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Abstract

We present a near real-time rateless coding approach based on the constrained use of a feedback channel. The
specific feedback used in our scheme is based on a measure of distance between a received word and the symbols
already decoded at the receiver, with successive feedbacks providing accumulating information about the state of
the decoder. Our encoder, in turn, optimizes its choice of constituent source symbols in each encoding according to
the decoder information and not uniformly at random as is typically done. We provide an upper-bound on the error
probability of our approach when used with a maximum-likelihood decoder, and simulation results demonstrate
that the coding performance can be tuned according to the feedback budget available.

This work appeared as:
• M. Hashemi and A. Trachtenberg, “Near Real-Time Rateless Coding with a Constrained Feedback

Budget”, 52nd Annual Allerton Conference on Communication, Control, and Computing, October
2014.

I. INTRODUCTION

Traditional rateless codes, such as Luby-Transform (LT) [1] and Raptor codes [2], can often provide
reliable communication over an unreliable channel, although they have high coding overhead for short
block lengths [3]. These codes also have a well-known all-or-nothing decoding property (the so-called
“waterfall” phenomenon), where an abrupt jump in the ratio of decoded input symbols occurs when the
coding is almost complete. In order to improve the performance of rateless codes in such circumstances,
there has been increasing interest in incorporating the use of a feedback channel. For example, a decoder
for Real-Time (RT) oblivious [4] and Shifted-LT (SLT) [5] codes sends the number of recovered symbols
back to the transmitter, and this feedback is used to modify the degree distribution at the transmitter.

In this paper, we propose a coding scheme, called Real-time LT (RLT), that uses distance-type feedback
messages. An RLT encoder utilizes the distance between a received encoding symbol and the set of already
decoded symbols at the receiver to learn about the connectivity of the decoder’s graph. Specifically, the
encoder estimates the probability that each input symbol has been decoded (at the decoder), and these
estimates are then used by the encoder to optimize the choice of input symbols within each transmission.
Our choice of input symbols is based on a greedy approach that attempts to maximize the decoding progress
per transmission, with the result that the expected number of input symbols decoded per received symbol
stays mostly uniform throughout the transmission process, an almost real-time decoding performance [4].
To make the analysis of RLT codes more tractable, we further suggest a sub-optimal coding scheme,
dubbed Nonuniform-LT (NLT) codes, wherein input symbols are chosen independently according to a
nonuniform selection distribution. For ease of exposition, we base our code construction upon the Robust
Soliton (RS) degree distribution as used in LT codes [1], although any degree distribution can be used.

Our previous work [6] has focused on very light-weight feedback messages (i.e., only 1 bit per
reception), and this work attempts to generalize that result to larger feedback budgets that may occur in
other applications; in so doing, we also allow the decoder to specific control when feedback occurs. We
demonstrate this feedback flexibility in simulations, supported by improved upper bounds on decoding
failures.

The rest of this paper is organized as follows. In Section II, we present a brief background on rateless
coding, including a brief literature review. Section III motivates our work and provides our RLT code
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design methodology, followed by a description of Nonuniform LT codes and their analysis in Section IV.
In Section V we compare RLT codes with the current state-of-the-art feedback-based rateless codes, and
we conclude with Section VI.

II. BACKGROUND

In this section, we provide a brief background on rateless coding schemes.

A. Preliminaries
Encoding: In a rateless coding framework, we assume that the encoder has k input symbols to

transmit to one or several receivers over an erasure broadcast channel. In the LT codes [1], the encoder
first picks a coding degree d according to the Robust Soliton distribution defined based on distributions
ρk and τk:

ρk(i) =

{
1
k

i = 1;
1

i(i−1) i = 2, ..., k;

and τk that is defined as follows: let R = c ln
(
k
δ

)√
k for some constant c, then:

τk(i) =


R
ik

i ≤ k/R− 1;
R
k

ln(R/δ) i = k/R;
0 otherwise.

The Robust Soliton distribution Ωk(i) is the normalized sum of ρk(i) and τk(i), i.e., :

Ωk(i) =
ρk(i) + τk(i)∑k
j=1 ρk(j) + τk(j)

i = 1, ..., k. (1)

Next, d input symbols are chosen uniformly at random without replacement, and their sum over an
appropriate finite field forms an encoding symbol transmitted over the channel. Indices of the d selected
input symbols are made available (i.e., as meta-information) to the decoder. d constituent input symbols
are usually referred to as neighbors of the encoding symbol.

Decoding: At the decoder side, the k input symbols can be recovered with high probability from a
set of received encoding symbols with a cardinality slightly larger than k. For instance, LT codes support
recovery of input symbols from k+O

(√
k ln2(k/δ)

)
encoding symbols with probability 1−δ. To this end,

the widely-used low complexity peeling decoder [7] is employed. The peeling decoder finds all encoding
symbols with degree 1, whose neighbor can be immediately recovered. The recovered input symbols are
then excluded from all encoding symbols that have them as neighbors. The decoder proceeds iteratively
until all input symbols are recovered or there exists no more encoding symbols with degree 1, in which
case decoding fails.

B. Related work
There have been several works to incorporate different types of feedback messages into the traditional

rateless codes. Feedback messages in the Real-Time (RT) oblivious codes [4] contain information about
the number of recovered symbols at the decoder side. The RT encoder then uses the feedback information
to gradually increase the degree of encoding symbols. A similar-in-spirit methodology has been used in
the Shifted LT (SLT) codes [5], wherein feedback messages notify about the number of recovered symbols
to the transmitter. The degree distribution is then shifted according to the number of recovered symbols.
The SLT scheme uses the same encoding/decoding procedure as LT, though it considerably improves
the performance of LT codes for short block lengths. Similarly, in Growth codes [8], the receiver feeds
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information about the number of recovered symbols back to the transmitter, and then the transmitter
increases the coding degree to enhance the probability of transmitting innovative symbols.

Another type of feedback message involves the encoder requesting a particular coding degree according
to the state of decoder [9]. Such a coding scheme adds flexibility to the decoder to control the decoding
progress. It has been shown that to fully recover k input symbols, at most 1.236k error-free transmissions
are required by this method. Yet another type of feedback contains the identity of recovered symbols
[10]. Such information is then used by the encoder to redesign the degree distribution for subsequent
transmissions. More recently, the authors in [11] have proposed a heuristic to use a “hybrid” feedback-
based rateless, called LT-AF codes, in which the receiver alternates between two types of feedback
messages: the first type of feedback contains information about the number of decoded symbols as in
the SLT and RT codes, while the receiver requests a specific input symbol through the second type of
feedback.

We distinguish the RLT codes from previous works by two key aspects. First, the type of feedback in
the RLT codes is based on distance-type feedback. We generalize the use of distance messages in [6] by
feeding all distance messages back every so often. In other words, after collecting a pre-defined number
of encoding symbols, the decoder initiates a single feedback message that contains distance information.
The encoder learns about the connectivity of the decoding graph by accumulating information across all
feedbacks.

Second, in contrast to previous works that are based on uniform symbol selection, we define an opti-
mization framework to select neighbors of encoding symbols such that they result in a maximum decoding
progress per transmission. We provide a relaxed version of this optimization based on a nonuniform symbol
selection at the encoder. Note that unequal error protection (UEP) rateless codes [12] are also built upon
a nonuniform symbol selection distribution that is set based on the importance of source symbols (i.e.,
more important data are more probable to be chosen), whereas our nonuniform selection distribution is
calculated on-the-fly based on feedback information.

III. NEAR REAL-TIME RATELESS CODES

Previous rateless codes with feedback were designed based on modifying the degree distribution
according to feedback messages, e.g., by shifting the degree distribution, or by explicitly increasing
the degree. However, when a degree d is picked, d input symbols are selected uniformly at random. To
enhance the coding performance, input symbols can be selected based on connectivity of the decoder’s
graph (i.e., state of individual input symbol).

A natural feedback approach involves sending the identity of recovered symbols back to the encoder.
If the encoder stores all encoding symbols, it can then recover distance information from this feedback,
and thus learn about the connectivity of the decoder’s graph. However, storing all encoding symbols may
be costly, especially when the forward channel is highly lossy. Moreover, it should be noted that initially,
when not so many symbols are decoded, this feedback provides little information about the decoding
state.

In this paper, we propose distance-type feedbacks that provide information about the decoder’s graph
through a uniform feedback transmission (i.e., one feedback for every s encoding symbols). In this
scheme, the encoder stores only encoding symbols between consecutive feedbacks, resulting in a light-
weight encoder. As we shall explain, neighbor selection based on distance information can incorporate
the “history” of transmissions to accelerate decoding progress.

A. Distance-type feedback
Definition. Given an encoding symbol y and a set of recovered symbols C, distance between y and the
set C is the number of neighbors of y that remain undecoded right after receiving y.
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Fig. 1. Distance graph labeling: A label (xi, qi) implies that the input symbol xi has been decoded with the probability of qi up to the
current state. Labels of check nodes yi are defined to be the number of neighbors of yi with a label of less than 1.

Example: Suppose that input symbols x1, .., x4 are encoded and transmitted in the following order:
y1 = x1 + x2, y2 = x1 + x4, y3 = x4, and y4 = x1 + x2. Based on distance definition, y1 and y2 have
distance 2, while y3 and y4 have distance 0 (x4, x1 and x2 are decoded after receiving y3 and y4).

From the definition of distance feedback, it is clear that some of the distance messages provide explicit
information about the decoding state at the decoder. For instance, distance 0 happens when all neighbors
of the encoding symbol have already been decoded, or can be decoded by an XOR operation using the
incoming encoding symbol, and thus, the encoder has full knowledge that all neighbors corresponding
to the symbol with distance 0 are decoded. Moreover, if the distance of an encoding symbol is equal to
its degree (i.e., number of neighbors), then the transmitter infers that none of the symbol’s neighbors are
recovered at the decoder side. On the other hand, some distance feedbacks provide implicit information
in the sense that the encoder would not be able to uniquely label neighbors of an encoding symbol as
decoded or not-yet-decoded. In such cases, the encoder assigns a probability of having been decoded to
the input symbols. For instance, if the encoding symbol y = x1 + x2 + x3 + x4 has distance 2 with the
current state of decoder, the transmitter infers that each input symbol x1, ..., x4 has been decoded with
the probability of 2

4
. These probabilities would be updated after receiving a new feedback message.

In order to limit the number of feedback transmission, we assume that the receiver is limited to
send one feedback after collecting every s encoding symbols, and that each feedback message contains
distance information corresponding to encoding symbols received between consecutive feedbacks. Such
a mechanism provides a uniform feedback transmission that prevents congestion on the back channel.
Moreover, it adds an additional flexibility to the coding scheme in that the parameter s can be set to any
arbitrary value depending on the feedback channel available. In this model, we assume that the cost of
feedback is mostly associated with the number of transmissions, and not the length of each message.

Processing distance information: In order to process distance information, the encoder constructs
a bipartite graph wherein input symbols are placed on the top, and encoding symbols at the bottom as
shown in Fig. 1. The input symbols’ labels correspond to their probability of having been decoded. Each
encoding symbol yi is also associated with a label that represents the number of neighbors of yi with
labels less than 1. Specifically, assume that after the t-th feedback, n(t)

i neighbors of yi are labeled 1 (i.e,
they have been decoded). The label of yi denoted by l(t)i , is then calculated as:

l
(t)
i = di − n(t)

i , (2)

where di is the degree of yi. We assume that the t-th feedback message contains the distance value of
f (t) corresponding to the encoding symbol yi =

∑
j∈Ai

xj . The label of a constituent symbol xj is then
estimated as:

q
(t)
j = max

{
q
(t−1)
j ,

l
(t−1)
i − f (t)

l
(t−1)
i

}
. (3)

In (2), the encoder excludes the recovered symbols (i.e., qj = 1) from the labeling process and then
it uniformly “shares” the distance between remaining constituent symbols as in (3). For instance, if the
encoding symbol y = x1 + x2 + x3 + x4 has distance 2 with the current state of decoder, and the encoder
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Fig. 2. Mean Absolute Error (MAE) for the estimated probability of having been decoded as the interval of feedback transmission (parameter
s) increases.

has already assigned label of 1 to x1 (i.e., x1 has been decoded), then the encoder uniformly shares the
distance of 2 between the remaining symbols (i.e., x2, x3, and x4) and updates their probability of having
been decoded to 3−2

3
= 1

3
.

We use the Mean Absolute Error (MAE) quantity to investigate the accuracy of the estimated probability
of having been decoded against the actual decoder state. In particular, assume that the variable bj represents
the state of the symbol j at the decoder such that bj = 1 if the symbol j has been decoded and bj = 0
otherwise. MAE is then defined as:

MAE =
1

k

k∑
j=1

|qj − bj|,

in which qj’s are estimated using (3). Fig. 2 shows the MAE quantity averaged over all feedback messages
transmitted as the interval of feedback transmission (i.e., parameter s) increases. The results (averaged
over 1000 times run) illustrate that decreasing the interval of feedback transmission (i.e., higher feedback
rate) decreases the estimation error, and that the labeling mechanism provides a low-error estimation of
the decoder state.

Next, we formulate an optimization framework that incorporates the probability values qj’s in the
neighbor selection of encoding symbols.

B. Maximum decoding progress
The encoder estimates the probability of having been decoded qj’s based on distance feedbacks.

Constituent symbols within an encoding symbol are then selected in such a way that they provide maximum
decoding progress, which is recovering exactly one input symbol per transmission.

Example: Assume that we want to transmit a codeword with degree 1 based on the current value of qj’s.
Transmitting the next encoding symbol consisting of only the individual input symbol j, would be innova-
tive with the probability of 1− qj . Intuitively, to achieve a maximum decoding progress per transmission,
the encoder needs to transmit an input symbol j∗ where: j∗ = arg maxj (1− qj) = arg minj qj.

From the example, one can see that if the encoder is restricted to transmit only degree one symbols,
then this coding scheme prevents the coupon collector phenomenon [13], in that the recovered symbols
would have q = 1, and thus, they will never be chosen for subsequent transmissions. For the general case,
the encoder first picks the coding degree d based on the Robust Soliton distribution, and then d input
symbols are chosen to provide a maximum probability of decoding a single input symbol per transmission.
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Definition. For a given input symbol x and a set of d − 1 input symbols A, the Decoding Probability
function DP (x,A) is defined as the probability of immediate decoding the input symbol x transmitting
y = x+

∑
j∈A xj .

In order to decode an input symbol xi within a transmission, the transmitted symbol with the degree of
d should include the undecoded symbol xi and d−1 already decoded symbols. Symbol xi is not decoded
with the probability of 1− qi, and d− 1 symbols belonging to the set A have already been decoded with
the probability of

∏
j∈A qj . Therefore, at each step to transmit a symbol of degree d, the encoder chooses

d input symbols (x∗i , A
∗) satisfying:

(x∗i , A
∗) = argmax

(xi,A)

DP (xi, A) = argmax
(xi,A)

(1− qi)
∏
j∈A
j 6=i

qj . (4)

In order to solve this optimization, the encoder picks an input symbol that maximizes the value of (1−qi),
combined with d−1 symbols with largest qj’s (ties are broken randomly). This scheme is a “soft” version
of generating encoding symbols when the encoder knows exactly which symbols are decoded.

C. Distance feedback properties
Cumulative feedback information: Distance-type feedback has a favorable property in that it accumulates

information across all received feedback messages. Specifically, assume that there exist k input symbols
at the encoder, and after receiving a new feedback message, say the t-th feedback, the encoder updates
the probability vector q(t) =

(
q
(t)
1 , q

(t)
2 , ..., q

(t)
k

)
, wherein q

(t)
j is the probability of having been decoded

for the input symbol j. The encoder updates probability values corresponding to the encoding symbol’s
neighbors, and other probability values remain unchanged. This update mechanism allows the encoder
to accumulate information across all feedback messages, noting that in previous feedback schemes (e.g.,
sending number of recovered symbols in [4, 5]), a new feedback makes previously received feedback
information obsolete.

Decoder’s graph information: In most of previous works, feedback messages fail to provide information
about the state of individual input symbols at the decoder side. For instance, sending the number of
recovered symbols does not make the decoded symbols known to the encoder. The authors in [10] use
feedback messages that contain the identity of recovered symbols, wherein each symbol is labeled as either
decoded or not-yet decoded at the encoder; in other words, there are binary labels to distinguish between
symbols. Likewise, light-weight feedbacks in the Delete-and-Conquer codes [6] provide information on
decoded symbols. In these schemes, all of the undecoded symbols are considered to be the same from the
encoder’s perspective as they have the same probability of being included in subsequent transmissions.
However, the key point is that based on the history of transmissions (i.e., connectivity of the decoder’s
graph), input symbols are not the same in terms of decoding progress.

Distance feedbacks can distinguish between undecoded symbols such that neighbors of an encoding
symbol with a smaller degree have a higher probability of being included in subsequent transmissions. This
feature is desirable as it provides faster decoding progress compared with when neighbors of a high-degree
symbol are included in a transmission. For example, consider two encoding symbols y1 = x1 + x2 + x3
and y2 = x4 + x5, and assume that the next transmission is of degree one. If symbol x1, x2, or x3 is used
in the next transmission, the decoder can only recover a single input symbol, whereas sending either x4
or x5 results in recovering two symbols. In the following we show that distance-type feedback prioritizes
neighbors of encoding symbols with a smaller degree. From (3), label of an input symbol j is related to:

qj =
li − f
li

= 1− f

li
,

where li represents the degree of the encoding symbol i. Note that by increasing the coding degree li (for
a fixed value of f ), the probability 1 − qj of selecting the undecoded neighbor j decreases. Therefore,
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distance feedbacks assign higher selection probability to neighbors of low-degree encoding symbols, which
boosts the decoding progress.

Distance feedbacks provide information about the decoder’s graph, but it should be noted that one can
envision other schemes to learn about the decoding graph. For instance, the decoder can send the whole
decoding graph back to the encoder, and thus, the encoder would have full knowledge about the state of
input symbols at the decoder’s side. This method, however, incurs high communication overhead on the
back channel.

IV. MAXIMUM LIKELIHOOD DECODER FAILURE PROBABILITY

In the previous section, we established an optimization framework that can achieve maximum decoding
progress per transmission. For the purpose of analysis, however, it is challenging to work with the solution
in (4). Therefore, we suggest a relaxed version of the RLT codes, referred as Nonuniform LT (NLT), in
which symbols are selected independently according to a nonuniform selection distribution. Next, we derive
an upper bound on the decoder failure probability of the NLT codes. Our simulation results show that
the RLT codes can achieve substantially better performance than the NLT codes, and thus the calculated
upper bound can serve as a bound for the RLT codes as well.

A. Nonuniform Rateless Coding
We use the probability values qj to define a nonuniform symbol selection distribution as follows:

pj :=
max (qj, 1− qj)∑
i max (qi, 1− qi)

, (5)

in which, pj is the probability of selecting the input symbol j as the neighbor of an encoding symbol.
Therefore, the encoder first picks a coding degree d based on the Robust Soliton distribution1, then with
the probability of pj an individual symbol j is selected as one of d symbols. Note that this symbol
selection distribution assigns a higher weight to those symbols that the encoder has less uncertainty about
them. In other words, the encoder assigns higher selection probability on symbols with qj close to 1 (i.e.,
the symbol has been decoded almost surely (a.s.)) or symbols with qj close to 0 (i.e., the symbol has not
been decoded a.s.).

The nonuniform symbol selection p approximates the behavior of the optimized symbol selection in
(4), as the symbol j is more likely to be a solution for the optimization problem in (4) if it has either qj
close to 1 or qj close to 0, which is qualitatively the same scheme as in the distribution p defined in (5).

B. Maximum-Likelihood Decoder Failure Probability
In this section, we derive an upper bound on the maximum likelihood (ML) decoder failure probability

of the NLT codes with feedback. The ML decoding over the binary erasure channel (BEC) is equivalent
to recovering k information (input) symbols (or for simplicity we assume that each symbol contains a
single bit) from n received output bits. Assume that x is a row vector containing k input bits and y is the
vector of n collected output bits. Matrix H = [hi,j] is an n× k adjacency matrix of the decoder’s graph,
where an entry hi,j is equal to 1 if the i-th output node has the j-th input node as a neighbor. The ML
decoder is then equivalent to solving a system of linear equations in the form of:

HxT = yT . (6)

Equation (6) has a unique solution if and only if the matrix H has full rank. To calculate an upper bound
on the decoder failure probability of the NLT codes, we assume that the decoder is restricted to transmit
a single feedback when it successfully collects m encoding symbols. After the feedback transmission,

1The use of the Robust Soliton distribution is arbitrary and any distribution can be used.
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input symbols are selected nonuniformly according to (5). Note that our analysis can be extended to more
than one feedback message in a straightforward manner, and that the derived upper bound for a single
feedback serves as a bound for more than one feedback as well.

Theorem 1 Assume that the NLT encoder uses the degree distribution Ωk(d), and that the decoder collects
n encoding symbols. The decoder is allowed to transmit a single feedback message when it successfully
collects m symbols. An upper bound on the ML decoder failure probability of the NLT codes is given
by:

pe ≤ min

{
1,

k∑
w=1

(
k − 1

w − 1

)∑
d

Ωk(d)

∑
s=0,2,..,2b d

2
c
(
w
s

)(
k−w
d−s

)(
k
d

)
m

∑
d

Ωk(d)
∑

s=0,2,..,2b d
2
c

(
w

s

)(
k − w

d− s

)(
2

k

)d


n−m}

. (7)

Proof: Assume that I = {i1, i2, ..., iw} is the set of indices in which the input vector x is equal to
1, implying that x has Hamming weight w. Let pe be the probability that an input bit i (for an arbitrary
i ∈ {1, 2, ..k}) can not be decoded under the ML decoding rule. Similar to [12], we have:

pe = Pr
{
∃x ∈ GF (2k), x(i) = 1 : HxT = 0T

}
≤

∑
x∈GF (2k)
x(i)=1

Pr
{
HxT = 0T

}
.

In order to calculate Pr{HxT = 0T}, we consider the rows of matrix H before and after receiving the
feedback separately. First, let’s denote the rows of H before feedback by H1. Rows in H1 are generated
independently according to the degree distribution Ωk(d). Thus, considering a random binary vector R1,
we have:

Pr{H1x
T = 0T} =

(
Pr{R1x

T = 0T}
)m

.

The event R1x
T = 0T happens if and only if R1 has an even number of 1’s in those indices of i in which

x(i) is equal to 1 as well (i.e., i ∈ I). Given that row R1 has degree d, we have:

Pr{R1x
T = 0T} =

∑
s=0,2,..,2b d

2
c
(
w
s

)(
k−w
d−s

)(
k
d

) .

Because each row of H1 has degree d with the probability of Ωk(d) we have:

Pr{H1x
T = 0T} =

(∑
d

Ωk(d)

∑
s=0,2,..,2b d

2
c
(
w
s

)(
k−w
d−s

)(
k
d

) )m

. (8)

Next, let’s consider the rows of H after the feedback, which are denoted by H2. After receiving the
feedback, neighbors of output symbols are selected according to the nonuniform selection distribution p
defined in (5). Considering a row R2 belonging to H2, the probability of choosing an even number of
input symbols from the indices in which x(i) is equal to 1 is as follows:

Pr{R2x
T = 0T } =

∑
s=0,2,..,2b d2 c

( ∑
A∈Fs

∏
i∈A

pi

)( ∑
B∈Gd−s

∏
j∈B

pj

)
.

Fs is the set of all subsets of I with the cardinality of s, and Gd−s is the set of all subsets of complement
of I with d− s elements. Defining A∗s and B∗d−s as:

A∗s = arg max
A∈Fs

∏
i∈A

pi and B∗d−s = arg max
B∈Gd−s

∏
j∈B

pj,
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we have:

Pr{R2x
T = 0T}

≤
∑

s=0,2,..,2b d
2
c

(
w

s

)
pi1pi2 ...pis ×

(
k − w
d− s

)
pj1pj2 ...pjd−s

,

wherein A∗s = {i1, i2, ..., is} and B∗d−s = {j1, j2, ..., jd−s}. Recall that ∀j :

pj =
max (qj, 1− qj)∑
i max (qi, 1− qi)

≤ 1∑
i
1
2

,

which results in the following inequality:

Pr{R2x
T = 0T} ≤

∑
s=0,2,..,2b d

2
c

(
w

s

)(
k − w
d− s

)(
1∑k
i=1

1
2

)d

=
∑

s=0,2,..,2b d
2
c

(
w

s

)(
k − w
d− s

)(
2

k

)d
.

Similar to the first part, we have:

Pr{H2x
T = 0T} =∑
d

Ωk(d)
∑

s=0,2,..,2b d
2
c

(
w

s

)(
k − w
d− s

)(
2

k

)dn−m

. (9)

(8) and (9) lead to the theorem statement.

Corollary 1. Assuming m = n
2
, the upper bound on the ML decoder failure probability of the NLT codes

is tighter than the corresponding bound of the LT codes.

Proof: From [12], the ML decoder failure probability of the LT codes is upper-bounded by:

pe ≤ min

{
1,

k∑
w=1

(
k − 1

w − 1

)
(∑

d

Ωk(d)

∑
s=0,2,..,2b d

2
c
(
w
s

)(
k−w
d−s

)(
k
d

) )n}
From (7) and in order to show that the NLT codes have a tighter upper bound, the following inequality

should hold: ∑
d

Ωk(d)
∑

s=0,2,..,2b d
2
c

(
w

s

)(
k − w
d− s

)(
2

k

)dn
2

≤

(∑
d

Ωk(d)

∑
s=0,2,..,2b d

2
c
(
w
s

)(
k−w
d−s

)(
k
d

) )n
2

.

Or equivalently:
(
2
k

)d ≤ 1

(k
d)
⇔ 2dk!

d!(k−d)! ≤ kd. The last inequality holds ∀k and ∀d ≥ 4. Thus, independent

of the choice of the degree distribution Ωk(d) and ∀d ≥ 4, NLT provides a smaller upper bound on the
ML decoder failure probability compared with the LT codes.
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Fig. 3. Comparison of upper bounds on the ML decoder failure probability for the LT and NLT codes (c = 0.5, δ = 0.1 in the Robust
Soliton distribution).

From the derived upper bound one can conclude that by making the degree distribution denser the
upper bound on the ML failure probability decreases. But, a denser degree distribution incurs higher
encoding/decoding computational complexity. In Fig. 3, we numerically compare the upper bound (nor-
malized with respect to the powers n

2
) of the LT and NLT codes with the Robust Soliton distribution in

which d can take all values (i.e., d is not restricted to be greater than or equal to 4) . The results illustrate
that for the general case NLT still provides a tighter upper bound on the decoder failure probability, and
that the upper bound of the NLT codes decays faster than the LT codes as the block length k increases.

V. SIMULATION RESULTS

In this section we compare the performance of the RLT codes against its relaxed version Nonuniform
LT (NLT) codes, and against the Shifted LT (SLT), Growth, and LT-AF codes of Variable Node with
Maximum Degree (LT-AF+VMD) in [11]. The parameters of the Robust Soliton distribution are set as
c = 0.5 and δ = 0.1, and each simulation is run 1000 times.

A. Intermediate performance
For real-time applications, it is desirable that input symbols experience a small decoding delay, meaning

that the decoder should be able to recover some symbols before the decoding process is almost complete.
An RLT encoder maximizes the probability of generating encoding symbols that include only a single
unrecovered symbol, and thus, with each transmission the decoder should be able to decode an input
symbol with high probability. Intermediate performance of different codes for the block length of k = 500
is shown in Fig. 4(a), which illustrates that the RLT codes enjoy a near real-time decoding compared
with other schemes. Furthermore, one can notice that the NLT codes achieve a better performance than
the SLT codes. In these simulations, we configure the SLT, RLT, and NLT decoders to transmit one
feedback message after receiving every 20 forward messages (i.e., s = 20). Fig. 4(b) shows the amount
of feedback transmitted by each coding scheme. The results show that the RLT codes achieve a near
real-time performance with a uniform (i.e., constant rate) feedback transmission. A constant-rate feedback
is desirable as it prevents congestion on the back channel.
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(a) Intermediate performance for k = 500
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Fig. 4. (a) Intermediate performance for k = 500. SLT, RLT and NLT decoders are set to transmit one feedback after receiving every 20
encoding symbols. (b) Number of feedback messages transmitted.
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Fig. 5. Total number of transmissions for successful recovery of all symbols.

B. Coding overhead
We consider coding schemes that are able to recover all k input symbols from (1 + ε)k error-free

transmissions. The coding overhead (i.e., total number of forward transmissions) required by different
rateless codes is shown in Fig. 5. The results illustrate that the RLT codes have similar performance
to the LT-AF codes, while it supports full recovery of input symbols with less forward transmissions
compared with other schemes.

C. Tunable performance
In most of previous works, decoder usually does not have full control over the total amount of feedback

transmitted, or the point at which a feedback message is initiated. For instance, in [10], the point at which
the feedback is initiated needs to be optimized. In this context, an RLT decoder can adjust not only the
point of feedback transmission but also the rate of feedback transmission based on the characteristics of
the feedback channel. Fig. 6(a) shows the intermediate performance of the RLT codes with the block
length of k = 256 and different feedback transmission interval (i.e, inverse of the feedback transmission
rate). The results illustrate that the real-time feature of the RLT codes can be tuned based on the available
feedback rate. Fig. 6(b) shows the amount of feedback transmitted vs. the number of forward messages
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received by the decoder for k = 256 input symbols. In terms of total coding overhead, the performance
of the RLT codes can be tuned based on the rate of the feedback transmission as well. Fig. 7(a) shows
the performance of the RLT codes as the feedback interval increases and Fig. 7(b) depicts the number
of feedback messages transmitted as the feedback interval increases. The results demonstrate that by
increasing the feedback interval, more forward transmissions are needed, whereas the number of feedback
messages decreases, which implies an intrinsic trade-off between the number of forward and feedback
transmissions.

VI. CONCLUSION

In this paper, we proposed the near Real-time LT (RLT) codes based on the distance feedback and a
greedy code construction to optimize the selection of neighbors of encoding symbols, which results in
a near real-time decoding performance and reduced coding overhead. The RLT codes add two essential
features to the rateless coding process in that the decoder has full control over the rate of feedback and the
points of feedback transmission. As a relaxed version of the RLT codes, we presented the Nonuniform LT
(NLT) codes built based on a nonuniform neighbor selection distribution. Our analysis show that the NLT
codes provide a tighter upper bound on the maximum likelihood decoder failure probability compared
with the LT codes. In future works, we plan to characterize maximum performance gains that a fixed
limited feedback budget provides.
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Fig. 7. (a) Total number of forward transmissions required by the RLT codes (b) Number of feedback messages transmitted as the interval
of feedback increases.
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