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Abstract—We present novel rateless codes that gener- All the codes mentioned above are designed for the
alize and outperform LT codes (with respect to overall case when the decoding host has a@riori informa-
communication and computation complexity) when some tion about the content being transmitted. In this paper,
input symbols are already available at the decoding host. e consider rateless encoding for situations where the
This case can occur in data synchronization scenarios, decoding host starts with an (unknown) subset of input

or where feedback is provided or can be inferred from bols. Thi Id f le. in th text
transmission channel models. We provide analysis and ex- Symbois. IS could occur, Tor example, In the contex

perimental evidence of this improvement, and demonstrate Of data synchronization [4], where each host has modi-
the efficiency of the new code through implementation on fications of some common database. It could also occur
highly constrained sensor devices. in a multi-round communication scheme where feedback
or side-channel information provides some knowledge of
. INTRODUCTION input symbols at the decoder.

Rateless codes transmit informatiare(, input sym-
bols) as encoded symbols over lossy communication

channels, typically an erasure channel. As their name Problem formalization

implies, these codes have the property of beagless o consistency with the existing literature, we assume
meaning that they have no fixed gmount of re_dundan% encoding host has b-bit input symbols comprising
the encher can produce a practically u_nendmg str_egg}K, n < k of which (comprising a selN) are already

of encoding symbols, any fixed number (in expectatiophown at the decoding host. We assume that the encod-
of which can be used to decode a transmission. Ratelﬁ.g@ host knows the cardinality of N, without knowing
codes sometimes impose a small communication OVgke individual input symbols that comprise the set. The
head in that the number of encoded symbols requiredgfy| is for the decoding host to efficiently determine
the decoder is §I_|ghtly more than the number of inpyk missing input symbolsi.e., the set differencek-
symbols. In addition, there may be a small overhead Rf), where efficiency is measured with respect to both

transmitting meta-information used for decoding. communication and computational complexity.
Random linear codes are one well-studied class of

rateless codes known to have a very low overhead; in fa&t Straightforward lower bounds
they can be implemented with a constant communicationThe communication aspect of this problem is simply

overhead, although their encoding and decoding stepgpecial case of the set reconciliation problem [5], for
are computationally expensive, and hence unsuitable {gfich a simple lower bound is given by

encoding long transmissions. Recently, codes proposed

by Luby [1] have become popular because of their Coo > (k —n)b— M7 (1)

low encoding and decoding complexity, at the cost of b

a slightly larger communication overhead than randoumder the reasonable assumption that 2°~'. In other
linear codes. Plain LT codes tend to work well only imvords, at a minimum, the encoder would have to send
asymptotic regimes, and for this reason Raptor codes f#jly a little less than the exact contents of the missing
were introduced, which wrap LT codes within an outénput packets to the decoder.

code to improve decoding performance. Finally, ratelessThe computational aspect of this problem is a straight-
codes have been designed and implemented for contiemivard adaptation of the classical balls and bins argu-
distribution in networks [3]. ment initially presented in [1]. The analysis assumes that

II. PRELIMINARIES



computational cost is tied to the number of exclusive
(xor) operations orb-bit vectors needed for decoding.
with each xor requiring unit time. In addition, input
symbols are assumed to be included xor computatic
in a uniformly random fashion, as with common rateles
codes.

We associate bins with xor (encoded) symbols at
balls with input symbols. Throwing a ball into a bin thu
corresponds to using an input symbol when encoding t
corresponding xor symbol. At a minimum, each inpt
symbol must appear in the computation of at least o
xor symbol for the decoder to be able to recover ¢
inputs. LetX; denote the random variable representir ~ ~6; 200 200 600 800 1000
the number of balls thrown between the time whenl Degree
distinct bins contain a ball and distinct bins contain

ig. 1. LT code distribution and proposed Shifted code ithistion,
a ball. Then the total number of balls thrown befor\%ith parameterst — 1000.c = 0.01,6 — 0.5. The number of

a!l bins are nor_l-empty i§ (assuming balls start in nown input symbols at the decoding host is setatoe= 900 for
bins corresponding to the input symbols known at the the Shifted code distribution. The probabilities of the wcence of
decoder): encoded symbols of some degree$ iwith the shifted distribution.

A LT Code (Robust Soliton)
*  Shifted Code

IoglO(ProbabiIity)

X=X,1+Xnio+,.. .., + X1+ X 2 . o _
el 2 1 b @ The robust soliton distribution is based on two distri-

Clearly X; follows a geometric distribution withh =  butions also proposed in [1]: theeal solitondistribution

(1 -1, so its expectation iF(X;) = —=. If n ()
input symbols are known at the decoder, we have, by 1
linearity of expectation, p1) = ¢
n . 1 .
BX) =Y L k- Ok). @) ) = gy Vis2k
=k ' and the distribution
Our designed codes asymptotically approach the min- R k
imum computation complexity of (3). (i) = T fori=1,..., B 1
IIl. LT CODES ) = Rin <%> Ik forie X
We next describe Luby's LT codes [1] and their i R
encoding and decoding methods. In Section llI-C we (i) = 0 fori=—+1,....k,
provide motivation for our modification of LT codes for R
our specific problem. whereR = ¢ - ln(%)\/E, ¢ > 0 is a “suitable constant”,
] and ¢ is the maximum probability of decoding failure.
A. Code construction Adding the ideal soliton distributiop(-) to (-) and

LT codes were first proposed in [1], based on mormalizing, Luby obtained the robust soliton distribu-
model similar to their Low-Density Parity-Check matrixion p(-) plotted in Figure 1 for parameteis= 1000
cousins [6]. The main contributions of Luby involvednput symbols,c = 0.01, and maximum reconstruction
demonstrating the utility of ratelessness through codfedlure probabilityé = 0.5. Note that the robust soliton
based on therobust soliton probability distribution. distribution has a characteristic spikeiat %, based on
Codes generated through this distribution have low etire contribution ofr(-).
coding and decoding complexity)(k In §) exclusive
or operations for reconstruction probability— §), as
well as a low overhead ofk(+ O(vkin?(k)) expected  Unlike their analysis, LT codes have remarkably sim-
number of encoded symbols needed to decbkdaeput ple encoding and decoding algorithms.

symbols at the decoding host [1]. In order to create an encoded symbol an encoding

B. Encoding and decoding



host first chooses a degréeébased on the robust solitonnew information to the decoder with probability
distribution, and then, uniformly at random, seledts d
distinctinput symbols (which we calimbs) from among Z 1. (d ( n—- Z) 7 (4)

the k& input symbols being encoded. The sum of these -
input symbols over a suitable finite field (typicallys) which quickly approacheS asn — k. Itis thus not

comprises the value of the encoded symbol, which éurprlsmg that the LT codes become less efficient as the
transmitted to the decoder. The indices of the input Sy%]ecoder learns more input symbols.

bols selected must also be made available to the decoder

either in the form of a shared seed for a pseudorandom

function, or through explicit communication. -
For its part, the decoding host uses a simple greefly Intuition

specialization of the belief propagation algorithm [7], |ntuitively, the robust soliton distribution is too sparse
which is typically faster than Gaussian elimination ifp accommodate known input symbols on the decoder
practice. Specifically, the decoder begins by identifyinghd. Thern known input symbols serve the function of
encoded symbols of degrde meaning that each is angegree1 encoded symbols, disproportionately skewing
exact copies of one input symbol; this initibple thus  the degree distribution for LT encoding. We thus propose
yields the value of some input symbols to shift the robust soliton distribution to compensate for

The known input symbols represent one known pge additional functionally degree symbols.
rameter in all encoding symbols that use them. As such,

encoding symbols of degr&e which utilize one of these B. Construction
input symbols, can now be utilized to decode some other,
input symbols (i.e. given a andz &y, one can deduce
y), resulting in the second ripple. In fact, each rippl
involves utilizing known input symbols to reduce th
number of unknown parameters in all encoding symb
that utilize these symbols. The robust soliton dlstrlhmtlo
is designed to determine input symbols at a rate that
maintains a nearly constant ripple size, allowing all inp@efinition The shifted robust soliton distribution is
symbols to be retrieved eventually with high probabilitygiven by

1= 0

IV. SHIFTED CODES

Formally, then input symbols at the decoder end have

the effect of degred encoded symbols, which can be

Ff*nmediately decoded. As such, they reduce the degree of
ach encoding symbols by an expec(&d— %) fraction.

ur goal is to redistribute the encoding degrees to the

original robust soliton distribution.

C. Inefficiency under partial information Yim(§) = 0+ figp_n) (i) for round(l i n) —

The design of LT codes presumes no input information Sk
on the decoding host. In our case, the decoder alreaijere & represents the number of input symbols in
has decoded input symbols, meaning that any addendé§e systemy represents the number of input symbols
of an encoded symbol from the known input 9étare already known at the decoder, and rogdounds to
redundant. For example, if input symbalsandi, have the nearest integer.
been decoded, then it is computationally redundant to
compute an encoded symhol = i; $i9, as it provides Lemma IV.1 For any n < k, vn(j),j = 1.k is a
no new information about input symbols. probability distribution.

The number of theseedundant encoded symbols _ _
grows with the ratio of input symbols known at the = Proof: The proof hinges on the observat|or_1 that
decoder to input symbols totdld., ). More precisely, a -z = 1 whenn < k. As such, = and ;== will
given collection ofd distinct limbs of an encoded symboldIfrer by at least 1 for any different integersand ¢,

is a subset ofV, the input symbols known at the decodefneaning thad~, vi..(j) = >_; tx—n)(d) = 1. u
with probability We construct a shifted code exactly as an LT-code, but
n—i based on the shifted robust soliton distributipnMore
i precisely, givem, the number of input symbols already
i=0 decoded, we pick a degrdewith probability -y, ,(d) and

As such, ifn input symbols are known at the decodethen xor a corresponding number of thénput symbols,
then an additional LT-encoded symbol will provide nehosen distinctly and uniformly at random.



Any encoding node chosen through thedistribution Lemma IV.4 For a fixed §, the expected number of
to have degree, will have degree roughl% in the edgesRk removed from the decoding graph upon knowl-
new distribution, meaning that we can expdcbf the edge ofn input symbols at the decoding host is given
input symbols used in the encoding to not be from tHy
n known to the decoder. R=0(nliIn(k—mn)) (6)

C. Analysis Proof: The total degree of encoding nodes must
. equal the total degree of input symbols in the decoding
We can straightforwardly apply the results of [1] tq . ,
the shifted distribution. graph, meaning, by Lemma V.3, that
mdk = kd,k,
Lemma IV.2 A decoder that knows of k input symbols

_/ . .
needs whered';, is the average degree of an input symbol. As

such, the expected total degree »ofinput symbols is

m=(k—n)+0 (m In? <k_”>> (5) given by

5

encoding symbols under the shifted distribution to de-
code allk input symbols with probability at leagt— 4.

m -
—dy.
nkk

Rewriting, with the aid of Lemma V.2 and recalling
that § is presumed constant:

Note that Lemma IV.2 represents a roughly— % _ T 1 2(
fraction of the encoding nodes needed for stand:frd LT R < (k=m)+ O( kk n in"(k n))
codes, which is particularly effective asapproacheg. I
The downside of this shift is that encoding nodes have 0] (k: — In (k— n))
relatively higher expected degrees. )

= O((l—l—O(iln (k_n))>>nln(k:—n)

Lemma IV.3 The average degree of an encoding Vk—n
node under the ~ distribution is given by = O(nln(k —n)).
O(ﬁln(k‘—n)). -

We now assemble the various lemmae to determine the
computational complexity of shifted decoding, which is
asymptotically equivalent to the lower bound derived in
Section II-B.

Proof: The proof follows from the definitions,
since a node with degreé in the p; distribution will
correspond to a node with degree roug% in the
shifted distribution. Thus, the average degrée is:

~ k Theorem V.5 For a fixed probability of decoding fail-
dp, = Zj%n(j) ure 9, the number of operations needed to decode using
j=1 a shifted code is

k—n i
= ZZ:; round(l — Q> ,u(k_n)(z) O (k‘ ln(k? — ’I’L)) . (7)

k
k k—n
= 0 < > Z (e—n) (1), Our shifted codes rely heavily on a correct knowledge
n—k i=1 of n, the number of input symbols decoded at the
and the result follows from the average degree given receiving host. An underestimate af at the encoder
in [1]. m is wasteful of communication and computation (in fact
The first step in decoding a shifted code involvelsT codes are equivalent to estimatifiglecoded inputs),
removing alln known input symbols, and their incidenout an over-estimate can be catastrophic, in that it can
edges, from the decoding graph. Our next lemma edarve the decoder of lower-degree encoding symbols and
tablishes the computational complexity of this remov&fffectively stall the decoding.
process, after which the resulting graph looks like the For example, if roun{ﬁ) = r, then there will be
decoding graph of a standard LT code under the robust encoded symbols generated of degtee:, which
soliton distribution. means that ifr is at least2 greater than the number

D. Decoding distribution
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Fig. 2. Performance of LT code and shifted codesKo= 1000 Fig. 3. Time to create enough encoded symbols to decode all
over 100 randomized trials per point. unknown input symbols for LT code and proposed shifted code,
n = 0.8 x k over 100 randomized trials.

of decoded input symbols, then decoding will stall ar]godes. The first implementation was designed for stan-
never complete.

S _ dard personal computers with no significant limitations
In applications where the number decoded input SYrg emory or computation, in our case a 2.0GHz Intel

bols n cannot be determined accurately at the encodgl, .« 5 iMmac with2GB RAM.. The second implementa-
a more flexible shift might be necessary. SPeC'f'Ca”}fon was designed for Tmote Sky wireless motes running
suppose we know that the decoder will decadeput the TinyOS operating system on anMHz processor

symbols with probabilityp(i), resulting in the known \ i, 10kg RAM communicating in the2.4GHz band at
input distributionp. Then the appropriate shift of the250kbps

robust soliton distribution would be: We implemented a software encoder and decoder for

the LT process that can accept any probability distri-

k—1 bution to produce encoded symbols and decode them
Op(j) =0+ P(A) pr(—n)(4) as discussed in Section IlI-B. The decoding algorithm
A=0 includes an optimization to efficiently “remove” known
i _ input symbols from received encoded symbols in order
for round<@> =J- (8) to compare fairly with our shifted codes.
k

This distribution has the as the special distribution A. Number of encoded symbols

whenp is the impulse distributioni.€., p(n) = 1, p(i) = Figure 2 plots the number of encoded symbols the
0 for i # n). number of additional encoding symbols that must be re-
ceived for full decoding, assuming thatinput symbols
V. COMPARISON AND DISCUSSION have already been determined at the decoding host. The

shifted code clearly outperforms the robust soliton LT

~ The results presented in Section IV-C are asymptofigge and is within 100 of the omniscient lower bound
in nature. In this section we provide experimental perfoys (1). For example, fom = 900, the decoding host

mance measures for shifted codes for realistic numb%rsqng the shifted code would only downloa&2 encoded

of input symbolsk, comparing our codes to standard L-Eymbols compared t678 encoded symbols using the
codes. In both cases, we assume thatput symbols st soliton LT code.

have been determined at the decoder side, and decoding
proceeds to determine the unknown input symbols. B. Encoding and Decoding

Our experimental data were collected from two differ- Our first experiment examined the computational com-
ent encoder/decoder implementations of generalized plexity of creating encoded symbols. In this experiment,
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Fig. 5. Comparison of distribution shifting using tifedistribu-
Fig. 4. Time to decode unknown input symbols for LT code antdon (8) and LT decoding. The experiment was conducted 00801
shifted codes fon = 0.8 x k over 100 randomized trials. randomized trials using 500 input symbols.

the number of input symbols known at the decoder w&2 "epresenting the number of input packets decoded
n = 0.8 x k, and the total number of input symbol&“der our ¢, distribution. This, in turn, produced a
k was varied. As expected, the amount of computatida distribution, etc., yielding a lispy, ps, ps, ... and

on average per encoded symbol is larger for the shifté@responding degree distributiofis, 62, 0, . . .

codes, given their higher average degree. For examplefiguré 5 shows a comparison of these “Theta” distri-

when k = 360, creating an encoding symbol takes5 butions and LT codes. Clearly, the “Theta” distribution
ms for the shifted codes, on average, but gn# ms for shifting decodes input symbols much more quickly than

the robust soliton LT code. However, as Figure 3 show§€ standard LT codes. It would be of clear interest to
the total time required at the encoding sensor to credf®lace our empirical evaluations with explicit combina-
adequate encoded symbols (for successfully decodingzqgaI computations, of which we have only lower bounds
less for the shifted code than LT codes. husfar, of the appropriate shifts after each decoding iter

The second experiment examined the computatior?éion' This could be combined with some side knowledge

complexity of the decoding process. In this experimeff @ transmission channel model to produce channel-
n = 0.8xk and the value of was varied. Figure 4 showsMatched rateless coding.
the amount of time required to recover all unknown input VI. CONCLUSION

symbols. Ask:_grows, the increasing number of encoded \yo have proposed shifted codes that outperform LT
symbols required by the robust soliton LT code becomggyas when a fraction of the input symbols is already
more significant and the shifted code performs better.,, ~:2h1e to0 the decoding host, as may occur from

o - preliminary feedback (whether explicit or inferred) or
C. Distribution shifting in broadcasting or synchronization environments. Our
Our final experiment demonstrated the benefit of dianalysis and experimental results demonstrate the im-
tributional shifting by means of the distribution of (8). provement of the shifted code over standard LT codes
In this experiment, we first empirically (off-line) de-in terms of overall communication and computational
termined the distributiorp; of decoded input packetscomplexity, and show promise for developing rateless
under robust soliton decoding. More preciseby,(i) codes for specific transmission channel models. Finally,
contained the average number of times that exatctlywe have demonstrated the feasibility of implementing
input packets were decoded from the given number bbth sets of rateless codes for extremely constrained
LT-encoded packets. This probability distribution desensor devices.
termined a shifted distributio;, as per (8), which We believe that the proposed codes will be relevant
we used to empirically derive a probability distributiorfor a wide variety of applications. On the theoretical



side, we believe that they can adapted to work with
inner codes in order to improve upon popular rateless
code designs, such as Raptor codes [2]. The proposed
idea of carefully modifying the probability distribution

of LT codes under partial information may also be
applicable to other codes. On the applied side, shifted
codes should be useful for applications that broadcast
updates on wireless channels in a sensor network or
a mobile wireless network, because multiple decoding
hosts can use the same encoded symbols received over
the broadcast channel, irrespective of the particulartinpu
symbols available at different decoding hosts. In cases
where a feedback channel exists, the shifted code can be
continuously adapted, depending on the number of input
symbols successfully received at the decoding host. We
also envision using shifted codes in storage applications
where storage devices can be “repaired” to a master
copy in cases of partial accidental erasure and updating
outdated data.
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