Lexicographic Codes: Constructions

Bounds, and Trellis Complexity

Ari Trachtenberg

Digital Computer Laboratory
University of Illinois at Urbana-Champaign
1304 W. Springfield Avenue, Urbana, IL 61801

Abstract. We study lexicographic codes, which are generated by
an iterative greedy construction. We analyze the relationship be-
tween successive iterations in this construction, and derive bounds
on the parameters of the resulting codes that are tighter than the
presently known bounds. Furthermore, we generalize the lexico-
graphic construction to produce families of codes that combine
the excellent rate and distance of the lexicodes with other desired
properties. Among the various families of generalized lexicodes
that we investigate, of particular interest are trellis-oriented lexi-
codes whose trellis decoding complexity is locally optimized. We
also show how to construct generalized lexicographic codes whose
trellis state-complexity satisfies a prescribed bound.

1. Introduction

Lexicographic codes, or lexicodes for short, were intro-
duced by Conway and Sloane in [3, 4] as algebraic codes
with surprisingly good parameters. Binary lexicodes in-
clude, among other famous optimal codes, the Hamming
codes, the Golay code, and certain quadratic residue
codes [4, 8]. Several authors [2, 4] have proved that lexi-
codes are always linear. Comparison with optimal linear
codes of the same length and dimension [4] shows that
lexicodes are usually within one of the optimal minimum
distance. Hence, lexicodes may be regarded as a reason-
ably good “approximation” to the optimal codes. Brualdi
and Pless [2] have examined a generalization of lexicodes,
known as greedy codes, and presented certain bounds on
their parameters. The constructions studied herein are
somewhat similar to those of [2].

In this work, we show that lexicodes of increasing length,
with a given minimum distance d, can be produced by an
iterative procedure we call the lexicographic construction.
The lexicographic construction is, in turn, a special case
of a more general iterative procedure to which we will
refer as the generalized lexicographic construction, or &-
construction for short. The lexicographic construction

*A version of this paper appeared in the Proceedings of the 31st
Annual Conference on Information Science s and Systems (1997).
This work was supported by the Packard Foundation, the National
Science Foundation, and by the Computational Science and Engi-
neering Program at the University of Illinois.

Alexander Vardy

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 W. Main Street, Urbana, IL 61801

and its generalized counterpart establish a relationship
between the coset leaders at one iteration and the codes
obtained in the next iteration. Using this relationship we
derive bounds on the parameters of lexicodes, which are
often tighter that the bounds of Brualdi and Pless [2].

Furthermore, the ®-construction makes it possible to
improve upon the trellis complexity of lexicodes, in a
greedy fashion at each iteration. Thus, we study “trellis-
oriented” lexicodes, and show that their trellis complexity
is often much lower than that of the original lexicodes. In
some cases, it is the lowest trellis complexity known for
a given length, rate, and minimum distance. A differ-
ent application of the B-construction enables us to design
lexicodes that satisfy a predetermined bound on trellis
state-complexity. Thus, for any given constants d and s,
we can produce reasonably good high-rate binary codes
whose minimum distance is at least d and whose trellis
state-complexity is at most s.

2. The lexicographic construction

A length n, dimension k, minimum distance d lexicode
is traditionally defined constructively based on a lexico-
graphic (i.e. dictionary) ordering of vectors. For example,
01111 comes before 10000 in the lexicographic order. The
construction starts with the set S = {0} and iteratively
adds, until exhaustion, the lexicographically earliest vec-
tor in F; whose Hamming distance from S is at least d.

For example, the codewords of the binary lexicode of
length n = 3 and minimum distance d = 2 are marked
by a e in the following lexicographically ordered table:

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Figure 1. A simple (3,4,2) binary lexicode.

On the other hand, the lexicographic construction starts
with a code C and iteratively adds to the generator ma-
trix of C the lexicographically earliest generator. If p is



the covering radius of C, then this generator is a binary
vector at distance p from the code, padded with d—p extra
ones on the left. This iterative process obviously preserves
the minimum distance d of the code and is usually boot-
strapped by taking Co = {0}. The resulting dimension
k code is denoted Lz, with d being sometimes omitted
in context. For example, Table1l depicts the generator
matrix for a lexicographically constructed code L£3; the
padding bits on the left are set in boldface.

0000111
0011001
0101010
1001011

Table 1. Generator matrix for the (6,4,3) lexicode

As it is known that the lexicodes are linear [2, 4], it is
not surprising that the linear codes generated by the lex-
icographic construction described above are precisely the
lexicodes.

Theorem 1. An (n,k,d) code C is a lexicode if and only
if it can be produced by the lexicographic construction,
namely C = Ez.

Proof. We first prove that [,‘,j is always a lexicode, by
induction on k for an arbitrary, fixed d. For k = 1 it is
clear that Ly = {Od, 1d} where 1¢ has the usual meaning
of d successive 1’s. Thus L1 is clearly a (d, 1, d) lexicode.

Now assume that L is equal to the (n, k, d) lexicode C.
(From the definition of the lexicographic construction,
L1 has parameters (n + p, k + 1,d), where p is the cov-
ering radius of L;. Consider the (n + p,k’,d) lexicode
Cyr constructed by repeatedly choosing the appropriate
lexicographically-earliest vectors in Fy ™. Clearly, such a
choice necessitates that C; C Cis which implies, by the
induction hypothesis, that £ C Ci. We may apply our
lexicode definition to see that the vector v = (1‘1*” |w) is
in Cy/, where w is the lexicographically earliest vector of
distance d from Cj and (-|-) denotes concatenation. Our
inductive hypothesis applies to show that L1 C Cy.

In fact, any vector v € Fy " that is in Cz but not in Ly 1
would necessarily have its n right-most bits at distance <
p from L1, and its other bits at distance < [(d — p)/2]
from Lry;. The triangle inequality now shows that the
distance from v to L is at most

p+d=p)/2] = [(d+p)/2] < d

This contradicts our constructive definition of Cg, Thus,
it must be that L1 = Cy.

For the second part of the proof, we need to show that an
(n, k,d) lexicode C(n,k,d) can be lexicographically con-
structed. Suppose that Lg, the code produced by k iter-
ations of the minimum-distance d lexicographic construc-
tion, has length n'. ;From the first part of the proof, we

know that £¢ is a minimum distance d lexicode. Thus,
either C(n, k,d) C L& or else L C C(n, k,d). Either way,
since .C‘,f and C both have dimension k, it follows that they
must be equal codes (trivial length-altering modifications
non-withstanding). ]

Theorem 1 makes it possible to restrict our attention to
the lexicographic construction, which is easier to handle,
and then apply the results to lexicodes.

3. Generalizations

The lexicographic construction may be extended to pro-
duce a wide variety of codes through a generalized lexico-
graphic construction. The generalized lexicographic con-
struction replaces the “lexicographically earliest” criterion
used in building lexicodes with an arbitrary function w, so
as to combine the good code parameters of the lexicodes
with other optimization criteria. More formally, we have

Definition 2. The generalized lexicographic construction
bootstrapped with a linear (n, k, d) seed code C iteratively
constructs the family of codes

&(w,C) = {&;(w,C) : i€Z}
using a mapping
w(): KCF; — veFy 1)

where n is arbitrary, according to the following scheme:

e &, (w,C) is trivially the code C
e &, (w,C) is computed by adding to &;_; (w,C) the

generator
<1n—5(v,C) v )

where v = w (& ;_1 (w,C)) and §(v,C) is the mini-
mum Hamming distance from v to the code C.

The familiar lexicode family is the simple special case
&(w;,S), where w;(C) returns the lexicographically ear-
liest vector with maximum distance from C, and the seed
code is S = {04, 1%}.

Method 1 greedily computes w; in linear time and space
for appropriate set V. It assumes that the generator ma-
trix of the code has been transformed into a minimal span
generator matrix (MSGM) form, in which each generator
has minimum span. Adapting the notation in [9], the
span of a binary n-vector £ = (Tpn, Zn—1,Tn—2,... ,&1) is
L(z) — R(z), where L(-) and R(-) are the smallest (left-
most) and the largest (rightmost) index i, respectively,
such that z; # 0.

Method 1. Consider a set of vectors V representing some
cosets of the length n code C. Let G be a MSGM for C.
The following method computes the lexicographically ear-
liest vector among the represented cosets.



for v€V do
while vp,g,) #0
do v+ v+ G;
store the modified v;

among all stored v, return the lexicographically
earliest

This method is similar to the greedy algorithm for finding
a minimal span generator matrix presented in [9, p.32].
The proof of correctness and time-bound for this method
is detailed in [11, Chapter 4].

4. Trellis-oriented lexicodes

The trellis originated [5] in the study of finite-state au-
tomata, and was conceived as a means to better explains
the inner workings of the Viterbi algorithm for decod-
ing convolutional codes. In 1974, Bahl, Cocke, Jelinek,
and Raviv [1] observed that, just like convolutional codes,
block codes can be also represented by a trellis. This
observation created a potential for applying the well-
developed machinery of algebraic and combinatorial the-
ory of block codes to the study of their trellis representa-
tions. In this work, we will attempt doing so for the class
of lexicodes and their generalizations.

It is shown in [1, 9, 7] how to construct, for an arbitrary
linear block code, the BCJR trellis, which has no more
edges or vertices at each time index than any other trel-
lis for the code. Hence the BCJR trellis is the unique
minimal trellis, as defined by Muder [10]. It is also shown
in [9, 7] that the minimal span generator matrix for a lin-
ear code, in which each binary generator has minimum
span, reflects the properties of the corresponding BCJR
trellis for the code. Namely, if G is an MSGM of a code
V, comprised of the generators g; for j = 1,2,... ,k, the
number of vertices V; and edges E; in the corresponding
BCJR trellis is given by:

|Vz| ok—pi—fi

|El| — 9k—pPi—fitx

where p; and f; are the dimensions of the past and future
subcodes of C. These dimensions may be computed for

i1 =0,1,...,n as follows:
pi = |[{j:R(gj)>n+1-1}|
fii = [{i:L(gj) <n-—i}|

‘We consider a minor modification of the lexicographic con-
struction that exploits the above relations to minimize
trellis complexity. It turns out that the family of codes
& (wy,S), where wy(C) is the vector whose bit-reversal is
lexicographically earliest among vectors of maximum dis-
tance from C, locally minimizes trellis complexity. Hence,

these codes may be justly called “trellis-oriented” lexi-
codes.

Lemma2. Let C be a linear code. Over all functions w
that result in & ; (w,C) having optimal code parameters
(i.e. the shortest possible code length), the minimum trel-
lis complexity is attained when w(-) = w;(-).

Proof. Suppose that G is a MSGM for C, and the cor-
responding trellis for C has V; = 2*¥~Pi—fi vertices and
E; = 2k—Pi—fi edges at time i. Appending to G one
more generator (1"~°(*:O)|y), where v # 0, that does not
violate the MSGM condition will produce the following
past and future subcode dimensions for the new (n’=n-+d-
wt(v),k+1,d) code, respectively:

0 ifi<n' —n

p'i = Di-n'+n if n'—nSZSn'—R(v)
DPi—n4n+1 ifn' —R(w)<i<n
k+1 ifi=0

fl, = k f0<i<n' —n

fi—n’+n ifn' —n<i

Clearly, if wt(v) < p, where p is the covering radius of
C, then the resulting & (w,C) has longer length than
& (wy, C). Thus, it must be that wt(v) = p. However, if
wt(v) is fixed, then all the future dimensions f’; are also
fixed. Hence higher R(v) decreases the Viterbi decoding
complexity of 2|E|—|V|+1. In this a case, picking v such
that R(v) is maximum, as is done by w;(-), optimizes trel-
lis complexity. O

Method 1 can be easily modified to compute w; by replac-
ing L(-) with R(-); the resulting running time is unaffected.

5. Trellis-bounded lexicodes

It is useful to bound various parameters of a trellis so
that decoding can be efficiently handled by a system with
complexity constraints, such a VLSI chip with certain lay-
ering limits. We consider bounding the maximum number
of states, as well as the decoding complexity of a trellis
for generalized lexicodes.

For any given minimum distance d and dimension k, we
can usually generate a reasonably good code whose trel-
lis state complexity is bounded by a predetermined con-
stant s, using the &-construction. This family of codes is
& (wp, S), where wy(C) is the vector v whose bit-reversal
is lexicographically earliest among vectors of maximum
distance from C, with the property that the linear code
determined by C U {(1"%(®:©) | )} has state complexity
at most s. This family can be computed by a straightfor-
ward application of Theorem 2, in which state complexity
is read off directly from the MSGM matrix as the coset
leaders are being computed. Nevertheless, this method is
not quite as fast as Method 1.



A similar construction (and implementation) yields codes
whose Viterbi decoding complexity is bounded either by
an arbitrary function. Interesting examples include vari-
ous polynomial bounds as function of the code length.

6. A relation between cosets

The &-construction establishes an interesting relationship
between the coset leaders of the codes produced at suc-
cessive iterations. This relationship is best described by
associating a companion with each coset leader.

Definition1. The companion of a coset leader u, with
respect to v € Fy is the leader of the coset containing u+wv.
It is denoted &y (u), or kK(u) when v is clear from context.

We show that one iteration of the lexicographic construc-
tion produces a code whose coset leaders are the lower-
weight vectors between (a|u) and (@|x,(u)), for each vec-
tor a and coset leader u in the original code C. Here, a
stands for the complement of a.

Theorem 2. Consider an (n, k,d) code C with a fixed set S
of coset leaders, and the code C' = Span {(1%|v),C} for
some v €F} and A €Z. Then the set S’ of coset leaders
of C' can be obtained from S according to the following
bijective mapping:

p:a,ucSr—u €S
where v’ is defined by the property

o - { (a|u) if wt(alu) < wt (a|ky(u)),
(@|ko(u)) if wt(a|u) > wt (a]ko(u)).

and a € {1j02"1}UF,2 — 1.

Proof. Let us introduce the notation
f(a,l) = (a | 1) and h(a,l) = (a | s(I))

This proof rests upon two observations. The first observa-
tion is that f(a,!) and h(a,!) are always in the same coset
in the new code C'. This is clear because:

f(a,l) + h(a,l)= a+a | [l + k()]
=18 | [+(+v+¢)], forceC
= (1% |v) + (0% | c) eC

The second observation of this proof is that, f(a,l) and
f(a',l") are generally not in the same coset. This is specif-
ically true for any two, different coset leaders I and I’ of C
and for all a,a’ € F5 such that @ # a’. To see this we
note two possibilities for f(a,l) +f(a’,1'). In the first case,
its leading bits are neither 0 nor 12. Alternatively, its
leading bits are 02 but its trailing bit are [ +1' ¢ C. Both
possibilities preclude f(a,!) and f(a’,!") from being in the
same coset.

Based on the above two observations, f and h represent the
same two-to-one correspondence between (vector, coset-
leader) pairs (a,!) and the cosets of C'. In fact, for each
a € F} and coset leader [ of C, the coset containing f(a, )
contains only the vectors:

(a]e) for ¢ in the same coset as I,

{ (@] (v+¢c')) for v+ c in the same coset as x(l).

In addition, f(a,!) cannot have weight greater than the
weight of (a|c) because [ is a coset leader of the x(c). Sim-
ilarly, h(a,!) cannot have weight greater than (a|(v + c')).
Thus, all the vectors in the coset containing f(a,l) will
have weight < min{wt(f(a,!)), wt(h(a,l))}. Since f(a,l)
and h(a,l) are correspondences, the set S’ as stated is the
complete set of coset leaders C’. a

7. Bounds on code parameters

Theorem 2 yields a description of the coset leaders of
the code &, generated by the k-th iteration of the &-
construction, in terms of the coset leaders of its prede-
cessor & ;_;. The maximum weight coset leader of & g,
in turn, determines the covering radius of this lexicode
and, hence, the code parameters of the subsequent lexi-
code in the lexicographic chain. This intuition allows us
to improve upon the known bounds on the parameters of
lexicodes.

Our first bound is a recursive upper bound on the covering
radius p,, of any code generated using Theorem 2.

Lemmal.

d+pm—1
< |2 _Fm=2
o < |52

Proof. Consider constructing & ,,, from & ,,,_; using The-
orem?2. Any two coset leaders ! and x(l) of &,,_; must
have weight at most p,, 1. Therefore we have

min {wt(a | I),wt (@ | ky(1))}
< min {wt(a) + pm—1, wt(a@) + pm—1}
S |_A/2J + Pm—1
that for all @ € F5'. In the specific case of A = d — p,_1,

Theorem 2 applies to show that each coset leader I’ of &,
has weight no greater than

d— pm— d+ pm—
£t e = [

This bounds the covering radius of &, and the lemma is
proved. O

With some combinatorial manipulation, we can also es-
tablish a recursive lower bound on this covering radius.

Theorem 3. For m > 3,



Figure 1: Viterbi decoding complexity for various
®-codes of distance six



Figure 2: Rates of various ®-codes of distance six

Figures 1 and 2 show the results of various computations
based on the techniques developed in this paper. Figure 1
compares Viterbi decoding complexity for various families
of state-bounded ®-codes, as well as for one code whose
decoding complexity is bounded linearly with respect to
its length. Figure 2 shows the lengths of the various codes,
in effect comparing their rates. Extensive further compu-
tations may be found in [11].

9. Future directions

Many questions remain unanswered in this work. First, it
is still not known why lexicodes, or even trellis-oriented
&-codes, have such good code parameters. Second, the
bounds on parameters of lexicodes can be improved by
a more sophisticated count of the worst-case compan-
ion pairings. Finally, one should note that the exponen-
tial time and space bound of the ®-algorithm may be
improved by various approximation techniques. One of
these techniques is to randomly choose a constant num-
ber of cosets leaders to compute, and ignore all of the
rest. Though there is a trend towards degeneracy of the
coset leader set, this approximation does generate some
fair codes of large length and dimension.
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