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Abstract— We present novel rateless codes that gener-
alize and outperform LT codes (with respect to overall
communication and computation complexity) when some
input symbols are already available at the decoding host.
This case can occur in data synchronization scenarios,
or where feedback is provided or can be inferred from
transmission channel models. We provide analysis and ex-
perimental evidence of this improvement, and demonstrate
the efficiency of the new code through implementation on
highly constrained sensor devices.

I. I NTRODUCTION

Rateless codes transmit information (i.e., input sym-
bols) as encoded symbols over lossy communication
channels, typically an erasure channel. As their name
implies, these codes have the property of beingrateless,
meaning that they have no fixed amount of redundancy:
the encoder can produce a practically unending stream
of encoding symbols, any fixed number (in expectation)
of which can be used to decode a transmission. Rateless
codes sometimes impose a small communication over-
head in that the number of encoded symbols required at
the decoder is slightly more than the number of input
symbols. In addition, there may be a small overhead of
transmitting meta-information used for decoding.

Random linear codes are one well-studied class of
rateless codes known to have a very low overhead; in fact
they can be implemented with a constant communication
overhead, although their encoding and decoding steps
are computationally expensive, and hence unsuitable for
encoding long transmissions. Recently, codes proposed
by Luby [1] have become popular because of their
low encoding and decoding complexity, at the cost of
a slightly larger communication overhead than random
linear codes. Plain LT codes tend to work well only in
asymptotic regimes, and for this reason Raptor codes [2]
were introduced, which wrap LT codes within an outer
code to improve decoding performance. Finally, rateless
codes have been designed and implemented for content
distribution in networks [3].

All the codes mentioned above are designed for the
case when the decoding host has noa priori informa-
tion about the content being transmitted. In this paper,
we consider rateless encoding for situations where the
decoding host starts with an (unknown) subset of input
symbols. This could occur, for example, in the context
of data synchronization [4], where each host has modi-
fications of some common database. It could also occur
in a multi-round communication scheme where feedback
or side-channel information provides some knowledge of
input symbols at the decoder.

II. PRELIMINARIES

A. Problem formalization

For consistency with the existing literature, we assume
an encoding host hask, b-bit input symbols comprising
setK, n ≤ k of which (comprising a setN) are already
known at the decoding host. We assume that the encod-
ing host knows the cardinalityn of N, without knowing
the individual input symbols that comprise the set. The
goal is for the decoding host to efficiently determine
its missing input symbols (i.e., the set differenceK-
N), where efficiency is measured with respect to both
communication and computational complexity.

B. Straightforward lower bounds

The communication aspect of this problem is simply
a special case of the set reconciliation problem [5], for
which a simple lower bound is given by

Ĉ∞ ≥ (k − n)b − lg(k − n)

b
, (1)

under the reasonable assumption that2 < 2b−1. In other
words, at a minimum, the encoder would have to send
only a little less than the exact contents of the missing
input packets to the decoder.

The computational aspect of this problem is a straight-
forward adaptation of the classical balls and bins argu-
ment initially presented in [1]. The analysis assumes that



computational cost is tied to the number of exclusive or
(xor) operations onb-bit vectors needed for decoding,
with each xor requiring unit time. In addition, input
symbols are assumed to be included xor computations
in a uniformly random fashion, as with common rateless
codes.

We associate bins with xor (encoded) symbols and
balls with input symbols. Throwing a ball into a bin thus
corresponds to using an input symbol when encoding the
corresponding xor symbol. At a minimum, each input
symbol must appear in the computation of at least one
xor symbol for the decoder to be able to recover all
inputs. LetXi denote the random variable representing
the number of balls thrown between the time wheni−1
distinct bins contain a ball andi distinct bins contain
a ball. Then the total number of balls thrown before
all bins are non-empty is (assumingn balls start in
bins corresponding to then input symbols known at the
decoder):

X = Xn+1 + Xn+2+, . . . ,+Xk−1 + Xk (2)

Clearly Xi follows a geometric distribution withp =
(1 − i−1

k
), so its expectation isE(Xi) = 1

1− i−1

k

. If n

input symbols are known at the decoder, we have, by
linearity of expectation,

E(X) =
n
∑

i=k

1

1 − i−1
i

= kln(k − n) + O(k). (3)

Our designed codes asymptotically approach the min-
imum computation complexity of (3).

III. LT C ODES

We next describe Luby’s LT codes [1] and their
encoding and decoding methods. In Section III-C we
provide motivation for our modification of LT codes for
our specific problem.

A. Code construction

LT codes were first proposed in [1], based on a
model similar to their Low-Density Parity-Check matrix
cousins [6]. The main contributions of Luby involved
demonstrating the utility of ratelessness through codes
based on therobust soliton probability distribution.
Codes generated through this distribution have low en-
coding and decoding complexity (O(k ln k

δ
) exclusive

or operations for reconstruction probability1 − δ), as
well as a low overhead of (k + O(

√
kln2(k)) expected

number of encoded symbols needed to decodek input
symbols at the decoding host [1].
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Fig. 1. LT code distribution and proposed Shifted code distribution,
with parametersk = 1000, c = 0.01, δ = 0.5. The number of
known input symbols at the decoding host is set ton = 900 for
the Shifted code distribution. The probabilities of the occurrence of
encoded symbols of some degrees is0 with the shifted distribution.

The robust soliton distribution is based on two distri-
butions also proposed in [1]: theideal solitondistribution
ρ(·)

ρ(1) =
1

k

ρ(i) =
1

i(i − 1)
∀i = 2 . . . k

and the distribution

τ(i) =
R

ik
for i = 1, . . . ,

k

R
− 1

τ(i) = R ln

(

R

k

)

/k for i =
k

R

τ(i) = 0 for i =
k

R
+ 1, . . . , k,

whereR = c · ln(k
δ
)
√

k, c > 0 is a “suitable constant”,
andδ is the maximum probability of decoding failure.

Adding the ideal soliton distributionρ(·) to τ(·) and
normalizing, Luby obtained the robust soliton distribu-
tion µk(·) plotted in Figure 1 for parametersk = 1000
input symbols,c = 0.01, and maximum reconstruction
failure probabilityδ = 0.5. Note that the robust soliton
distribution has a characteristic spike ati = k

R
, based on

the contribution ofτ(·).

B. Encoding and decoding

Unlike their analysis, LT codes have remarkably sim-
ple encoding and decoding algorithms.

In order to create an encoded symbol an encoding



host first chooses a degreed based on the robust soliton
distribution, and then, uniformly at random, selectsd
distinct input symbols (which we calllimbs) from among
the k input symbols being encoded. The sum of these
input symbols over a suitable finite field (typicallyF2)
comprises the value of the encoded symbol, which is
transmitted to the decoder. The indices of the input sym-
bols selected must also be made available to the decoder,
either in the form of a shared seed for a pseudorandom
function, or through explicit communication.

For its part, the decoding host uses a simple greedy
specialization of the belief propagation algorithm [7],
which is typically faster than Gaussian elimination in
practice. Specifically, the decoder begins by identifying
encoded symbols of degree1, meaning that each is an
exact copies of one input symbol; this initialripple thus
yields the value of some input symbols

The known input symbols represent one known pa-
rameter in all encoding symbols that use them. As such,
encoding symbols of degree2, which utilize one of these
input symbols, can now be utilized to decode some other
input symbols (i.e. given ax andx⊕ y, one can deduce
y), resulting in the second ripple. In fact, each ripple
involves utilizing known input symbols to reduce the
number of unknown parameters in all encoding symbols
that utilize these symbols. The robust soliton distribution
is designed to determine input symbols at a rate that
maintains a nearly constant ripple size, allowing all input
symbols to be retrieved eventually with high probability.

C. Inefficiency under partial information

The design of LT codes presumes no input information
on the decoding host. In our case, the decoder already
has decodedn input symbols, meaning that any addends
of an encoded symbol from the known input setN are
redundant. For example, if input symbolsi1 andi2 have
been decoded, then it is computationally redundant to
compute an encoded symbolx1 = i1 ⊕ i2, as it provides
no new information about input symbols.

The number of theseredundant encoded symbols
grows with the ratio of input symbols known at the
decoder to input symbols total (i.e., n

k
). More precisely, a

given collection ofd distinct limbs of an encoded symbol
is a subset ofN , the input symbols known at the decoder,
with probability

d
∏

i=0

n − i

k − i
.

As such, ifn input symbols are known at the decoder,
then an additional LT-encoded symbol will provide no

new information to the decoder with probability

k
∑

d=1

µk(d)

(

d
∏

i=0

n − i

k − i

)

, (4)

which quickly approaches1 as n → k. It is thus not
surprising that the LT codes become less efficient as the
decoder learns more input symbols.

IV. SHIFTED CODES

A. Intuition

Intuitively, the robust soliton distribution is too sparse
to accommodate known input symbols on the decoder
end. Then known input symbols serve the function of
degree1 encoded symbols, disproportionately skewing
the degree distribution for LT encoding. We thus propose
to shift the robust soliton distribution to compensate for
the additional functionally degree1 symbols.

B. Construction

Formally, then input symbols at the decoder end have
the effect of degree1 encoded symbols, which can be
immediately decoded. As such, they reduce the degree of
each encoding symbols by an expected

(

1 − n
k

)

fraction.
Our goal is to redistribute the encoding degrees to the
original robust soliton distribution.

Definition The shifted robust soliton distribution is
given by

γk,n(j) = 0 + µ(k−n)(i) for round

(

i

1 − n
k

)

= j,

where k represents the number of input symbols in
the system,n represents the number of input symbols
already known at the decoder, and round(·) rounds to
the nearest integer.

Lemma IV.1 For any n < k, γk,n(j), j = 1..k is a
probability distribution.

Proof: The proof hinges on the observation that
1

1−n

k

≥ 1 when n < k. As such, i
1−n

k

and i′

1−n

k

will

differ by at least 1 for any different integersi and i′,
meaning that

∑

j γk,n(j) =
∑

j µ(k−n)(j) = 1.
We construct a shifted code exactly as an LT-code, but

based on the shifted robust soliton distributionγ. More
precisely, givenn, the number of input symbols already
decoded, we pick a degreed with probabilityγk,n(d) and
then xor a corresponding number of thek input symbols,
chosen distinctly and uniformly at random.



Any encoding node chosen through theµk distribution
to have degreed, will have degree roughly d

1−n

k

in the
new distribution, meaning that we can expectd of the
input symbols used in the encoding to not be from the
n known to the decoder.

C. Analysis

We can straightforwardly apply the results of [1] to
the shifted distribution.

Lemma IV.2 A decoder that knowsn of k input symbols
needs

m = (k − n) + O

(√
k − n ln2

(

k − n

δ

))

(5)

encoding symbols under the shifted distribution to de-
code allk input symbols with probability at least1− δ.

Note that Lemma IV.2 represents a roughly1 − n
k

fraction of the encoding nodes needed for standard LT
codes, which is particularly effective asn approachesk.
The downside of this shift is that encoding nodes have
relatively higher expected degrees.

Lemma IV.3 The average degree of an encoding
node under the γ distribution is given by
O
(

k
k−n

ln (k − n)
)

.

Proof: The proof follows from the definitions,
since a node with degreed in the µk distribution will
correspond to a node with degree roughlyd1−n

k

in the
shifted distribution. Thus, the average degree is:

d̄k =

k
∑

j=1

jγk,n(j)

=

k−n
∑

i=1

round

(

i

1 − n
k

)

µ(k−n)(i)

= O

(

k

n − k

) k−n
∑

i=1

µ(k−n)(i),

and the result follows from the average degree ofµ given
in [1].

The first step in decoding a shifted code involves
removing alln known input symbols, and their incident
edges, from the decoding graph. Our next lemma es-
tablishes the computational complexity of this removal
process, after which the resulting graph looks like the
decoding graph of a standard LT code under the robust
soliton distribution.

Lemma IV.4 For a fixed δ, the expected number of
edgesR removed from the decoding graph upon knowl-
edge ofn input symbols at the decoding host is given
by

R = O (n ln(k − n)) (6)

Proof: The total degree of encoding nodes must
equal the total degree of input symbols in the decoding
graph, meaning, by Lemma IV.3, that:

md̄k = kd̄′k,

whered̄′k is the average degree of an input symbol. As
such, the expected total degree ofn input symbols is
given by

n
m

k
d̄k.

Rewriting, with the aid of Lemma IV.2 and recalling
that δ is presumed constant:

R ≤ n
(k − n) + O

(√
k − n ln2(k − n)

)

k

O

(

k

k − n
ln (k − n)

)

= O

((

1 + O(
ln2(k − n)√

k − n
)

))

n ln(k − n)

= O(n ln(k − n)).

We now assemble the various lemmae to determine the
computational complexity of shifted decoding, which is
asymptotically equivalent to the lower bound derived in
Section II-B.

Theorem IV.5 For a fixed probability of decoding fail-
ure δ, the number of operations needed to decode using
a shifted code is

O (k ln(k − n)) . (7)

D. Decoding distribution

Our shifted codes rely heavily on a correct knowledge
of n, the number of input symbols decoded at the
receiving host. An underestimate ofn at the encoder
is wasteful of communication and computation (in fact
LT codes are equivalent to estimating0 decoded inputs),
but an over-estimate can be catastrophic, in that it can
starve the decoder of lower-degree encoding symbols and
effectively stall the decoding.

For example, if round
(

k
k−n

)

= r, then there will be
no encoded symbols generated of degree< r, which
means that ifr is at least2 greater than the number
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Fig. 2. Performance of LT code and shifted codes fork = 1000

over 100 randomized trials per point.

of decoded input symbols, then decoding will stall and
never complete.

In applications where the number decoded input sym-
bols n cannot be determined accurately at the encoder,
a more flexible shift might be necessary. Specifically,
suppose we know that the decoder will decodei input
symbols with probabilityp(i), resulting in the known
input distributionp. Then the appropriate shift of the
robust soliton distribution would be:

θp(j) = 0 +

k−1
∑

∆=0

p(∆)µ(k−∆)(i)

for round

(

i

(1 − ∆
k
)

)

= j. (8)

This distribution has theγ as the special distribution
whenp is the impulse distribution (i.e.,p(n) = 1, p(i) =
0 for i 6= n).

V. COMPARISON AND DISCUSSION

The results presented in Section IV-C are asymptotic
in nature. In this section we provide experimental perfor-
mance measures for shifted codes for realistic numbers
of input symbolsk, comparing our codes to standard LT
codes. In both cases, we assume thatn input symbols
have been determined at the decoder side, and decoding
proceeds to determine the unknown input symbols.

Our experimental data were collected from two differ-
ent encoder/decoder implementations of generalized LT

50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Number of Input Symbols

T
im

e 
to

 E
nc

od
e 

(s
)

LT (Robust Soliton)
Shifted Code distribution

Fig. 3. Time to create enough encoded symbols to decode all
unknown input symbols for LT code and proposed shifted code,
n = 0.8× k over 100 randomized trials.

codes. The first implementation was designed for stan-
dard personal computers with no significant limitations
on memory or computation, in our case a 2.0GHz Intel
Core 2 iMac with2GB RAM,. The second implementa-
tion was designed for Tmote Sky wireless motes running
the TinyOS operating system on an8 MHz processor
with 10KB RAM communicating in the2.4GHz band at
250kbps.

We implemented a software encoder and decoder for
the LT process that can accept any probability distri-
bution to produce encoded symbols and decode them
as discussed in Section III-B. The decoding algorithm
includes an optimization to efficiently “remove” known
input symbols from received encoded symbols in order
to compare fairly with our shifted codes.

A. Number of encoded symbols

Figure 2 plots the number of encoded symbols the
number of additional encoding symbols that must be re-
ceived for full decoding, assuming thatn input symbols
have already been determined at the decoding host. The
shifted code clearly outperforms the robust soliton LT
code and is within 100 of the omniscient lower bound
in (1). For example, forn = 900, the decoding host
using the shifted code would only download152 encoded
symbols compared to678 encoded symbols using the
robust soliton LT code.

B. Encoding and Decoding

Our first experiment examined the computational com-
plexity of creating encoded symbols. In this experiment,
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Fig. 4. Time to decode unknown input symbols for LT code and
shifted codes forn = 0.8× k over 100 randomized trials.

the number of input symbols known at the decoder was
n = 0.8 × k, and the total number of input symbols
k was varied. As expected, the amount of computation
on average per encoded symbol is larger for the shifted
codes, given their higher average degree. For example,
whenk = 360, creating an encoding symbol takes6.95
ms for the shifted codes, on average, but only5.84 ms for
the robust soliton LT code. However, as Figure 3 shows,
the total time required at the encoding sensor to create
adequate encoded symbols (for successfully decoding) is
less for the shifted code than LT codes.

The second experiment examined the computational
complexity of the decoding process. In this experiment
n = 0.8×k and the value ofk was varied. Figure 4 shows
the amount of time required to recover all unknown input
symbols. Ask grows, the increasing number of encoded
symbols required by the robust soliton LT code becomes
more significant and the shifted code performs better.

C. Distribution shifting

Our final experiment demonstrated the benefit of dis-
tributional shifting by means of theθ distribution of (8).

In this experiment, we first empirically (off-line) de-
termined the distributionp1 of decoded input packets
under robust soliton decoding. More precisely,p1(i)
contained the average number of times that exactlyi
input packets were decoded from the given number of
LT-encoded packets. This probability distribution de-
termined a shifted distributionθ1, as per (8), which
we used to empirically derive a probability distribution
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Fig. 5. Comparison of distribution shifting using theθ distribu-
tion (8) and LT decoding. The experiment was conducted over 1000
randomized trials using 500 input symbols.

p2, representing the number of input packets decoded
under our θ1 distribution. This, in turn, produced a
θ2 distribution, etc., yielding a listp1, p2, p3, . . . and
corresponding degree distributionsθ1, θ2, θ3, . . ..

Figure 5 shows a comparison of these “Theta” distri-
butions and LT codes. Clearly, the “Theta” distribution
shifting decodes input symbols much more quickly than
the standard LT codes. It would be of clear interest to
replace our empirical evaluations with explicit combina-
torial computations, of which we have only lower bounds
thusfar, of the appropriate shifts after each decoding iter-
ation. This could be combined with some side knowledge
of a transmission channel model to produce channel-
matched rateless coding.

VI. CONCLUSION

We have proposed shifted codes that outperform LT
codes when a fraction of the input symbols is already
available to the decoding host, as may occur from
preliminary feedback (whether explicit or inferred) or
in broadcasting or synchronization environments. Our
analysis and experimental results demonstrate the im-
provement of the shifted code over standard LT codes
in terms of overall communication and computational
complexity, and show promise for developing rateless
codes for specific transmission channel models. Finally,
we have demonstrated the feasibility of implementing
both sets of rateless codes for extremely constrained
sensor devices.

We believe that the proposed codes will be relevant
for a wide variety of applications. On the theoretical



side, we believe that they can adapted to work with
inner codes in order to improve upon popular rateless
code designs, such as Raptor codes [2]. The proposed
idea of carefully modifying the probability distribution
of LT codes under partial information may also be
applicable to other codes. On the applied side, shifted
codes should be useful for applications that broadcast
updates on wireless channels in a sensor network or
a mobile wireless network, because multiple decoding
hosts can use the same encoded symbols received over
the broadcast channel, irrespective of the particular input
symbols available at different decoding hosts. In cases
where a feedback channel exists, the shifted code can be
continuously adapted, depending on the number of input
symbols successfully received at the decoding host. We
also envision using shifted codes in storage applications
where storage devices can be “repaired” to a master
copy in cases of partial accidental erasure and updating
outdated data.
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