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Abstract

The identifying code problenfor a given graph involves finding a minimum set of verticesoaé neighbor-
hoods uniquely overlap at any given graph vertex. Initiaffroduced in 1998, this problem has demonstrated
its fundamental nature through a wide variety of applicadiosuch as fault diagnosis, location detection, and
environmental monitoring, in addition to deep connectitmsformation theory, superimposed and covering codes,
and tilings. This work establishes efficient reductionsagetn the identifying code problem and the well-known set-
covering problem, resulting in a tight hardness of appration result and novel, provably tight polynomial-time
approximations. The main results are also extended-tobust identifying codes and analogowset (2r + 1)-
multicover problems. Finally, empirical support is provided for théeefiveness of the proposed approximations,
including good constructions for well-known topologiexBas infinite two-dimensional grids.
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I. INTRODUCTION

An identifying code is a subset of vertices in a graph withghaperty that the (incoming) neighborhood
of any vertex has a unique intersection with the code. Fomg@, a three dimensional cube (as depicted
in Figure 1) has a three-vertex identifying code (labejéd2, 3} in the figure). The neighborhood of each
vertex in the graph intersects uniquely with this code, amchsan intersection is called adentifying
set; given an identifying set, one can thus uniquely identifg trertex in the graph that produced it. In
this case, the code provided is also optimal, because ordsradeasig 8 = 3 code vertices to produce
8 distinct identifying sets (corresponding to tRevertices of the cube).The goal of theidentifying code
problemis to find an identifying code of minimum cardinality for anyven graph.

Identifying codes have been studied extensively since tih&ioduction in 1998 [1], and they have
formed a fundamental basis for a wide variety of theoretwatk and practical applications.
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IUnlike traditional identifying codes, the empty set is ddesed a valid identifying set here.

2As is common, we use the notatidg(z) to denotelog, ().
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Fig. 1. Identifying code example. Solid vertices repreg@rtcode{1, 2, 3}. The unique intersections of the vertices neighborhoodk wi
the code (identifying sets) appear in braces.

1) Applications: The initial application for identifying codes was to faulagnosis in multiprocessor
systems [1]. In this application, testers are positionethan system according to an identifying code so
that faults can be localized to a unique processor by consgl®nly which testers detect faults within
their neighborhood [1].

Identifying codes have since been extended and appliec¢#bidm detection in hostile environments [2—
4], to energy balancing of such systems [5], and to dynamiatlon detection agents [6]. In the first
example, a coverage area is quantized into a finite numbdusfets. In the mathematical model, the set
of clusters corresponds to vertices in a graph, and edgessemt averaged radio connectivity between
clusters. Beacons are then placed in the clusters accalengidentifying code, allowing a user traversing
the coverage area to detect her location (cluster) acoprtirthe set of beacons she receives.

More recently, these codes were extended to applicationsrfaronmental monitoring [7], and joint
monitoring and routing in wireless sensor networks [8]. e former, sensors are placed in a subset of
junctions of a utility network such as an air ventilation teys, a water supply network, or a river bed, etc,
in order to detect pollutants. Based on the timing and naifitbe sensors’ reports, a centralized processor
is able to detect and determine the pollution source. Theleno of placing the smallest number of sensors
was found to be a variant of the identifying code problem Fr wireless networks, the identification
property of identifying codes was used to uniquely labelsses in a network, providing natural means
of routing on top of the traditional monitoring functionizi[8].

2) Theoretical connectiong=rom a theoretical perspective, identifying codes areatiolinked to error-
correcting codes, specifically, super-imposed codes [[1 ct@ering codes [1, 6], and locating-dominating
sets [11]. The intimate relationship between identifyimgdes and super-imposed codes was initially
pointed out in [1] and further developed in [10, 12-14], pdovg optimal constructions and tight bounds
on code size. Locating-dominating sets are very similardentifying codes with the subtle difference
that only the vertices not in the locating-dominating set mequired to have unique identifying sets [15].
Unlike identifying codes, every graph admits a trivial lbong-dominating set - the entire set of vertices.
Links to other well-studied problems can be found in therditere: to the 3-satisfiability problem in [16],
to the set cover problem in [9,17], to the dominating-set aladlm placement problems in [18, 19], and
to the set multicover and test cover problems in [9]. The ¢ester problem is, in fact, a generalization
of the identifying code problem, and some of its results ppptoughout.

Many variants of identifying codes have emerged since theyevirst introduced. In radiug > 1)
identifying codes [1], the neighborhood ofis redefined to include all vertices at distarce from v. The
(1, < l)-identifying codes [10, 13] can simultaneously identifyyasubset of at most vertices. Dynamic
identifying codes are identifying codes whose codewordsfa walk through the graph. This variant
was studied in [6] with applications to dynamic agents faifaetection in multiprocessor arrayRobust
identifying codes were suggested in [4] for applicationoghtion detection in harsh environments, where



vertices and connecting edges are likely to fail. Intuiiyen r-robust identifying code is a code that
maintains its identification property in the event of a remloor insertion of up tor different vertices
from all identifying sets. In the example of Figure 1, the skall vertices forms a 1-robust identifying
code for the cube. The observation thatobust identifying codes are error correcting codes ofimum
Hamming distance ofr + 1 was made in [4]. Theoretical bounds closely related to dogecodes, and
some efficient constructions for periodic geometries wengher developed in [6]. Finally, the source
identification problem, a variant through which the sourdepollutant (traveling according to a given
graph) is to be identified, has been shown to be NP-completédth the general version [9] and a
time-constrained version [7].

3) Approximating the optimal identifying codén the most general situation, finding a minimum size
identifying code for arbitrary undirected and directed gra was proven to be NP-complete in [16, 20],
based on a reduction from the 3-satisfiability problem [Z&].exception to this result is the specific case
of directed [22] and undirected trees, for which there exetpolynomial-time algorithm for finding a
minimum radiusl identifying code.

Significant efforts in the research of identifying codes #melr variants have focused on finding efficient
constructions in two dimensional lattices, grids and Hangrspaces (see [12, 23-26], and [6] for a sum-
mary of recent results). Until recently, little has been Igii®ed towards a polynomial time approximation
algorithm for arbitrary graphs. In [2, 4] a polynomial-tingeeedy heuristic and its distributed variant were
suggested for obtaining an identifying code in an arbitgngph, and simulations showed it to work well
over random graphs. Unfortunately, no guarantees for tladitgof the obtained solution were presented,
and Moncel later proved in [27] that no such guarantees.exist

Independently and in parallel, several groups have beékiriganto the question of approximability of
identifying codes [9, 17, 18], obtaining polynomial-timppaoximations within arO(log |V|) factor of the
optimal solution. In [18] the authors tied identifying cad® the dominating set problem, thereby showing
that, under common complexity assumptions, approximaitiegtifying codes within a sub-logarithmic
factor is intractable. More precisely, it has been shown ithentifying codes can be approximated within
O(log |V']) factor, but they can not be approximated in polynomial timiéhiw 1 + «log |V/| factor for
somea > 0. In our initial work [9], we have provided an explicit valuerfa by demonstrating that
identifying codes are not approximable withinla|V| factor unless NPRc DTIME™ &"s!VI: our result
is based on a reduction from the set cover problem, and wetusecarry over the hardness result of
Feige [28]. In this paper we further show that this bound ghttiby adapting an algorithm developed by
Berman et al. in [29] that attains this bound within a smalllifide constant. Using our reduction and
with some additional work, other set cover hardness regalts, [30]) may also be applied, obtaining
related, but distinctly different, results. We also addrédse approximability of robust identifying codes
by establishing a link to the set multi-cover problem.

A. Contributions

The main contribution of this work is to provide good polynairtime approximations to the identifying
code problem, and to address the fundamental theoretiodtlof such approximations. Specifically, we
show that no polynomial-time algorithm can approximatenidging codes onarbitrary graphswithin a
In |V| factor under commonly used complexity assumptions. Magave show that a known test covering
approximation [29] can be adapted to find identifying codémse size is within d + In|V| factor of
optimal. The same fundamental questions were researchedhieys in parallel and independently [17,
18] providing similar, but weaker, results.

Our second contribution in this work is to provide good apjmmations to the robust identifying codes
problem by tying it to the set multicover problem. Our appnoation is guaranteed to produce robust
identifying codes that are within a factor of 2 of the themait limit. We also develop two flavors of
distributed algorithms that may be used for practical impatations in network applications.



B. Organization

The rest of the paper is organized as follows: We give forn&dinitions of the identifying code and
the set cover problems in Section Il. In Section Ill, we showeduction from the set cover problem.
In Section IV, we provide ar®(log n)-approximation algorithm for the identifying code problebased
on our reduction, and we show that this approximation ratiaight. We then generalize this result in
Section V, providing a hardness of approximation resultieridentifying code problem, together with an
approximation (based on [29]), which attains this boundaip small additive constant. In Section VI, we
discuss robust identifying codes and provide an approxgndtased on their relation to the set multi-cover
problem. Finally in Section VI, we provide distributed inephentations of our approximation algorithm,
in addition to simulations results on random graphs andsgrid

Il. FORMAL DEFINITIONS AND RELATED WORK
A. ldentifying codes

Given a directed grapli = (V, E), the incoming ball B (v) consists of vertices that have an edge
directed towards € V, together withv; likewise, theoutgoing ball B~ (v) consists of vertices that have
an edge directed away from together withv. For undirected graphs, we shall simply use the notation
B(v) = B*(v) = B~ (v).

As such, an identifying code is a set of vertices in a graptvith the property that any incoming ball
in G has a unique intersection with the identifying code. Morecjsely, a non-empty subsé€tC V is
called acodeand its elements areodewords For a given codeC, the identifying set/c(v) of a vertex
v is defined to be the codewords directed towardse., Ic(v) = BT (v) N C (if C is not specified, it is
assumed to be the set of all verticé$. A codeC is thus anidentifying codef each identifying set of
the code is unique, or in other word&, v € V. u = v «— Ic(u) = Ic(v). Note that this definition
does not include the standard assumption (which we will mak&ection VI) that all identifying sets are
non-empty.

1) Random graphsRecently, random graphs and random geometric graphs wateedtin the context
of identifying codes [14, 31]. In [14] it was shown that foryagptotically large random graphs, any subset
of a certain threshold size (logarithmic in the size of theplr) is almost surely an identifying code. It
was also shown that the threshold is asymptotically shiagp,the probability of finding an identifying
code of slightly smaller size asymptotically approaches.zZenit disk geometric random graphs, in which
vertices are placed on a two-dimensional plane and comhettibeir distance is less than some unit,
were studied in [31]. There it was shown that, unlike larged@m graphs, most of the large unit-disk
geometric random graphs do not possess identifying codes.

In contrast to very large random graphs, finding a minimure gientifying code for arbitrary undirected
and directed graphs was proven to be NP-complete in [16b28kd on a reduction from the 3-satisfiability
problem.

2) Approximations:An initial attempt to develop a polynomial-time approximosatwas made in [2, 4].
Although the approximation worked well over random graphgas later proven in [27] to have no general
guarantees for the quality of the obtained solution. Momendly, several groups have been independently
looking into the question of approximability of identififgncodes and dominating - locating sets [9, 17,
18], providing hardness of approximation results and poigial time algorithms that approximate the
optimal identifying code within a(log|V'|) factor.

B. Covering problems

1) Set cover:Let U be a base set of: elements and leS be a family of subsetsof U. A cover
C C S is a family of subsets whose unioni$. The set cover problenasks to find a covef’ of smallest
cardinality. The set cover problem is one of the oldest andtretudied NP-hard problems [21]. It admits

3The term “family of subsets” is used to refer to a set of subset



the following greedy approximation: at each step, and wntilaustion, choose the heretofore unselected
set inS that covers the largest number of uncovered elements indke bet.

The performance ratio of the greedy set cover algorithm ks lzeen well-studied. The classic results
of Lovasz and Johnson [32, 33] showed thgleedy/ smin = ©(Inm), where syin and sgreedy are the
minimum and the greedy covers, andis the size of the base set. Later Slavik [34] sharpened #tis r
further, reaching a difference of less thani between the lower and upper bounds on the performance
ratio. Recent studies on the hardness of approximationeosét cover problem can be found in [28, 30].
Raz and Safra [30] showed that the set cover problem is N&-&wad that it can not be approximated
by a polynomial algorithm within & (logm) factor from an optimal solution unless P=NP. A tighter
result was obtained by Feige [28] who showed that for any 0, no polynomial-time algorithm can
approximate the minimum set cover withiit — ¢) Inm factor unless NP has deterministic algorithms
operating in slightly super-polynomial timee., NP C TIME [m®U°sls™)] suggesting that the greedy
approach is one of the best polynomial approximations toptioblem.

2) Multicover: The minimum set-multicoverproblem is a natural generalization of the minimum set
cover problem, in which one is given a palJ,S) and seeks the smallest subsetSothat covers every
element inU at leastk times (we defer more formal definitions to section VI). Ofténs problem is
addressed as a special case of a more general family of mtggenization problems - theovering
integer problem35, 36].

The set multicover problem admits a similar greedy heuristithe set cover problem: in each iteration
select the set which covers the maximum number of henulticovered elements. It is well known [36]
that the performance guarantee of this heuristic is uppentded byl + log o, where« is the largest
set’s size.

3) Test cover:Another closely related problem is thest cover problemThis problem asks to find
the smallest seT' of given testsl; € U such that any paix,y € U is differentiated by at least one test
T, € T (i.e., [{z,y} N T;| = 1). The test covering problem appears naturally in identificeproblems,
with roots in an agricultural study more than 20 years aggair@ng interest recently due to applications
in bioinformatics [37, 38].

Garey and Johnson [39] showed the test cover problem to beawiPand later Moret and Shapiro [40]
suggested greedy approximations based on a reduction teetheover problem. More recent work [37,
38] studied different branch-and-bound approximationd astablished a hardness of approximation by
extending the reduction in [40], and using a result of FeRff.[Berman et al. [29] also suggested a novel
greedy approximation and showed its performance ratio twvitlein a small constant from the hardness
result of [38].

The test cover is clearly a general case of the identifyindecproblem, with tests corresponding to
outgoing balls, and as such many of its results can be apglredtly e.g., [29]. Other results, such as
the hardness of approximation, require some work due to dpendencies imposed by graph geography
on nearby identifying sets. As such, the approach we use atiddelV bears some clear similarities to
that of [37].

I1l. IDENTIFYING CODES AND THE SET COVER PROBLEM

In this section, we establish a reduction between the ifj@émgi codes and the set cover problems. This
reduction will serve as a basis for our subsequent apprdiomalgorithms.
Formally, we connect the following problems:
a) SET-COVER:
| NSTANCE: Set.S of subsets of a base skt
SOLUTION: A setS’ C S such thatU,cqrs = U.
MEASURE:  The size of the coven:s’|.



b) ID-CODE:
| NSTANCE: GraphG = (V, E).
SOLUTI ON: A setC' C V that is an identifying code of:.
MEASURE:  The size of the identifying codeC|.

A. ID-CODE <p SET-COVER

We first show a reduction from the minimum identifying cod@ldem to the set cover problem. We
state the main theorem first and then we provide several tlefisiand lemmas that are used in its proof.

Theorem 1 Given a graphG of n vertices, finding an identifying code requires no more caajmns
than a set cover solution over a base seti‘éffz‘—l) elements together witlh(n3) operations (scalar

multiplications, additions, or comparisons) on lengthoinary vectors.

Intuitively, the reduction to 4U, S) set cover problem is established by settldgo contain all pairs
of distinct vertices and = {S,cy } to be the set 06, subsets that contain all pairs such thas in the
incoming ball of exactly one of them. We start with some notatind formal definitions to bootstrap the
reduction.

Definition 1 The difference setD(u,v) is defined to be the symmetric difference between the ingomin
balls of verticesu,v € V:

D(u,v) = B*(u)® BT (v)
= [Bf(u) — B"(v)] U [BT(v) — BT (u)],
where subtraction denotes set difference. We shall alsotddwy D (u, v) the intersection of the codé
with D(u,v), namelyD¢(u,v) = D(u,v) N C.
It is easy to see thaDc¢(u,v) is the symmetric difference between the identifying setgedices

u,v € V, namely
Dc(u,v) = Ic(u) ® Ie(v).

We shall also usé/ to denote the set of all pairs of distinct vertices,, U = {(u, 2)|u # z € V}.
Finally, the distinguishing sebf a vertexv € V' is the set of vertex pairg, z) for whichv is a member
of their difference set:
0y ={(u,2) € U|v € D(u, 2)}.

Note that the distinguishing set is independent of the d8de
The following Lemma follows trivially from the definition ofn identifying code.

Lemma 1 A codeC is an identifying code iff) & { D¢ (u, 2)|(u, 2) € U}.

Alternatively, we can define an identifying code in terms dtidguishing sets.

Lemma 2 C is an identifying code iff the family of the distinguishingtss of its vertices cover§ =

{(u,2) € V?|u # z}.

Proof: From Lemma 1 forC to be an identifying code all difference sets should haveeastl one
member. From the definition of distinguishing sets it theliofes that for any(u,v) € U there exists
somec € C such that(u,v) € 6.. HencelJ,.. 6. = U. The other direction follows similarly. ]

Proof of Theorem 1: Consider the following construction of an identifying code
ID(G) — C.
1) Compute the identifying sets/ (u) |u € V}.



2) Compute the distinguishing sets= {4, |u € V'}.

3) ComputeC <« Minimum — Set — Cover(U, A).

4) OutputC «— {u € V| 4§, € C}, i.e., vertices corresponding to distinguishing sets in the mimm

cover.

The resulting code(, is guaranteed by Lemma 2 to be an identifying code, and thienality of the
set cover in step 3 guarantees that no smaller identifyirde a@an be found. To complete the proof, we
observe that computing the identifying sd{s:) naively requiresd(n?) additions of binary vectors, and
computingA requiresn operations for each of thé("?;l) elements inU|. 1

As a simple example of the construction behind Theorem 1siden the graph in Figure 1. The
identifying sets and distinguishing sets of the vertices ar

veV I(v) 0y

{0,1,2,4 {(0,3),(0,5),(0,6),(0,7),(1,3),(1,5),.} -
{0,1,3,53{(0,2),(0,4),(0,6),(0,7),(1,2),(1,4),.} .
{0,2,3,8 {(0,1),(0,4),(0,6),(0,7),(1,0),(1,2),.} .
{1,2,3,2

{0,4,5,6

{1,4,5,%

{2,4,6,7

{3,5,6,%

The corresponding set-cover problem would be taken overse lsat{(u,z)|0 < u # z < 7} and
subset family consisting of all th&, in the table.

~N~No ook WONEFEO

B. SET-COVERp ID-CODE
We next reduce an identifying code problem to a set coverlprob

Theorem 2 Given a base setl of m elements and a family of subsesof cardinality s = |S|, finding
the optimal set cover requires no more computation thanrmdin identifying code over a directed graph
of n < 2max(s,m + 1) +1g(m + 1) vertices with additionalD(m + s) operations.

The following version of this theorem for undirected grapti be presented in Section V.

Corollary 1 Finding an optimal set cover with a base set of at least 4 elspaequires no more
computation than finding an identifying code over amdirectedgraph of 2m + max(s,m +1) < n <
3m + max(s,m + 1) vertices with additionaD(ms?) operations.

To prove Theorem 2, we first provide and analyze a constmcifca specific directed graph (that will
be used in the reduction) from an instance of the set coveylgmo

Construction 1 Let U = {u4,...,u,,} be a base set and = {S;,...,S,,.1} be a family of subsets of
U. Then we construct a directed gragh(V, ) with n = 2m + 1 verticesV = {v,...,v,} and edges
E such that

1) The outgoing ball of each vertex ... v,,,, is constructed to be

B(w) = {V — f(S;) otherwise. @

where the one-to-one mapping: U — V is defined byf(u;) = v; for all i < m and f(S) =

UueSf(“)‘



U={v}, va, V3} Si={vi}, S5={vi o), S5={vah Sy={vy,vsh

Vi, Vo, v3,V5}
Vi Vs {3, vy,vs)

V2, Va4 Ve}
Vo o (V3 Vy,Ve)

{vu vl v, Voo Vs vg,vy)

Vs, Va} Vy

Fig. 2. An example of our reduction framework. Incoming bare noted near their corresponding vertices.

2) The outgoing balls of the remaining vertices. ... v, are constructed to be:

B_(Uz’) = {Uiavi—m—1}~

We next provide several properties of an arbitrary idemifycodeC for the graphG(V, E); it might be
useful to refer to Figure 2, which demonstrates our consttn®n a simple example, when reading these
properties. Recall that we use the notatibfw;, v;) to denote the difference set of the péit,v;) € V,
and the notatiord,, to denote the distinguishing set of vertax We mtroduce as additional notation the

setU = {(vl,vaH) |7 <m} and corresponding operatodi —5nT.

Property 1 Any identifying code of7(V, E') must contain all vertices,, 5 ... v,
Property 2 For all £ > m + 2, the distinguishing se(i:: is empty.

Property 3 (C(_i)s an identifying code if and only ifv,, o ...v,} € C and {5 |i<m+1andv;, € C}
is a cover of U .

Proof of Properties 1-3: By constructionB™(v,,,1) does not contain any vertex of index larger than
m+1, namelyB* (vy,11) N{vmi2, ..., v, } = 0. For the restj.e., j < m+1, v; isin B*(v,,41) if and only
if v; € BT (v;) for all i > m + 2. It follows that the difference set®(v,,11,v;) = {v;} for all i > m + 2.

To complete the proof of Property 1 we use Lemma 2 that imphes{v;|: > m + 2} must be contained
in any identifying codeC .

Property 2 is straightforward.

To prove the forvvard direction of Property 3, note that Lenm2nanplies thatéve(c covers U . However,
Property 2 gives tha@,k = () for all £ > m + 1, and what remains, together with Property 1 completes
this direction of the proof.

For the converse direction, we show that the latter two diomb in the property statement imply that
all difference sets are non-empty, so t(h_)at Lemma 1 applieshmv thatC is an identifying code. We
first considerD¢(v;, v;) where (v;,v;) € U ; for such pairs inU, our construction prowdes that is
either in t{h_e> identifying sefc(v;) or else inl¢(v;), so thatDe(v;, v;) # 0 for all (v;,v;) € T For pairs
(vi,vj) ¢ U and allC , we observe that

D(Uiavj)m{vm-i-%mavn} 7& ®a (2)

by considering two possibilities far (assumed< ; without loss of generality): (i} < m, whereinlc(v;)
containsv; +,,+1 andIc(v;) cannot; or (ii)j > m + 1, whereinl¢(v;) containsv; and I¢(v;) cannot. §



Note that Property 3 produces a one-to-one correspondegteesén identifying codes and set covers
using distinguishing sets, so that, in fact, a minimum idginty code produces a minimum set cover. We
next make use of this property to rgﬁte identifying codemmoriginal_%ubset&

The family of distinguishing set$d,,|i < m + 1} over the supportU is equivalent to the original
family of subsetsS over the supporlU. We use this to develop the following lemma.

Lemma 3 C is an identifying code of/(V, F) if and only if {v,,12...v,} CCand{S; |v; € C,i <
m + 1} is a set cover of U, S).

Proof: Based on Propertyg, all we need to show is thaE_t)here iS a@oed mapping between the
family of distinguishing setqd,,|: < m + 1} over the supportU and the original family of subsetS
over the support. In the following the indices, j are taken to bé < m+1, and;j < m. By construction
if u; ¢ S, then verticesy; and v;;.,.1 are either both in or both not iB~(v;) . Otherwise ifu; € S,
then only one of them is itB~ (v;). It follows that (v;, vj1m,41) € 0, if and only if u; € S;, completing
the proof. 1

Proof of Theorem 2: Given a base sdt of sizem and a family of subset§ of size s, we trivially
produce setdJ’ and S’ that fit Construction 1 as follows: (i) if < m + 1, thenU’ is derived fromU
by padding it withz new items, where: is the smallest integer satisfying + =+ 1 < s+ 2%, andS’ is
derived fromS by addingm +x 41— s distinct subsets of these new items (note that 1+1gm-+1); (ii)
otherwise,U’ is derived fromU by padding it withs — 1 —m new items, and these items are also added
to each set inS to form S’. Lemma 3 then assures that a minimum identifying code of #werted
graph corresponds to a minimum set cover(of, S). 1

IV. APPROXIMATING THE
OPTIMAL IDENTIFYING CODE

Given a base sdiJ of sizem and a family of subsets, there is a well-known greedy approximation
of the optimal resulting set cover. This polynomial-timgaithm repeatedly picks (until exhaustion) an
unused set irb that covers the largest number of remaining elements of he performance ratio of this
algorithm was shown by Slavik [34] to be

s
greedy _ Inm —Inlnm + 6(1), (3)

Smin
where smin and sgreedy represent the minimum and greedily produced set coverpeotisely.
The reduction in Theorem 1 thus provides a straightforwaethmd of translating the greedy set covering
algorithm into the greedy identifying code constructionAllgorithm 1.

Algorithm 1 Greedy ID-codeID — GREEDY(G)
We start with a graplt; = (V, F)). The greedy set cover approximation is denat€d- GREEDY(U, S).

ID — GREEDY(G) — Creedy

1. Compute{!(u)|u € V}.

2. ComputeA = {§,|u € V'}.

3. C < SC — GREEDY(U, A)

4 OutputCyeeay < {u € V]9, € C}

The remainder of this section is devoted to proving that #guction in Theorem 1 is tight enough
to maintain the approximation guarantees of the set covittisn. This result is formalized with the
following theorem.
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Theorem 3 There exists a non-negative constantsuch that, for every grapli’ of n vertices,

C
“greedy < ¢ lnn,
Cmin
where cmin and cgreedy are the sizes of the minimum and greedy identifying codepeively.
Furthermore, there exists a non-negative consiant: ¢; and a family of graphs for which

Cgreedy S
Cmin
The upper bound of Theorem 3 follows from the fact that thexdfarmation in Theorem 1 maps
identifying codes om vertices to set covers over base sets of §l§2§1—) As such, since the greedy set
cover algorithm has an approximation guaranteég%éj]i%dy< ¢y Inm, we have that

cyInn.

Cgreedy< ¢ In nin=1) < 2¢i Inn. 4)
Cmin 2
We will prove the lower bound of the theorem by providing agfie example that attains it in Section IV-
B and thereafter.
As a basis for the lower bound example, we first provide sonfmitlens and technical lemmae.

A. Groundwork for the lower bound
The following lemma will be instrumental in our lower boundnstruction.

Lemma 4 Consider a collectioh of cardinality m of non-empty setsM = [M;, ..., M,,], over a base
setU = {uy,...,u} of sizelg(m) + 2 < k < m. Then there is a family o?m different subsets
Z =A{14,...,Is,} such that:

e u; €I, forall i <k, and

e M;=1®dI,, forall i <m.

Proof: Our proof constructively generat&s We start by considering the first setiM; and arbitrarily
adding toZ a pair of setd; andI,,,, whose symmetric difference & ©1,,,, = M;. Note that there are
at least2's(™+1 > 2, such pairs, since the first set in the pair can be any subshedfdse set containing
u1, and the second set in the pair would thus be determined elyidpy the desired symmetric difference.
As such, we can safely continue to addlistinct pairs of sets iff with the property thal,; By 1 = M;. 8

For expediency, we shall henceforth assume, without losgeoierality, that the elements @f are
arranged so thak; ® 1., = M; for all i < m.

B. Lower bound construction

We now develop the construction that will provide our desi@proximation lower bound. Our
construction transforms certain instances of the set cpveblem into an identifying code problem.
The salient point of the construction is that it provides aplieit link between the cardinalities of the
minimum (or greedy) set covers in one problem and the mininfamgreedy) identifying codes in the
other problem. We shall then make use of an existing resutenliterature to show that the desired set
cover instances exist. The construction is followed by aitkdd example.

Construction 2 Let(U = {uy,...u},S = {S1, ...Som_i }) be a set cover problem. Furthermore, &#in,
Syreedys Smin» @Nd sgreedye @ minimum and greedy set covers and their correspondirgjrzities, and

“We use the term “collection” to represent a multiset, whasetents can have multiplicities. The contents of a coltectire enclosed in
square brackets.g.,[1, 1, 3, 2, 2].
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assume thatn = 2F and sy, > k + 2. Without loss of generality, assume that the sulsgt, appears
first in S, namelySmin = {S1, ..., SSmin}'
We then generate a grapgh from (U, S) as follows. The graph will have = 2m vertices, with vertex
v; corresponding to se$; for i < m. To determine the edges of the graph, we shall make use of two
collections:
« M = [M,] is the collection ofin sets defined bWl; = {v;|S; € Smin and u; € S;}.
« M = [M,] is the collection ofin sets such thaM,; = {v; |S; ¢ Smin andu; € S;}.
Provided thatk > 1, Lemma 4 implies the existence of the set:
« 7 ={1,} having2m distinct sets over the suppofi,, ""“Smin} such that:
- LelL,,=M,foral i <m, and
— v; € I, for all j such thatS; € Spin.
We can also simply generate the following list:
« Z = [I;] having2m sets over the suppoftv
- L®L., =M, forall i <m, and
— v; € I, for all j such thatS; ¢ Smin.
This is done by setting; = () andZ,.,,, = M, for i < m, and then toggling the existencewfand u;,,
in setsZ; andZ,,.,, SO as to satisfy the stated properties.
The edges of- are then defined in terms of the incoming balls of its vertices

BY () =L UL Upi-1 (modm) %)

smintl? o Vom—t + Such that:

wherep; are uniquely chosen subsets over the supgost, 1 ... v} ensuring that all balls include
the vertices themselveisg., v; € B(v;) for j > 2m — k+ 1. This can be done by choosing thie+ 1)-th
set in the power seP ({vom_k+1 - - - Vo }), Where the power set elements are ordered so thatrthej-th
set containsy,,; for j < k.

C. Example of Construction 2
Consider the base s&f = {uy, us, us,...us} and the set

S = {{ur,ua}, {ug, us}, {us, ue}, {ur, urt, {ur, us},

{UQ, Ug}, {U4, U‘5}7 {U,l}, {Ug}, {’I,Lg},

{u4}7 {u5}7 {uﬁ}}
In the terminology of Construction 2, we hake= 3, m = 8, and it is clear that the smallest set covering
for (U,S) is of sizesmin, = 5 because (i) the setsu,,u;} and{u;,us} are the only sets containing,
andug and, thus, must be in a set cover; and (i) after includingéheets, there remain five base elements
that must be covered, but no set contains more than two elsnfen, at least three additional sets are
needed)Smin = {{u1, ua}, {us, us}, {us, ug}, {u1, ur}, {u1,us}} is an example of an optimal set cover.

We then generate a grapfi = (V, E) corresponding to this set cover problem, witim vertices

vy ... V9y,. FoOllowing the construction, we first compute the colleeio\ and M to be:

M = [{U1>U4>'U5}7{'Ul}v{'UZ}v{UZ}v{U3}7{U3}7{U4}7
{vs}]

M = [{08}7{06709}7{067?110},{077011},{?17,@12}7
{’Ulg},w,@]-

Intuitively, thei-th set in M represents the sets that cover the base elementthe minimum set cover,
whereas the-th set in .M represents the sets that coverbut are not in the minimum set cover.
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7 7 P
Vi V2 Vs Uy Vs |VUg VU7 Vg Vg Vip Vi1 Viz Vi3 | V14 Vis Vig
v©w)1 0 O O 0|0 O O 1 O 0 0 0 0 0 0
»w|O 1 0 0 00 O O O 1T O O OO0 O 1
v O 1 1 0 0|0 O O O O 1 O OO0 1 O
u(|o0 1 0 1 00 O O O O O 1 o0]0 1 1
vs 1O O 1 0 1]0 O O O O 0 0 1 1 0 0
vl O 1 1 0|1 0 0 0 O 0 0 0 1 0 1
|l w1 0 0 1 1j]0 1 0O O O O O O} 1 1 O
M(U,S) = w|l 1 1 0 1/0 0 1 0 O O O O|1 1 1
vw||O O O 1 1|0 0 1 1 O 0 0 0 0 0 0
vol|1 1 0 0 O0O}1 0 0 1 1 0 0 0|0 0 1
vp| 0O O 1 0 O0}1 0 O O 1 1 0 o]0 1 O
v2l O 0 0O 1 0|0 1 0 0 O 1 1 0 0 1 1
vi3 0 0 O O 170 1 0 O O 0 1 1 1 0 0
vl 1 O O 1 01 O O 0 O 0 0 1 1 0 1
»ws| 1 0O 0O O 10 1 0 O O O 0 o0o}]1 1 0
g1 110 0/{0 O 1 0 0 0 O O]1 1 1 |

Fig. 3. The adjacency matrix of a gragh(U, S) from Construction 2.

Utilizing Lemma 4, we also construct the sktand the collectiorZ:

T ={ {vi},{vo}. {vo, vs}, {vo, va}, {vs, v5},
{v1,v3, 04}, {v1,v4, 05}, {v1, 09,03, U5},
{va, v}, {v1, va}, {vs}, {va}, {vs},
{0171)4}7{U17U5},{U17U27U3}}

{vo}, {vio}, {vin}, {viz}, {vis}, {ve}, {vr},
{Us},{Us,vg},{vﬁ,vg,vlo},{06,1210,1)11},
{07, V11, U12}, {U7, V12, U13}7 {067 U13}, {U7},

{vs}].

Note thatZ andZ are not unique, in the sense that there is a variety of sudbatioins that are consistent
with the construction.
Finally, applying (5) with the power set

N
I

P ({vis, v15,v16}) = {po,-..,pr}
{(D, {U16}> {015}, {Uls, U16}>
{014}, {U14, 016}, {014, U15}7

{014, V15, Ulﬁ}}

provides the edges of the graph in terms of incoming ballsesfices, the first few of which are:
B+(U1) = {v1,v9}
B* (Uz) = {027 V10, UIG}

BT (v3) = {va,v3,v11,015}
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It is easier to conceptualize the graph in terms of its adjegematrix, as depicted in Figure 3. In
this matrix, each row represents the incoming ball of a werti¥e shall prove with Properties 1- 3 that
Cmin = Smin @Ndcgreedy= Sgreedyt k for this graph, wheren, andcgreeqgyare the minimum and greedy
identifying code cardinalities fo&(U, S).

D. Lower bound

We next provide some properties of Constructlon 2 that welldoucial in completing th(_e> proofgf)the
lower approximation bound of Theorem 3. Heté = {(vi, Vi)t < m}, and recall thatd =N U .

Property 4 Given a set cover problerU, S) with |[U| = 2% = m, |S| = 2m — k, and smjn > k + 2,
Construction 2 produces a gragﬁ with the following properties:
1) The verticesVmin = {v1, ... Us min } associated withSy, form an identifying code off = (V, E).
More precisely,Vmin contalns exactly vertices;, wherei is such thatS; € Sy
2) Lhe distinguishing sets af = {vom—k+1,---, v2am} € V cover all pairs of distinct vertices except
U . More precisely,

ie{2m—k+1...2m} O, =
{(vy,v) |z #u+mandl <u < z<2m}.

3) The modified set cover probleﬁ?, {5: ... 0y, _,}) iS equivalent to the original problertU, S).
>
As such, the functionf : U — U where f ((v;, vi+m)) = u; has the property that

f(30) = Si,

with the usual understanding thgt(S) = Uscsf(s). Note that this also provides an equivalence
between covers in the modified problem and covers in thenaligiroblem.

It may be beneficial to refer to Figure 3 while reading the proo

Proof: The first property follows from the fact that, by design, tlegssinZ are all different, meaning
that the symmetric difference @8 (v;) N Vipin and B*(v;) N Vipin is non-empty for all distinct vertices
v; andv;. Lemma 1 thus implies thaty,;, is an identifying code.

To prove the second property, note that, by constructi®h(v;) N V is unique for everyl < i < m,
and similarly for everym +1 < i < 2m. In fact, only forj =i +m is B*(v;) NV = B*(v;) NV, hence
proving the property.

To prove the third property, we note that, by defInItIQD),Uy+m) € 5 means thav; € D(vj, v;4,).
By construction the supports @ andZ are d|5]0|nt and their union |§v1, ..., Vom_k }. Furthermore, by

the construction of (andZ), (vj, vj4m) € 5 if and only if v; € M; (andl\/I ) wherej < m and vi IS is
taken over the support of (7). Therefore by the definition oM and M it follows that (v;, v; 1) € 5%
if and only if u; € S;, cgnpletlng the proof. Note that this property can be extentb the set of all

distinguishing setsi.e., {d,, ...0.,,_,}. if we allow paddingS of the original set cover problem with
empty subsets. 1

For the next property we need some additional definitions.o8ed”' is said to be a partial code if
C c Cis not an identifying code. Any partial code partitions the set of vertices into indistinguishable
subsets{INDIST;(C) }, where allv € INDIST;(C') have an identical identifying set.

We also need to make @nsistency assumption the implementation o§C — GREEDY, the greedy set
covering algorithm. Specifically, recall thad — GREEDY calls SC — GREEDY with a base sef(v;, v;)|i #
j} and a family of subset$o,}. Our assumption, without loss of generality, will thus beattlvhen
SC — GREEDY must choose between subsé&tsandd,, both covering an equal number of uncovered base el-
ements, it will break ties in favor of the first vertex to appeethe precedence listo,, k11, - - -, Vam, U1, - - -, Vom—k)-
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Property 5 Vertices{vs,, 111, -.., V2, } @re guaranteed to appear in the greedy identifying codg; i GREEDY
(in ID — GREEDY) breaks ties in favor of the distinguishing sets that cqueesd to these vertices.

Proof: In each iteration ofSC — GREEDY (as part ofID — GREEDY) a codeword is added to a partial
code C', which partitions the set of vertices into indistinguistealubsets{INDIST;}. A vertexv ¢ C
distinguishes exactly) , |INDIST, N B~ (v)|[INDIST; \ B~ (v)| undistinguished pairs so far. Clearly this
expression is maximized whegmDIST, N B~ (v)| = [INDIST; \ B~ (v)| for all 4, meaning that the added
codeword partitions each indistinguishable set of vestic¢o two equally-sized indistinguishable subsets
(i.e., one subset containing the codeword in their identifying aetd the other not). In fact, the partial
codeC = {vom_kt1,-- -, V2, } €Xhibits this best-case behavior, in that its vertices simered one after
another, always split the existing indistinguishable saisctly in half. As such, assuming ties are broken
in favor of these verticessC — GREEDY will always choose the vertices @f before any other vertex in
our constructed graph.

The following corollary is a direct consequence of Proms# and 5.

Corollary 2 The directed graplG generated by Construction 2 has the following properties:
1) ¢min = Smin, and
2) Cgreedy= Sgreedyt k-

Pr(c&f:} Property 4.1 implies thaimin < smin- TO prove the other direction by Lemma 1 the distinguishing
setsd,ec should coverU for any identifying codeC. Since by Property 4.3 this set cover problem is
equivalent to the original one, it implies tha}in > smin, thus proving thatmin = Smin-

Under our consistency assumpti€@ — GREEDY breaks ties in favor of the first vertex to appear in
the precedence listo,, ki1, - -, Vom, V1, ..., V2m—g). IN this way, we are guaranteed (by Pro&erty 5) that
ID — GREEDY will first select verticeis,, 11 - - - V2, Which under Property 4.2 will leave on\U | = m
pairs to be covered, and then by Property 4.3 it will selectiees corresponding to a greedy set cover
over the original problem, giving a total 6feeqy+ & Vvertices. ]

We may now conclude the main proof of this section.

Proof of lower bound of Theorem 3: Slavik [34] demonstrated that there exist set cover problem
(U, S) with greedy covers of any siz€yreeqyand minimum covers of sizey,j, > 2 as long as the size
|U| = m can be lower bounded by the functiof(sgreedy smin), Where

In N (K1) <

i+ 22 [k = 1)+ (-2) (1= ()], (6)
forany i/ > 1 > 2,

which can be (weakened and) simplifiedltd + ;2. As such, we can see that, fO§reedy> Smin > 2,
if
! Sgreedy

(7)

Inm > In smin + ,

Smin — 1

thenm > N(sgreedy Smin), @nd a corresponding set cover problem exists.
In order to apply Construction 2 to a set cover probl@h S) produced by Slavik’s construction, we

need to ensure that the construction’s assumptions asdigdtinamely that (iyn = 2%, (i) smin = k + 2,

and that (iii)|S| = 2m — k. In addition, we need the constructed graph to have the protieat Cgc:nL_e:yz
|
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clnn = clnm + ¢In2 for some constant in ozder to have our performance bound; under Corollary 2,
s 7
this corresponds to a condition (iv) th rsee,dy = clnm + c¢In 2, which reduces to
min

Sgreedy: Ckz _|‘ 2Ck + 20 ln 2 (8)

Thus, if we have set cover problems satisfying conditiol%i{), then we can create an identifying code
instance satisfying the lower bound of Theorem 3.

Slavik’s construction trivially satisfies conditions (ipé (ii) since (7) holds for any givem, smin > 2.
Reconciling (7) with (8), we see that condition (iv) is séid whenck? + 2ck + 2cIn2 < k% + (In2 —
In(k + 2))k — In(k + 2), which will clearly hold for any0 < ¢ < 1 whenk is sufficiently large. Finally,
we can transform a set cover probléid, S) satisfying conditions (i),(ii), and (iv) into a proble(U, S’)
satisfying (i)-(iv) as follows:

If |S| < 2m — k, then we can pad with empty sets to ge$’ of cardinality 2m — k£ without breaking
Construction 2.

If |S| > 2m — k, then we can tak&’ = Smin U Sgreed 2yWlthout violating any conditions. This new set
will have cardinality|S’| < smin + sgreedy< (k +2) + ck” +2ck +2cIn 2, which is clearly< m for c =1
and largek. [

V. HARDNESS OFAPPROXIMATION

We next manipulate the reductions of Theorem 2 to carry seerctardness results over to the
identifying code problem. Our work is based on the work ofgee[28] proving that (for any > 0)
no polynomial-time approximation of set cover can attaineafgrmance ratio of(1 — ¢)Inm unless
NPCDTIME(m's'#™). Our proof differs from the more general hardness resul38i for the test cover
problem because of the constraints imposed by the (undalggraph structure on which identifying codes
are defined (rather than the arbitrary “tests” permittedhia test cover problem).

Theorem 4 For any ¢ > 0 the identifying code problem has no polynomial time appm@ation with
performance ratio(1 — ¢) Inn (for directed and undirected graphs) unless NPTIME(n's'8™).

In order to prove the hardness result for undirected graphd fience also for directed graphs) we first
provide a proof of Corollary 1 for the undirected graph caRecall that Corollary 1 states that solving
a set-cover problem is computationally equivalent to figdime optimal identifying code over undirected
graphs. We will then extend the proof to carry over the setecdhardness result of Feige [28]. Other
hardness results with looser complexity assumptions cem la¢ applied to get slightly weaker results.
For example, the work in [30] can be applied under the assomfi® 4 NP) to show inapproximability
within a factor ofclnn for some smaller constant

A. Notation

For convenience of exposition, we shall represent an ucigidegraph by a binary symmetric matiix
In this matrix, rows or columns areharacteristic vector®f correspondindalls, in that theiri-th entries
are 1 if and only if the i-th vertices are in the corresponding ball. Note that thigrixaoincides with
the adjacency matrix of the graph if all its vertices havd kmps. Therefore we will refer t@- as the
adjacencymatrix, bearing in mind that its diagonal is all ones. Sefgrtcodewords for an identifying
code can thus be viewed as selecting columns to form a matrsize n x |C|. We will refer to this
matrix as thecodematrix. It is easy to see that the rows of the code matrix agectimracteristic vectors
of the corresponding identifying sets. A code is thus idgimg if all the rows in the code matrix are
unique, or equivalently, if thédlamming distancdetween every two rows in the code matrix is at least
one. Note that this definition of identifying code differ®in the traditional one by allowing the all zero
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Cr
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101
111
011
100
010
001
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RO, OOO

Fig. 4. An example of the construction & with m = 4, s = 3. The codeC,,+, corresponds to the solid vertices indexed 5,6 and 7.

row in the code matrix. We say that a colundistinguishes or covera pair of rows if it contributes
to their Hamming distance. Hence a code is identifying if doeresponding set of columns covers all
possible pairs of rows.

For example consider the graph in Fig. 4 and its adjacencyixn@t The last 3 columns denoted by
C; represent 3 vertices that constitute a code matrix. Sincéhalrows of C; are unique sequences, and
hence the minimum Hamming distance is at least 1, the codesaisagteed to be identifying. Note th@
corresponds to the minimum identifying code, since at 18ast[lg 7| columns are required to represent
7 different binary sequences. The rolemafands in the figure will become clear in the next section.

We shall also use matrix notation to represent the set congms. Specifically, we can translate a
set cover problem{U,S) of m base elements into a binary matrik € {0,1}™*° whose columns are
the characteristic vectors of thesubsets in the sef. As such, solving the set cover problem trivially
corresponds to finding a minimum set of columns/fvith the property that every row has at least one
non-zero element (see Fig. 5). In this formulation, each obwhe matrix corresponds to an element in
the set cover problem, and we say that a coluromersa row if their intersecting entry of the matrix
contains al.

110
101
111
011
100
010
001

N
W W D
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-1 O Ut
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Il
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— o

(3

o

I

Fig. 5. Example of matrix notation4, of a set cover problem with the base $&t2, .., 7} and a family of subsetsS.

B. Proof of Corollary 1 for undirected graphs

The proof is based on a construction of an undirected gr@pfout of a given arbitrary set cover
problem, A), whose minimum identifying code has a one-to-one mapping minimum set cover of the
given problem.

In the construction ofy we use the well known fact [27] that an undirected graph okrtices can be
constructed with an identifying code of sizgn| (assuming that an empty set is a valid identifying set).
Let C, € {0,1}™<'s"l denote the columns that correspond to such a code, and &t{0, 1}™+**™ >
Cis be them last columns of anm + s adjacency matrix of an undirected graph possessing a size-
lg(m + s) identifying codeC,, s (see Figure 4). Note that we assume here that- lg(m + s), an
assumption that will be justified later. We further divideinto two matrices,B, and B,,,, which include
the firsts and lastm rows of B, respectively. Note thaB,, is symmetric by definition.

The first step in the construction is to tie the arbitrary dasiens of the set cover problen (i.e.,
the number of base elements and the number of subsety while keeping the minimum set cover
unchanged. Toward this end we say that set cover prob(@ms) and (U, S) are equivalentif S C S,
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and if no minimum set covefC of (U,S) includes subsets fron§ — S. Equivalently we can say that
equivalent set cover problems have identical minimum seérso .

Given an arbitrary set cover probler, we generate an equivalent set cover probleimbpy adding
empty subsets, or equivalently by adding zero columnd.tdVe denote the number of columns 4fby
s, and we use the notatiati”*" to denote ann x n matrix whose entries are atl

Construction 3 Given a set cover problem < {0,1}™*° with s < 2™ —2m, lets < § < 2™ —m.
Generate the binary matriced = (A 0™*~*)), B;, and B,,, and construct the following = 2m + 3
undirected graph with adjacency matrix:

19 AT 4+ B; B;
G=|A+BY B, B,
BT B,  Bn

where summation is overF'(2) and a superscript T denotes the transpose operation.

We observe that the matri is a valid representation of an undirected graph for our ps&g, as it
is symmetric with ones along its main diagonal, and we indexdolumns and rows af from 1 up to
2m + § and label corresponding vertices with, ..., vo,, 5.

The following are some basic properties of this construrctiRecall that we say that a coluncovers
a pair of rows if it contributes to their Hamming distance.

Property 6 Only columnsl, ..., s can cover the pairs of rows indexéd i +m), fori =3s+1,...,5+m.
Moreover, any set of column§(, covers these pairs of rows if and only if the same set of cadui a
set cover of the original problem.

Property 7 The [lg(m + 3)] columns ofC,,.; that are contained inB can cover all the pairs of rows
but the ones indexed,i +m), fori =5+ 1,.... 5§+ m.

Property 8 Only columnss + 1, ..., 2m + 5 can distinguish between the mixed pairs of rows., 3.

Proof of Properties 6-8: Observe that the bitwise XOR of all row paifgi+m), fori = 541, ..., 5+m,
results in a row that contains thieth row of matrix A followed by 2m zeros. If we stuck these: rows
together they will form the block matrixA 0m™*?m) = (A 0™*2m+5-5), Hence any identifying code,
which by definition must cover all pairs of rows and in partauall (i,7 + m) pairs, must contain a
nonempty subset of the first columns,SC. Moreover, sincg A 0™**™+5=%) and A are equivalent it
follows that SC' is also a valid set cover of the original problefn Property 6 follows trivially from this
observation.

Similarly, Property 8 follows trivially from observing thbitwise XOR of the mixed pairs of rows
1,...,5. All the (;) resulting row vectors will have zeros in their firstelements. Hence the firgt
columns (and hencé&C) cannot cover these pairs of rows. To see why Property 7 i, trecall that
Ca5 corresponds to an identifying code of a graph which cont&n#\s such, it must cover all mixed
pairs of rows of B. The property follows from the observation that all pairsroivs but (i, + m), for
1=38+1,..,5+m, contain some mixed pair of rows @. 1

Let C, Smin» ¢min @nd smin denote an optimum identifying code for the graghand a minimum set
cover of the original problemd and their sizes, respectively.

Lemma 5
Smin + ﬂg 51 < ¢min < Smin + ﬂg(m + ,§ﬂ

Proof: Given a set cover problem satisfying the conditions of Construction 3, I8, be its minimum
set cover of cardinalitymin, and letG be the graph of Construction 3. By Lemma 2 every identifying
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code of G must cover the difference sets of all the pairs of distingtiges, U = {(u,2) € V?|u # z}.
Partition U into the pairs indexed/; = {(i,i+m)| i =35+1,...,5+m}, and the rest/ \ U,. Property 6
asserts that any cover of the paits is also a cover of the original set cover problein Therefore (i)
a feasible cover of’; is the set of columns (denoted (') that corresponds t&yin, and furthermore
(i) due to the optimality ofSyyin there is no smaller set of columns that can coUer

To prove the upper bound combine (i) above with Property 7dnegate a feasible identifying code
by the set of vertices corresponding to the uniorChf,; and SC.

To prove the lower bound, we observe that by property(8 cannot cover any of the mixed pairs of
rows indexedi, ..., s, and therefore it cannot be an identifying code by itself. By above and since
we need at leasflg 5| columns to cover all of the mixed pairs of rows indexed.., s, the lower bound
follows. 1

Proof of Corollary 1: Given a set cover problerfU, S) with m > 4, and an algorithm for solving
the identifying codes problem over undirected grapis;- UNDIR : G — C, perform the following:

1) Removeredundantsubsets inS to produceS’ and construct matrixd out of it. A subsetS; € S is
redundant if there exist #: s.t. S; € S, andS; C S;.

2) Construct the undirected gragh according to Construction 3 with that satisfieglg(m + §)] =
[lg 5].

3) C < ID — UNDIR(G)

4) Output{S;|v; € C,1 <i < s}

We first prove correctness. Step 1, which can be completedpys?) operations, is necessary to
make sure that the condition< 2™ — 2m in Construction 3 is satisfied. It is obvious that the set cove
problems(U, S) and (U, S’) are equivalent (every removed subsets that may h8.jp of the original
problem can be replaced by the subset that contains it welpikgSy,i, a valid set cover). The largest

size of such un-redundast is ((ﬂw) < ¥2ZZ and it can be verified numerically that > lg(2m + |S'|)
2

is satisfied form > 4. Next, since the imposed requiremég(m + )] = [lg 5] can be satisfied with
m+1<s<s+m

the second condition in Construction 3., s < 2™ — m, is met. Finally, Property 6 assures that the
output of the reduction is a set cover @, S).
To see why it is a minimum set cover, we use Lemma 5 and the fat ih our construction
[lg(m + 8)] = [lg 5] (and henceSC' is of the size of a minimum set cover of the original problem).
To complete the proof we observe that the size of the g@ph = 2m + s, is bounded by2m +
max(s,m + 1) <n < 3m+ max(s,m+ 1).

Construction 3 together with Lemma 5 can serve as a basis foardness result by generatirig
disjoint copies of the original set cover problem beforegging it into Construction 3. Particularly, Raz
and Safra’s result [30] can be applied in this manner to sh@t/mo polynomial-time approximation that
performs within a factor ofO(logn) from an optimal identifying code exists, unless P=NP. A &mi
approach is taken in the next section, which uses an exmasistruction, and the hardness result of
Feige [28] to yield a tighter result.

C. Proof of Theorem 4

We next prove Theorem 4 for the undirected graph case (andehfem directed graphs as well). We
extend Construction 3 té& disjoint copies of the original set cover problem. This damgion is then
used to carry over the set cover hardness result of Feige [28]for any ¢ > 0 there is no polynomial
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Fig. 6. The adjacency matrix of the gragi in Construction 4.

time algorithm that can approximate the minimum set covahiwithe performance ratigl — ¢) lnm
unless NR-DTIME (m/'s'e™).

Our construction requires that the number of subseits at mostm. This assumption is valid as the
set-cover hardness proof in [28] uses a reduction to MAX 3SAdroblem from a set cover problem
over a family of problems called partition systemln this family there aren elements in the base set,
U, and a setS of subsets each of size/k, with k& being a large constant. Each subset is associated
with & — 1 other pairwise disjoint subsets of size/k that together partitioJ into k& equal parts. A
"good” cover of U by disjoint subsets requires only subsets. A "bad” cover needs roughlysubsets,
not belonging to the same partition whefe— 1/k)? ~ 1/m. As k grows, d tends tok Inm, resulting
in the desired ratio ofn m. The partition system consists &f partitions, resulting in a total of = Lk
subsets. To construct the partition system Feige used antatstic construction by Naor et al. [41] with
the following parameterss is an arbitrary large constank, = 2!, m = (5n)2?l, with ¢ < 1 and wheren
is the number of variables in the MAX 3SAT-5 problem, ahe O(loglogn). Clearly the ratio of the
number of subsets to base elements scale§ asn=°" < 1.

In the context of our construction we henceforth assumeowittioss of generality that < m.

Let I be them x m identity matrix and recall thaB € {0, 1}"**™ is them last columns of anmn + s
adjacency matrix, which also includé,,. ,, and that we further dividé3 into B, and B,,,, respectively
the firsts and lastm rows of B.

Construction 4 Given a set-cover problem € {0, 1}*%, with s < m, we generate an undirected graph,
G*, of sizen = (2k + 1)m for some positive integek as follows.
1) Pad A with m — s zero columns to get the matrit with § = m, and generateB; and B,,, all
square matrices of sizer x m.
2) Generate an undirected graph with the adjacency mafix as shown in Figure 6.

We first observe that* is a valid adjacency matrix of an undirected graph.

To make our next observations clearer we divide the rows efatijacency matrixG* into 3 blocks
which we denote by colorged, blue andwhite. red rows are the firskm rows, blue rows arekm rows
km + 1, ...,2km. and the white rows are the last rows. We further divide theed and blue rows into
k sub blocks ofm rows eachyed;, blue;, fori =1,..., k, and thej-th row in a sub block is denoted by
red;(J).

We denote by(red;, blue;) the set ofm pairs{(red;(1), blue;(1)), ..., (red;(m), blue;(m))}.

We divide the columns of* into blocks ofm columns,col;, for i = 1, ..., 2k + 1. Recall thatcoly;
include1 + [lgm] columns,Cs,,, which form an identifying code for a graph of si2e.

The proof of the following properties is similar to that ofdperties 6, 7 and is omitted.

Property 9 Only columnscol; can cover the pairs of row@lue;, white), for i = 1, ..., k. Moreover, any
set of columns$SC; C col;, covers the pairgblue;, white) if and only if SC; is a set cover of the original
problem (taking the indices of the columns moduip
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Property 10 The set of pairgred;, red;) and (blue;, blue;), for all i < j, are covered b)Uf:l SC.

Property 11 All the pairs other than the ones mentioned in Propertie® @fe covered by a subset of
columns incoly,, 1, Which corresponds t@’,,.

Let cmin, Smin b€ the sizes of the minimum identifying code 16F and the minimum set cover of the
original problem.

Lemma 6
cmin < kSmin + “g m} +1

Proof: By properties 9,10,11 all the pairs of rows@f are covered by the union &C;, fori =1, ...,k
and(Cs,,, hence forming an identifying code. Since by property 9 gv&t’; is a set cover of the original
problem and|/Cy,,,| = 1 + [lgm], the Lemma follows. ]

Suppose next that there is a polynomial time algorithm tipgr@ximates the identifying code within
a performance ratio = (1 — €)Inn for somee > 0. We can apply it onG*, with & = In*m, to
get an approximation of size at mast< ocmin < 0kSmin <1 + “gm]> < aksm,n( +O(In™* )) By

property 9 we can select then the minimum siZ€; as our approximation to the original set cover
problem,
SC* =arg min |SCy,
Cmgigk

whose size is at mostc = |SC*| < £. Hence the performance ratio of our set cover algorithm is:

5 < (1—6')1nn(1+0(1n71m))

Smin
= (1-€)In(m(2 In®m + 1) (1+ O(ln~" m))

(1—¢)Inm <1 +0 <lnf;lm)) (1+0(@n""'m)),

and for large enougl we can write for some > 0

e <(1—¢€lnm
Smin

contradicting [28]. 1

IN

D. An identifying code approximation with tight guarantees

The identifying codes problem is actually a special caséeftést cover problem [40]. Recall that a test
cover problem asks to find the smallest Seof tests7; C U such that any pait, y € U is distinguished
by at least one test; (i.e., |{z,y} NT;| = 1). Then simply consider the base set to be the set of vertices
of the graphj.e., U =V, and its outgoing balls as the set of tedls= { B~ (v)|Vv € V'}. Every pair of
vertices will be distinguished by a code if and only if theresponding set of tests constitutes a test cover
of (U, T). It follows that test cover approximations can be appliegtoduce "good” identifying codes.
One such greedy approximation was recently devised by Bemnal. [29] using a modified notion of
entropy as the optimization measure. This greedy apprdiomavas proven to have a performance ratio
of 1+ Inn, wheren is the number of elements in the base set. Applying this dlgarto graphs of size
n guarantees identifying codes with the same performanaee, idosing the gap (up to a small constant)
from the lower bound of Theorem 4.

Although this performance guarantee outperforms our segicbased approximation, it is not obvious
how to generalize the algorithm of Berman et al. to robustiifging codes. In the next section we discuss
a natural way of generalizing our identifying code approaiion of Theorem 1 to robust identifying codes.



21

111 0 1 0 0 0
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1 0 0 01 1 1 0
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o o (0o 1 0 1 0 11
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Fig. 7. A 1-robust identifying code (codewords are solid circles) dhe graph’s adjacency matrix. The identifying set of verleis
{0,1,5}.

VI. ROBUSTIDENTIFYING CODES AND THE SET MULTICOVER PROBLEM

In this section, we provide a polynomial-time greedy appration of the NP-complete [16, 20] robust
identifying code problem. The graphs considered in thigigecare undirected graphs henégv) =
Bt (v) = B~ (v). Our approximation is based on an efficient reduction to #tekamulticover problem,
for which a greedy approximation is known.

The minimum set:-multicoverproblem is a natural generalization of the set cover problemvhich
given (U, S) we are seeking the smallest subsetSothat covers every element W at leastk times
(more formal definitions are in Section VI-B). Often this pkem is addressed as a special case of the
covering integer problenmi36]. The setk-multicover problem admits a similar greedy heuristic te get
cover problem, with a corresponding performance guaraf@@pof at mostl + log (maxg,es(|Si|)).

Recall that a non-empty subsétC V' is called acode and for a given cod&, the identifying set
Ic(v) of a vertexv is defined to be the codewords directed towardse., Ic(v) = B(v) NC (if C is not
specified, it is assumed to be the set of all vertit@sA codeC is anidentifying codaf each identifying
set of the code is unique, in other words

Vu,o eV u=v— Ic(u) = Ic(v).

Robustidentifying codes were suggested in [4] for applicationdogftion detection in harsh environ-
ments where nodes (codewords) are likely to fail. Intul§iven r-robust identifying code , maintains
its identification property even when amycodewords are either inserted or removed frGm

Definition 2 An identifying codeC over a given graptG = (V, E) is said to ber-robust if Ic(u) & A #
Ic(v)® D for all v #w and A, D C V with |A|,|D| <r. Here & denotes the symmetric difference.

Consider a three dimensional cube as in Figure 7 an@let{0,1,2,4,5,6,7}. Clearly, the identifying
sets are all unique, and hence the code is an identifying. ddddoser look reveals that is actually a
1-robust identifying code, so that it remains an identifyicmde even upon removal or insertion of any
codeword into any identifying set.

Note that this definition differs from theertexrobust identifying codes of [6], where it is additionally
required that Ic(v)| > r for all v € V.

A. Reduction intuition

Similarly to Section V we turn to the graph’s adjacency mata provide an alternate perspective to
the identifying code problem. Recall that in this matrixywsoor columns arecharacteristic vectorof
corresponding balls, in that theirth entries arel if the i-th element ofU is in the corresponding ball.
Selecting codewords is equivalent to selecting columnstm fa code matrix of sizen x |C|. A code
is thus identifying if theHamming distancdetween every two rows in the code matrix is at least one
(recall that the Hamming distance of two binary vectors s ttumber of ones in their bitwise XOR).
Similarly, if the Hamming distance of every two rows in thedeomatrix is at leasgr + 1 then the set
of vertices isr-robust.
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We next form the% x n differencematrix by stacking the bitwise XOR results of every two

different rows in the adjacency matrix. The problem of firglen minimum size--robust identifying code
is equivalent to selecting a minimum number of columns tonfer code matrix for which the Hamming
distance between any pair of distinct rows is at least+ 1. Or equivalently: selecting the minimum
number of columns in the difference matrix such that all rawghe resulting matrix have Hamming
weight of at leastr + 1. This equivalent problem is nothing but a et + 1)-multicover problem, if
one regards the columns of the difference matrix as the clterstic vectors of a family of subset$
over the base set of all pairs of rows in the adjacency matrix.
In the next subsection we formalize this intuition into aorgus reduction.

B. Reduction

In this section, we formally reduce the problem of finding #mallest sized-robust identifying code
over an arbitrary grapldz to a (2r + 1)-multicover problem.
Formally we connect the following problems:
c) SET MULTI-COVERSC)):
| NSTANCE: SubsetsS of U, an integerk > 1.
SOLUTI ON: §' C S such that for every element uelU, {se S ues} >k.
MEASURE:  The size of the multicover.s’|.
d) Robust ID-CODE (rID):
| NSTANCE: GraphG = (V, E), and integer- > 0.
SOLUTI ON:  An r-robust identifying code” C V.
MEASURE:  The size|C/|.

Theorem 5 Given a graphG of n vertices, finding anr-robust identifying code requires no more
computations than &2r + 1)-multicover solution over a base set-’é(f;‘—l) elements together with(n?)
operations of lengt binary vectors.

Recall that thedifference setDc(u,v) is the symmetric difference between the identifying sets of
verticesu, v € V. In addition, recall that théistinguishing seb. is the set of vertex pairs it for which
c is a member of their difference set whete= {(u, z)|u # z € V'}.

As indicated in [4], a code is-robust if and only if the size of the smallest difference iseait least
2r 4+ 1. Equivalently, a code is-robust if and only if its distinguishing se{@r + 1)-multicover all the
pairs of vertices in the graph.

Lemma 7 GivenG = (V, E) the following statements are equivalent:
1) C={e,...,c} is anr-robust identifying code.
2) |De(u,v)| >2r+1,forall u£veV
3) The set{J,,, ..., o, } forms a(2r + 1)-multicover of U = {(u,v) |V u# v € V}.

Proof of Theorem 5: Let SMC be a set multicover algorithm and consider the following starction
of an r-robust identifying code.

rID(G,r) — C
Compute{/(u)|u € V'}.
ComputeA = {6,|u € V'}.
C—sMC(2r+1,U,A)
OutputC « {u € V|9, € C}

The resulting code(C, is guaranteed by Lemma 7 to be amobust identifying code, and the optimality
of the set cover in step 3 guarantees that no smaller idémgifyode can be found. To complete the proof
we observe that computing the identifying séfs) naively requireso(n?) additions of binary vectors,
and computingA requiresn operations for each of thé("z;l) elements inU. ]

PwbdPE
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Algorithm 2 Greedy robust ID-codeID — GREEDY

Let G = (V, E) be a given graph, and I8MC — GREEDY(k, U, S) be the greedy set multicover algorithm,
then given integer the r-robust identifying code greedy algorithm isID — GREEDY(G,7) — Cgyreeay

1) Compute{I(u)|u € V}.

2) ComputeA = {d,|u € V'}.

3) C « SMC — GREEDY(2r + 1, U, A)

4) OutputCy,eeqy «— {u € V|0d, € C}

C. Approximation algorithm

The set multicover problem admits a greedy solution: in eteriation select the set which covers the
maximum number of nork-multicovered elements. We use this heuristic togetheh wiheorem 5 to
introduce anr-robust identifying code algorithm (Algorithm 2).

It is well known [36] that the performance guarantee of therlstic of the set multicover problem
(defined as the ratio of the sizes of the greedy and minimunticouérs) is upper bounded hby+ In «,
where« is the largest set’s size, namely

|SMC — GREEDY (k, U, S)|
SMC(k, U, S)|

for any set multicover problenik, U, S).

<l+ha 9

Theorem 6 Given a graphty = (V, £), of n nodes, letgreedy cmin be the sizes of the greedyIp — GREEDY)
and minimumr-robust identifying codes, respectively, then

c
Cgreedy < 1+ logn + log bas
Cmin

whereb,,,. is the ball's size closest t§

Proof: ¢, contains all pairs of vertices, whiahappear exactly in one of their incoming balls. Therefore
v distinguishes between all pairs having one vertexo® outgoing ball, B(v), and the second from
V — B(v). Hence the size of a distinguishing set is given|by = |B(v)|(n — |B(v)]). It is easy to
see that the vertex with the largest distinguishing setésahe whose outgoing ball size is closestto
Denote this outgoing ball b¥,..., and based on Theorem 5 an@iD — GREEDY algorithm plug the size
of its distinguishing set into the bound of Equation (9) ta ge

C
9CY < 14 10g(n — byas) + 108 bynaa
Cmin
< 1+logn + log bmas-

D. Localized robust identifying code and its approximation

It was observed in [4, 5] that anrobust identifying code can be built in a localized manmédrere each
vertex only considers its two-hop neighborhood. This laedion is possible when the identifying codes
are required to produce only non-empty identifying 3els this section and henceforth we introduce this
requirement, and call the resulting coddscalized identifying code§ hese codes and their approximation
algorithm are critical to the development of the distrilsbdgorithms of the next section. Note that by
definition the localized identifying codes are also dommmasets.

®In fact this definition of identifying codes is the traditmindefinition €.g., [1])
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Algorithm 3 Localizedr-robust coderID — LOCAL(r, ()

We start with a grapliz = (V, E') and a non-negative integer The greedy set multicover approximation
is denotedsMC — GREEDY(k, U, S).

1) Compute{D(u,v)lu €V, v e B(u;2)}

2) ComputeA? = {§2|u € V'}.

3) C «—SMC — GREEDY(2r + 1, U?, A?)

4) OutputCipeq; « {u € V|62 € C}

Let G = (V, E') be an undirected graph; we define the distance mgtticv) to be the number of edges
along the shortest path from vertexto v. The ball of radiug aroundv is denotedB(v;!) and defined
to be{w € Vip(w,v) < [}. So far we encountered balls of radilis= 1, which we simply denoted by
B(v).

Recall that a vertex cover (or dominating set) is a set ofisest such that the union of their balls
of radius 1 covers/. We further extend this notion and define mdominatingset as a set of vertices,
which r-multicoversV (these sets are closely related;tdold 1-covering codes [42]).

Note that the definition of difference sets and hence idgntif codes still involves only radius one
balls, unlike the radiugl > 1) identifying codes discussed in [1].

Lemma 8 Given a graphG = (V, E), an (r + 1)-dominating setC is also anr-robust identifying code
if and only if | D¢ (u, v)| > 2r + 1 for all u,v € V' such thatp(u,v) < 2.

Proof: The forward implication is an application of Lemma 7. For tlegerse implication we tak€
to be anr + 1 dominating set and assume thak:(u,v)| > 2r+ 1 for p(u,v) < 2; we will show that this
assumption is also valid fg#(u, v) > 2. This is because, fos(u, v) > 2, we have thaBB3(v) N B(u) = 0,
meaning that D¢ (u,v)| = |B(v) N C| + |B(u) N C|. SinceC is anr + 1 dominating set, it must be that
|B(y) N C| > r+ 1 for all verticesy, giving that|D¢(u,v)| > 2r + 1. Applying Lemma 7 we thus see
that C must ber-robust. 1

The localized robust identifying code approximation Lemma 8 can serve as the basis for a reduction
from an identifying code problem to a set cover problem, Eimio the one in Theorem 5. The main
difference is that we will restrict base elements to vertakxpthat are at most two hops apart, and we
then need to guarantee that the resulting code isrstitlbust.

Towards this end we defin€? = {(u, v) | p(u,v) < 2}, the set of all pairs of vertices (including, v))
that are at most two hops apart. Similarly, we will localibe distinguishing set, to U? as follows:

62 = (0, N U U {(u,u)|u € B(v)},

The resultinglocalized identifying code approximatiaa thus given by Algorithm 3 and can be shown
to provide anr-robust identifying code for any graph that admits one (wdtdhe proof due to space
considerations).

Theorem 7 Given an undirected grapty = (V, E) of n vertices, the performance ratioID — LOCAL is
upper bounded by:

c
Cgreedy <lnvy+1,

Cmin

wherey = max,cy | B(v)|(|B(v; 3)| — [B(v)[ + 1).

Proof: Recall thaty, includes all vertex pairs where one vertex is in the outgdialy of v and the other
is not. The size of the intersection 6f and U? can be upper bounded W3 (v)|(|B(v;3)| — |B(v)|),
which becomes an equality when all vertices Ifv; 3) are within distance 2 of each other. Finally,
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62 includes alsgB(v)| pairs of the same vertef, u). Therefore|d?| < |B(v)|(|B(v;3)| — |B(v)| + 1),
which at its maximum, can be applied to the performance guieesof Equation (9) to complete the propf.

In the next subsection we present a distributed implemientadf the identifying code localized ap-
proximation. The following lemma supplements Lemma 8 byjihimg additional “localization”. At the
heart of this lemma lies the fact that each codeword diststmgs between its neighbors and the remaining
vertices.

Lemma 9 The distinguishing set& and ¢2 are disjoint for every pair(u,v) with p(u,v) > 4.

Proof: Clearly, 62 includes all vertex pair$z,y) € U? wherez is a neighbor ofv andy is not. More
precisely,(z,y) € 6?2 if
x € B(v) andy € B(x;2) — B(v). (10)

Moreover, for all such(z,y), p(z,v) < 1 and p(y,v) < 3. On the other hand, fofz’,y’) € §2 with
p(u,v) > 4, eitherz’ or y’ must be a neighbor of, and hence of distance 3 from v. Thus,§? and 2
are disjoint. i

Lemma 9 implies that when applying the greedy algorithm, @isiien on choosing a codeword only
affects decisions on vertices within four hops; the aldontis thus localized to vicinities of balls of
radius four.

VII. DISTRIBUTED APPROXIMATION TO ROBUST IDENTIFYING CODES

Several parallel algorithms exist in the literature for seter and for the more general covering integer
programs €.9., [35]). There are also numerous distributed algorithms fodifig a minimum (connected)
dominating set based on set cover and other well known appattons such as linear programming
relaxation €.g., [43]). In a recent work, Kuhn et al. [44] devised a distrilmit@gorithm for finding a
dominating set with a constant runtime. The distributedatgm uses a design parameter which provides
a tradeoff between the runtime and performance.

Unfortunately, the fundamental assumption of these algms is that the elements of the base set are
independent computational entitiese(, the nodes in the network); this makes it non-trivial to apibigm
in our case, where elements correspond to pairs of nodes#mabe several hops apart. Moreover, we
assume that the nodes are energy constrained so that rgdimimmunications is very desirable, even at
the expense of longer execution times and reduced perfa@an

We next provide two distributed algorithms. The first is cdet@ly asynchronous, guarantees a perfor-
mance ratio of at mosh v + 1, and require$(cyjst) iterations at worst, wherey;s; is the size of the
identifying code returned by the distributed algorithm ane: max,cy |B(v)|(|B(v; 3)| — |B(v)| + 1]).
The second is a randomized algorithm, which requires a eamschronization, guaraKrltges a performance

yn KT

ratio of at mostin~ + 1, and for some arbitrarily small > 0 operates withinO time slots

(resulting in O(cgigtmax,ev |B(v; 4|)) messages). The valuE > 2 is a design parameter that trades
between the size of the resultingrobust identifying code and the required number of timessko
complete the procedure.

In the next subsection we describe the model and initiatimagtages that are common to both distributed
algorithms.

A. Model and initialization

With a model similar to [4], we assume that every vertex (Nade graph is an independent processing
entity that is pre-assigned a unique serial number and cammemicate reliably and collision-freely
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Fig. 8. Asynchronous distributed algorithm state diagranmoédev € V'

(perhaps using higher-layer protocols) over a shared meavith its immediate neighborhood. In [4] the

entities were sensors and the edges in the graph repredefRtednnectivity. Every node can determine
its neighborhood from the IDs on received transmissions, lsigher radius balls can be determined by
multi-hop protocols. In our case, we will need to kné¥u; 4) - the subgraph induced by all vertices of
distance at most four from.

Our distributed algorithms are based on the fact that, byndieiin, each node can distinguish between
the pairs of nodes which appear in its corresponding distsiing set? that initially can be determined
by (10). This distinguishing set is updated by removing dirat get coveredr + 1 times {.e., that
have2r + 1 elements in their difference set), as new codewords arecattdéhe identifying code being
constructed; their presence is advertised by flooding tteeir-hop neighborhood.

B. The asynchronous algoritheID — ASYNC

The state diagram of the asynchronous distributed algarith shown in Figure 8. All nodes are
initially in the unassignedtate, and transitions are effected according to messagewed from a node’s
four-hop neighborhood. Two types of messages can accomgparansition:assignmentnd declaration
messages, with the former indicating that the initiatingl@dnas transitioned to thessignedstate, and
the latter being used to transmit data. Both types of messalge include five fields: thgype which is
either “assignment” or “declaration”, th® identifying the initiating node, thbop number, thateration
number, anddata, which contains the size of the distinguishing set in theeaafsa declaration message.

Following the initialization stage, every node declarasdistinguishing set’s size. As a node’s declara-
tion message propagates through its four hop neighborrewaty forwarding node updates two internal
variables,ID,,., andd, ..., representing the ID and size of theost distinguishinghode (ties are broken
in favor of the lowest ID). Hence, when a node aggregates dutachtion messages initiated by all its
four hop neighbors (we say that the node reacheeént-of-iterationevent),iD,,,.. should hold the most
distinguishing node in its four hop neighborhood. A node tieaches an end-of-iteration event transitions
to either thewaitfor_assignmenstate or to the finahssignedstate depending if it is the most distinguishing
node.

The operation of the algorithm is completely asynchronamagies take action according to their state
and messages received. During the iterations stage, nodedel a declaration message only if they
receive an assignment message or if an updated declarattded anunassignmeninessage) is received
from the most distinguishing node of the previous iteratidifi messages are forwarded (and their hop
number is increased) if the hop number is less than four. lage communications load, a mechanism
for detecting and eliminating looping messages should Ipdieap

Every node,v, terminates in either an “unassigned” state wjigh] = 0 or in the “assigned” state.
Clearly, nodes that terminate in the “assigned” state domsta localized--robust identifying code.

1) Performance evaluation:
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Algorithm 4 Asynchronous--robust algorithm £ID — ASYNC)
We start with a grapld-, with vertices labeled byp, and a non-negative integerThe following distributed
algorithm run at node € V' produces amr-robust identifying code.
PRECOMP.
. Computed? using (10).
« Initiate a declaration message and set state = “unassigned”
e SetiD, = ID(vV), dmaz = |02], andms to be an empty assignment message.
| TERATION:
« Incrementhop(ms) and forward all messages ébp(ms) < 4.
« if received an assignment message with state # assigned then
— Updateds? by removing all pairs coveregr + 1 times.
— Initiate a declaration message and set state = “unassigned”
— Reinitialize ID,,,4, = ID(v) and 6,4, = |62
o if state = wait for_assignment and received amin-assignmeniessage then initiate a declaration
message.
. if received a declaration messages with state # assigned then
— if dpae < data(ms) Or (d,nar = data(ms) andiD,,q, > ID(ms)) thend, .. = data(ms), IDya: =
ID(ms)
. if end-of-iterationreached then,
— if ID,,0e = ID(v) @and |§2] > 0 then state = assigned, initiate an assignment message.
— otherwisestate = wait for_assignment.

Fig. 9. Worst case topology for the asynchronous distrithuteobust algorithm in terms of runtime.

Theorem 8 Algorithm 4 ¢ID — ASYNC) requires©(cgjst) iterations and has a performance ratio
Cdist
Cmin
wherey = maxyey |B(v)[(|B(v; 3)] — | B(v)| + 1).

The first part of the Theorem follows from Theorem 7 and thd that only the most distinguishing
sets in a four hop neighborhoods is assigned to be a codeWwordee the number of iterations of the
algorithm, we first note that in each iteration at least ongegword is assigned. The case of a cycle graph
(Fig. 9) demonstrates that, in the worst case, exactly ome i® assigned per iteration.

It follows that the amount of communications required initkeation stage i®(cgjgt/V | max(|B(v; 4)])),
which can be a significant load for a battery powered senstwark. This can be significantly reduced if
some level of synchronization among the nodes is allowethémext section we suggest a synchronized
distributed algorithm that eliminates declaration messaajtogether.

<Ilnvy+1,
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Algorithm 5 Synchronous--robust algorithm £ID — SYNC)
We start with a graphG and non-negative integer. The following distributed algorithm run at node
v € V produces am-robust identifying code.
PRECOMP.
o Set:slot = sp, subslot = L, state = unassigned.
« Calculate the assignment slot.
ITERATE: while state = unassigned andslot > s; do,
e | =random{l,...,L}
« if received assignment messages then,
— if hop(ms) < 4 forward ms with hop(ms) + +.
— Recalculate the assignment slot.
o else if subslot = | and slot = as then,
— state = assigned
— Transmitms with id(ms) = id(v), andhop(ms) = 1

C. A low-communications randomized algorititTD — SYNC

In this subsection, we assume that a coarse time synchtmmzamong vertices within a neighborhood
of radius four can be achieved. In particular, we will assutima the vertices maintain a basic time
slot, which is divided intoL subslots Each subslot duration is longer than the time required féoua
hop one-way communication together with synchronizatiocentainty and local clock drift. After an
initialization phase, the distributed algorithm operatesa timeframe which consists of slots arranged
in decreasing fashion fromg to s;. In general,F’ should be at least as large as the largest distinguishing
set €.9.,F = @ will always work). A frame synchronization within a neighbood of radius four
completes the initialization stage.

The frame synchronization enables us to eliminate all thedagation messages of the asynchronous
algorithm. Recall that the declaration messages were medjuo perform two tasks: (i) determine the
most distinguishing node in its four hop neighborhood, afjdfidgrm an iteration boundaryi.e., end-of-
iteration event. The second task is naturally fulfilled byimeining the slot synchronization. The first task
is performed using the frame synchronization: every nodentams a synchronized slot counter, which
corresponds to the size of the currenbst distinguishinghode. If the slot counter reaches the size of a
node’s distinguishing set, the node assigns itself to thdecdhe subslots are used to randomly break
ties.

1) Iterations stage:Each iteration takes place in one time slot, starting froot sf. During a slot
period, a node may transmit a messageindicating that it is assigning itself as a codeword; the sage
will have two fields: the identification number of the initieg node,id(ms), and the hop numbekop(ms).

A node assigns itself to be a codeword if &ssignment timewhich refers to a slot.s and subslot, has
been reached. Every time an assignment message is reciigegssignment slats of a node is updated
to match the size of its distinguishing set; the assignmebslst is determined randomly and uniformly
at the beginning of every slot.

2) Performance evaluationAlgorithm 5 (rID — SYNC) requires at mos®(n?) slots (O(Ln?) subslots),
though it can be reduced (L~) if the maximum size of a distinguishing set is propagatedubhout the
network in the precomputation phase. The communicatioad is low (.e., O(cgjst- max,cv (| B(v;4)|))),
and includes only assignment messages, which are proplatgateur hop neighborhoods.

In the case of ties;ID — SYNC can provide a larger code than gained from the localizedeqapation.
This is because ties in the distributed algorithm are brokenitrarily, and there is a positive probability
(shrinking as the number of subslalsincreases) that more than one node will choose the sameosubsi
within a four hop neighborhood. As such, is a design parameter that provides a tradeoff between
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performance ratio guarantees and the runtime of the algoras suggested in the following theorem.

Theorem 9 For asymptotically large graphs, AlgorithmID — SYNC guarantees with high probability a
performance ratio of o

st - gy + 1),

Cmin
K+2+¢

e ) subslots

wherey = max,cy |B(v)|(|B(v; 3)| — |B(v)| + 1]). The algorithm also require® (
to complete for design parametéf > 2 and arbitrarily smalle > 0.

Proof: If no more thanK tied nodes assign themselves simultaneously on everyrassig slot,
then we can upper bound the performance ratio by a faktoof the bound in Theorem 7, as in the
theorem statement. We next determine the number of subisloézded to guarantee the above assumption
asymptotically with high probability.

Let P(K) denote the probability that no more thantied nodes assign themselves in every assignment
slot. Clearly, P(K) > (1 — p(K))“dist, where p(K) is the probability that, wher nodes are assigned
independently and uniformly té subslots, there are at leakt < ¢ assignments to the same subslot. One

can see that
! / 1\
(K) = L LF(1-=
) = ()t (- 1)

2 (=2 ()

te
< tL
< (LK) ,

for e being the natural Iogarithm and based on the assumption/hat 1. Lett = cyjst = n (this only
loosens the bound) antl = &n = . Then,

te ‘dist
> _
P(K) > 1—tL (LK)
e 1 \"
2 (1 o Enl-i—e) — L

VIIl. SIMULATIONS

Here we have simulated the centralized, localized and sgncted distributed identifying code algo-
rithms, and applied them to gride.., [6]), random graphs with different edge probabilities [1dhd
to geometric random graphs with different nodes densitdg. [As a performance measure, we use the
averaged size of the identifying code. For the case ©f0 (i.e., simple identifying code) the simulation
results are compared to the algorithm suggested by Ray it [dl]. In addition, we show a combinatorial
lower bound derived first by Karpovsky et al. in [1], and theraptotic result (inn - the size of the
graph) of Moncel et al. [14], who showed that an arbitraryafea threshold number of codewords is an
identifying code with high probability, and that this nunnbg asymptotically tight.

IA
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Fig. 10. Examples of efficient constructions of identifyitigs for the square, king and triangular infinite grids pwodd by the localized,
rID — LOCAL (triangles), and centralized,ID — GREEDY (circles), algorithms. The constructions densities caridomd in Table I.

A. Infinite grids

Significant amount of the study efforts into identifying esdwere focused on infinite grids [1, 6].
Many of these studies use tilings to suggest constructiygeiupounds on the size of an identifying
codes. Table | compares these tight constructions and Isowitd the best outcomes of the centralized,
localized and the distributed algorithms when applied te #siguare, king, and triangle infinite grids.
Infinite grids were emulated by the use of finite girds with pgad around edges (torii). The size of
the torus limits the size of the largest tile of the infinitedep and therefore has a large impact on the
resulting codes. The algorithms outcomes were also vanedabhdomly relabeling the torus nodes in
between runs. Table | summarizes the best results achieveld different torii sizes, and their matching
constructions appear in Figure 10. Surprisingly, the lizeal (¢ID — LOCAL) algorithm outperformed the
centralized £ID — GREEDY) for almost all grids and torii sizes, coming pretty closetle results in [6].
One reason for this behavior may be that the additional reqment that the code will also be dominating
is not significant when it comes to grids. Therefore the @izied algorithm takes into account many
irrelevant vertices pairs that may influence the optimaatstep.

Finally, Figure 11 shows that it is sometimes possible tovgey good codes for small graphs through
a pruned exhaustive search (in this case, an adaptatioredfrdnch-and-bound algorithm [45]). The 1-
robust identifying codes in the figure for the hexagonal arahgular finite grids actually have a density
slightly better than those reported in [6].

B. (Geometric) random graphs

Fig. 12(a) shows the theoretic lower bound and the resultseotentralized greedy algorithm. It can be
seen that a significant enhancement in performance overgbethm devised by Ray et al. is achieved.
It should be noted that as grows the curves for basically any algorithm should congeig Moncel's
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Density: 52/64 Density=21/36

Fig. 11. Branch and bound algorithm results for 1-robushiiging codes for the hexagonal (left) and triangular (tiggrids. The red
circles represent codewords, and the tile is captured byag gquare.

TABLE |
DENSITIES OF IDENTIFYING CODES FOR INFINITE GRIDS TAKEN FROW6] VS. SIMULATION RESULTS USING OUR APPROXIMATIONS(IN
BRACKETS).
| square | king | triangular

ID code | 12 (5 | 16

27 32
320 \320 ) 108 (m)

ﬂl»—t
vl

1-Robust| < 20 () | 32 (35) | < 24 (23

— 40

mlw
Blo
o

asymptotic result, as illustrated in Fig. 13(a). Still, temnvergence rate appears to be very slow, suggesting
that for reasonably large networks there is a lot to gain fitben suggested algorithms compared to the
simple approach of arbitrarily picking a code, whose sizisBas the threshold number of [14].

Fig. 12(b) shows the simulation results for the localized distributed algorithms compared to the
centralized one. Recall that the performance of the asymdus algorithmyID — ASYNC, is identical to
the localized approximation. It can be observed that thalte®f the localized algorithm nearly match
the results of the centralized algorithms. Divergence islev for low edge probabilities, where it is
harder to find a dominating set. Recall that there is a trddeetiveen performance and the runtime of
the synchronized distributed algorithmID — SYNC. The smaller the number of subslots parametier,
the shorter the runtime and the larger the degradation ifopeance due to unresolved ties. Degradation
in performance is also more evident when ties are more likelgappenj.e., when the edge probability
is approaching0.5. The results of the centralized r-robust identifying codgodathm are shown in
Figure 12(c).

Fig. 13(b) shows the codeword density for geometric randoaplys using the localized and distributed
approaches, and the fraction of such graphs admitting amtifdig code. It also presents the largest
fraction of indistinguishablenodes,i.e., nodes that share the same identifying set, obtained in tha-si
lation. As can be seen, the localized and distributed ajgpess (with L = 10) yield very similar code
sizes. The fraction of graphs admitting identifying codesather small (less than half the graphs) even
for high node densities. However, the size of indistingaidh nodes sets is still small, suggesting that
the system’s reduction iresolution i.e. the geometric size of the largest indistinguishakle is not too
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Fig. 12. Average size of the minimum identifying code foradam graphs with edge probabilify, andn = 128 vertices.

high. It should be noted that approaches such that of ID-CQ{pEre not designed to cope with graphs
which do not have identifying codes, resulting in a code bivattices.

IX. CONCLUSIONS

We have provided connections between identifying codeblenes and covering problems, for which
greedy approximation algorithms are known. The connestitontraditional identifying codes have been
sufficiently size-preserving to produce an approximatitgoathm, and should be useful for the number
of identifying code applications that have been developetthe literature. In addition, we have provided
general hardness of approximation results that show thatpproximations are very close to the best
possible. In particular, for the case of (non robust) idgintg codes we show that a known approximation
achieves up to a small constant multiple of the best posgibtormance achievable by any polynomial
approximation (under commonly used complexity assumpjioiit remains an open question if our
approximation algorithms for thé- > 1)-robust identifying codes are similarly near-optimal.

We have also demonstrated by simulations that the propdgeditams outperform the existing ap-
proximation algorithm of [4] and that they come close to édfit combinatorial constructions of robust
identifying codes for two dimensional grids, which have beeell-studied in the literature. We have
further provided two flavors of distributed algorithms thmty be used for practical implementations in
network applications.
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