrsson, M. M. Halldrsson, C. A. J. Hurkens, J. K. Lenstra, R. Ravi, and L. Stougie, “Approximation
algorithms for the test cover problem,”Mathematical Programming-B 98, no. 1-3, pp. 477–491, 2003.

[39] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness. New York, NY, USA:
W. H. Freeman & Co., 1979.

[40] B. M. E. Moret and H. D. Shapiro, “On minimizing a set of tests,” SIAM Journal of Scientific & Statistical Computing., vol. 6, pp.
983–1003, 1985.

[41] M. Naor, L. J. Schulman, and A. Srinivasan, “Splitters and near-optimal derandomization,” inIEEE Symposium on Foundations of
Computer Science, 1995, pp. 182–191. [Online]. Available: citeseer.ist.psu.edu/naor95splitters.html

[42] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein,Covering Codes. Elsevier, 1997.
[43] Y. Bartal, J. W. Byers, and D. Raz, “Global optimizationusing local information with applications to flow control,”in IEEE

Symposium on Foundations of Computer Science, 1997, pp. 303–312. [Online]. Available: citeseer.ist.psu.edu/bartal97global.html
[44] F. Kuhn and R. Wattenhofer, “Constant-time distributed dominating set approximation,”Proceedings of the 22nd ACM Symposium on

Principles of Distributed Computing (PODC’03), July 2003. [Online]. Available: citeseer.ist.psu.edu/kuhn03constanttime.html
[45] M. Laifenfeld, “Coding for network applications: Robust identification and distributed resource allocation,” Ph.D. dissertation, Boston

University, 2007.

