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Abstract— We consider the problem of efficiently

broadcasting incremental updates to multiple termi-

nals that contain outdated (and possibly different)

initial copies of the data. This situation occurs, for

example, with the broadcast of Short Messaging Ser-

vice [SMS] or Multimedia Messaging Service [MMS]

cellphone messages to various clients whose phones

are sometimes unavailable. We propose an efficient

protocol for effecting such broadcast based on a novel

combination of recent work on rateless coding and

set reconciliation. Our approach is non-interactive, in

that terminal nodes need not send any messages to the

source, and stateless, in that the source need not know

(or store) any information about the terminals. It

also minimizes communication complexity and energy

expenditure at the terminal nodes, at the expense of

added computation. In support of our work, we pro-

vide several energy usage measurements on MICA2

sensor motes that clearly highlight the advantages of

random linear decoding over wholesale data transfer.

I. INTRODUCTION

The problem of efficient broadcast is intrinsic

to a wide variety of applications, especially those

operating over wireless media. Sample applications

include Short Messaging Service [SMS] or Multime-

dia Messaging Service [MMS] cellphone messages,

routing table or (key, value) data broadcasts in wire-

less sensor networks, and maintaining consistency

of directory contents, email messages in a folder, or

address book entries, etc.

Our setup consists of one source and multiple

terminals, each holding a common data set that

is incrementally updated (addition/deletion of set

elements) on the source. In this scenario, terminals

should periodically update their local data sets when

a version is available on the source. The number of

differences between the source’s newer data set and
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older copies on the terminals are often small, but

the intermittent terminal connectivity can result in

different copies on each terminal, making a simple

“difference” broadcast of new updates impractical.

In this work, we focus on an efficient broadcast

protocol that updates each terminal’s data set to

the source’s data set with one way communication

and no interaction (i.e., no multiple communication

rounds between the source and the terminals).

Formally we define the data set broadcast problem

as follows. The source s holds a data Ds represented

as a set of b-bit elements chosen at random from

universal set U . This data set is to be propagated to

n terminals t1 . . . tn using only a forward broadcast

channel from the source to terminals; each terminal

ti holds a (potentially old) version Di of the data

set. Updates to the data set are assumed to be

incremental (i.e., |Ds−Di| � |Ds| and |Di−Ds| �

|Di| for all 1 ≤ i ≤ n).

Our proposed solutions are based on utilizing

a recent set reconciliation algorithm, CPISync, for

rateless encoding. In the typical mode, rateless

encoding involves cleverly encoding a source data

set into a large number of packets, any ε∆ of

which can be used to decode ∆ new source items

(which are considered erasures), for some protocol-

dependent multiplicative constant ε > 0. In our

situation, we are interested in both insertions and

deletions to the source data (i.e., not necessarily

just erasure errors), and we are also concerned with

how the value ∆ is determined, since the typical

rateless code must expend significant computational

resources (and sometimes additional communication

resources) in determining this value. We thus pro-

pose a two-channel protocol in which ∆ is deter-

mined over one channel with CPISync and utilized

for rateless decoding on a secondary channel. We

provide a demonstration of the potential reduction in

communication and energy expenditure afforded by

our approaches in application to SMS/MMS services

and sensor network data.

A. Organization

In Section II we briefly discuss other approaches

to similar problems in the literature. In Section III-

A we provide communication lower bounds on the

data set broadcast problem. We briefly describe

CPISync, a key component of the proposed solution,

in Section III-B. We present our solution, which

is based on CPISync and random linear coding,

in Section IV, and we also provide bounds on a

terminal’s communication complexity (i.e., number

of bits received). We provide simulation results in

Section V and measurements of energy usage on

MICA2 sensor motes in Section VI. Conclusions

and future work are presented in Section VII.

II. RELATED WORK

The analysis of communication complexity of two

way protocols was proposed by Yao’s seminal paper

on communication complexity [1]. We shall use

some of these results in Section III-A.

Schemes based on rateless coding for the erasure

channel, such as digital fountain [2], have been

proposed for large scale content distribution (in a

client-server type model). Random linear coding [3]

has been used for achieving network coded [4]

min-cut bound on multicast in networks. Tornado
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codes [5], LT codes [6], and Raptor codes [7] are

other rateless codes which offer lower decoding

complexity than random linear codes, at the expense

of some inefficiency for low block lengths.

Our protocol seeks to minimize the terminal’s

communication complexity (i.e., the number of bits

it downloads in order to reconcile its data set with

the source data set). We assume only one-way

broadcast communication, similar to the model in [8,

9].

III. PRELIMINARIES

We first provide an information-theoretic view

of the amount of communication needed for one

way broadcast-set dissemination. Then we briefly

describe CPISync, a tool used in the protocols

proposed in Section IV.

A. Lower bounds

Yao’s well known results on zero-error interactive,

deterministic communication [1] lower bound the set

equivalence problem to a linear multiple of the set

size. Set equivalence, a problem of determining if

two sets are equal with minimum communication,

is a special case of the set reconciliation problem,

and the lower bound thus applies also to the latter.

It is a simple matter to generalize this result to

reconciling multiple targets with a source through

a broadcast medium, with the result that this too

requires communication linear in the sizes of the

various sets. All this applies to deterministic zero-

error set reconciliation. Probabilistic methods, on the

other hand, allow for small probabilities of error to

achieve better communication bounds.

The straightforward method of transmitting the

updated source set Ds to all the terminals is by

broadcasting the entire set at one time so that the

terminals can simply store this new version of the

set. The communication complexity is linear in the

set-size |Ds|, making this method expensive for

large data sets.

1) Combinatorial omniscient lower bound: We

derive the lower bound on the communication bound

for the case when terminals sets Di are known at

the source; our derivation is based on the two-party

reconciliation bound in [10].

Assume that ms = |Ds−Di| and mi = |Di−Ds|.

Therefore ms corresponds to the number of inser-

tions and mi corresponds to the number of deletions

from Di needed to derive Ds from Di at terminal ti.

The communication complexity for a deterministic

protocol, when Di is known at the broadcast source

s, is lower bounded by the logarithm of the possible

number of distinct protocol messages.

COMM ≥ log2

[(

2b − |Di|

ms

)

·

(

|Di|

mi

)]

bits (1)

Then using a well known lower bound on binomial

coefficients [11], we obtain

COMM ≥ mslog(2b − |Di|) − mslogms (2)

+ milog(|Di|) − milogmi (3)

Assuming sparse sets (|Di| � 2b) and a small

number of insertions and deletions (ms,mi � |Di|)

we get a lower bound on the communication as

linear in the number of insertion and deletions,

rather than the overall set sizes.
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B. CPISync

The Characteristic Polynomial Interpolation Syn-

chronization [CPISync] approach was first proposed

in [10] and has been successfully employed in

ad hoc two-way set reconciliation in practical set-

tings [12–14]. The algorithm is based on an alge-

braic solution to the problem of reconciling two

remote sets of information, and it has been shown

to be efficient [15] in a very common data synchro-

nization scenario - where the number of differences

to be reconciled is far smaller than the sizes of the

reconciling data sets.

One feature of the CPISync algorithm is that its

communication complexity is linear in the number

of differences between data sets, and is for all intents

and purposes independent of the overall sizes of the

data sets being reconciled. CPISync does not need

to maintain any state information about any other

devices on a network.

a) Protocol Overview: The CPISync algorithm

represents data set elements as integers in a finite

field, with each integer representing a set element.

A set {x1, x2, x3, . . . , xn} is represented by a char-

acteristic polynomial

χS(Z) = (Z − x1)(Z − x2)(Z − x3) . . . (Z − xn).

The key to CPISync is the observation that for two

sets SA and SB ,

χSA
(Z)

χSB
(Z)

=
χ∆A

(Z)

χ∆B
(Z)

, (4)

where ∆A represents the set difference SA − SB ,

and similarly ∆B = SB −SA. This is because terms

common to both sets cancel out in the numerator and

denominator. Thus, the rational function in 4 can be

uniquely interpolated from m̄ samples, if there are

at most m̄ differences between synchronizing sets.

The CPISync algorithm can be generally de-

scribed as follows:

1) Hosts A and B evaluate their characteristic

polynomials on m̄ sample points (over a cho-

sen finite field). Host A sends its evaluation

values to host B.

2) The evaluation values are combined to com-

pute m̄ sample points of the rational function
χSA

(Z)
χSB

(Z) , which are interpolated to determine
χ∆A

(Z)
χ∆B

(Z) .

3) The numerator and denominator of the inter-

polated function are factored to determine the

differences between SA and SB .

CPISync then, can be thought of as a rateless

protocol over an error channel that may both add

and delete data from a data set (unlike the erasure

channel that only “erases” some data).

C. Random Linear Coding

Random linear coding provides a simple method

of data dissemination, and has the advantages of

easy implementation. In this model, source s rep-

resents each set element xi ∈ Ds in an appropriate

finite field F. These elements are then encoded into

n > k packets {y1, y2, . . . yn} as the following

random linear combinations yi =
∑k

j=1 βi,jxj ,

where βi,j are randomly chosen elements in the

finite field F. The parameters of the encoding can

be easily adjusted so that the rows [βi,1, βi,2, . . . βi,k]

are linearly independent with high probability. Thus,

any terminal that receives k of the encoded packets

(yi’s) can solve the corresponding system of linear
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equations to determine each unknown set element

xi.

The [βi,1, βi,2, . . . βi,k] rows can either be known

a priori at the terminal through a common random

generator seed, or can be efficiently transmitted with

the encoded packets [3].

IV. PROTOCOLS

Our first algorithm is a simple broadcast gener-

alization of the peer-to-peer synchronization algo-

rithms in [15, 16].

A. One Channel Protocol

1) Algorithm on the source: The data set

source s constructs the characteristic polyno-

mial of set Ds as explained in Section III-B.

The characteristic polynomial χDs
(z) is sampled

on |Ds| = N sample points to obtain (sam-

ple point, evaluation value) tuples of the form

{(s1, χDs
(s1)), (s2, χDs

(s2)), . . . , (sN , χDs
(sN ))}.

The sample points should be different from the

data points, otherwise the sample points would be

one of the zeros of the characteristic polynomial. If

each element of the data set Ds is represented by a

b-bit number, then by choosing sample points in the

range of (2b + 1, 2b+1 − 1) we avoid any collisions

between the data points and the sample points. This

makes each (sample point, evaluation value) tuple

2b + 2 bits long. A pseudo-random number can be

used to generate the sample points at the source and

terminals, thus reducing the size of each transmitted

tuple by half.

The data set source then starts transmitting the

N evaluation values on the broadcast channel. The

transmission is in the form of a “data-carousel” [2]

i.e., transmission is “looped-around” repeatedly for

the time period when the source wants to transmit

updates to the terminals. Terminals “tune-in” to

this broadcast and download a requisite number

of evaluation values to decode the additions and

deletions to the data set.

2) Algorithm on the data terminals: A terminal

ti with data set Di starts downloading the evaluation

values being broadcast by the source. The number

of tuples needed to correctly interpolate the rational

function of Equation 4 is lower bounded by the sizes

of the difference sets

m = |Ds − Di| + |Di − Ds|,

as explained in III-B.

The terminal however, does not have this set

difference size m. It can guess a small value m1,

download m1 + k evaluation values, and then try

to interpolate the rational function of Equation 4. A

small number of (reusable) k evaluation values are

used to check if the interpolated rational function

is the correct interpolation (Selecting k is explained

in [13, 16]). If this check indicates incorrect interpo-

lation, then further evaluation points are downloaded

and the process is iterated until the correct rational

function is obtained.

3) Analysis: We now analyze the proposed pro-

tocol based on the analysis provided in [16]. Each

evaluation value of χDs
requires b+2 bits to down-

load. If the terminal downloads only one evaluation

at a time before trying CPISync, then the terminal

communication complexity is limited to (b+2)(m+

k) bits.
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For faster operation, the terminal can increase

the number of downloaded evaluation values by a

factor of c in every trial. This would make the

communication complexity

(b + 1)c(m + k) + dlogc(m + k)e. (5)

Further, this approach guarantees that the terminal

will need to “tune” into the carousal stream to

download extra evaluation values no more than

dlogc(m + k)e times.

B. Two Channel Protocol

The algorithm of Section IV-A works very well

for data sets containing small set elements. In case

each data element of the set is very large, the finite

field used in CPISync to represent set elements be-

comes correspondingly large. This has two substan-

tial effects on the terminal: (i) the larger finite field

slows down factorization and, thus, decoding; (ii) the

penalty (i.e., wasted bandwidth) for downloading too

many large evaluation values (higher value of c in

Equation 5) increases.

For large data elements, we thus split the broad-

cast channel into two components. A smaller chan-

nel carries the CPISync evaluation values tuples

computed from a the set of hash-values of the

real data set (say, 128-bit MD5 [17] hashes of the

large set elements), and another larger channel that

carries random linear encodings of the real data set

elements, constructed along the lines of [3].

Both channels are “streamed” in a data-carousel

fashion over the two independent channels. Termi-

nals first use CPISync to compute the set of hash

values comprising Ds and then download an appro-

priate number of random-linear encoded packets. In

effect, we are using CPISync to determine |Ds−Di|

and |Di−Ds| before solving the system of equations

for random linear decoding of the different data set

elements. As such, only ms = |Ds − Di| encoded

y’s need to be downloaded to successfully decode

the ms unknowns. Note that CPISync also provides

complete information of deletions by reporting the

hash values of deleted entries; this can be matched

to the corresponding elements in Di that need to be

removed.

In addition, by ascertaining the exact number of

the relatively large random-linear encoded packets to

be downloaded a priori using CPISync, the receiving

terminal further reduces its energy usage by avoiding

excess downloads of large random linear encoded

packets.

1) Analysis: The two channel protocol exploits

the relative sparsity of the data set Ds to represent

each B-bit set element by a much smaller b bit hash

i.e., usually,

|Ds| � 2B , and

b � B.

For example, each set element of Ds may be a set

of several thousands of high resolution images of

several megabytes each, and a MD5 [17] hash could

represent each set element by a distinct b = 128 bit

number. The high penalty of choosing a larger value

of c in Equation 5 can be avoided by first reconciling

hash-sets (b-bit elements).

V. EXAMPLE: BROADCAST OF BULK SMS AND

MMS

We consider the scenario of a cellular network

wireless-operator that broadcasts SMS and MMS
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sms.eps

Fig. 1. Comparison of one-channel protocol to unicast/simple

broadcast

promotional advertisements and coupons to sub-

scribers’ cellphones. Our specific example will be

based on T-Mobile’s United Kingdom cellular net-

work, which has about 20 million subscribers.

We assume that at any time the current SMS

or MMS promotion data set Ds contains 1000

messages and the set is updated once a day, with

5 percent of the set elements being added or re-

moved randomly per day. In a realistic scenario,

subscribers’ cellphones may be turned on or off

during the broadcast of updates. Different cellphones

(terminals) may therefore hold different versions of

the SMS or MMS data set at any given time.

A. Short Messaging Service (SMS)

The subscribers would not wish to receive full

copies of (plaintext) Ds because receiving 1000

SMS messages (each at most 140 bytes) over the

wireless channel significantly drains the battery of

their cellphones. Moreover, the broadcasting source

may not want to maintain state about each cellphone

in the network and its corresponding version of

the data set. There will also be network feasibility

issues when broadcasting 20 billion SMS messages

(20 million cellphones × 1000 SMS messages per

cellphone) per day. This problem is even further

aggravated by the fact that SMS messages are passed

over control channels and, thus, not only use up

network bandwidth but also potentially interfere

with setting up other calls.

If the source broadcaster continuously broadcasts

a carousal of Ds messages (looping around when

it has broadcast the entire set), each cellphone will

still have to receive 1000 SMS messages in the worst

case in order to compare and update its local data

set to Ds. This approach does mitigate the issue of

cellphones being turned off, but it is not helpful in

reducing energy usage on the cellphones.

Using the protocol described in Section IV-A

would be much more efficient and feasible for the

broadcasting source and each cellphone. A cellphone

updating from a previous day would download

about 50 messages only (5% differences). More

significantly, cellphones holding older and different

versions can all update to Ds without any two-

way communication with the source broadcaster and

without the latter having to store per-cellphone state.

Figure 1 shows the terminal communication com-

plexity in terms of the number of SMS messages to

be received on a cell-phone in order to update to

the latest promotion SMS data set Ds. We note that

for incremental changes to the data set (less than

50% of the data set size), the proposed algorithm

significantly outperforms broadcast.
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B. Multimedia Messaging Service (MMS)

MMS messages use a combination of SMS and

WAP messaging [18] to transmit multimedia binary

data to cellphones. An SMS message from the server

to the cellphone is first used to signal the URL of the

actual multimedia content to the cellphone and the

cellphone then initiates a WAP session to download

this data from the MMS server via HTTP.

Our one channel protocol is obviously not scal-

able to the type of bulk transfer suggested by the

above example. Instead, the protocol of in IV-B can

be used to disseminate data set information using

CPISync, and the large multimedia messages can

then be efficiently disseminated using random linear

codes.

VI. SENSOR ENERGY USAGE MEASUREMENTS

In this section we provide some preliminary

energy usage measurements for downloading and

decoding random linear encoded data, and we com-

pare these with the energy cost of downloading the

entire data set from the source. The computational

complexity of encoding is O(mn) for n elements

of length m, but this has a negligible effect on the

receiver. Our experiments were performed on 900

MHz MICA2 [19] motes, and energy was measured

as the root mean square voltage across a 10 Ohm

resistor in series with the mote; each data message

(set element) was set at 29 bytes. We compare the

energy used while downloading 5 percent of the

dataset and then decoding the random linear encoded

data to the energy used for downloading the entire

data set.

varysetsize.eps

Fig. 2. Comparison of full download and RLC energy

Figure 2 shows that the energy required to down-

load the entire data set is significantly more than the

energy cost of downloading 5 percent (correspond-

ing to 5 percent differences) and then decoding. The

computational complexity of decoding is non-linear

(ω(n2)) in the number of decoded messages n due to

Gaussian elimination step in the decoding algorithm,

and this explains the non-linear rise in the energy

usage in Figure 2.

Figure 3 shows the percentage of the data set

at which the energy cost of decoding is equivalent

to downloading the entire file. When the data set

is 100 messages, 35.4 percent of the file can be

downloaded and decoded before this happens, but

as the data set size increases to 800 messages the

percentage of the data set drops to 11 percent. It is

important to note that current memory constraints

on the wireless motes require a piecemeal decoding

of large data sets, so that a divide-and-conquer

approach for limiting n can be applied in practice.

VII. CONCLUSIONS

We have proposed two non-interactive protocols

for efficient one-way updates of data sets in a broad-
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threshold.eps

Fig. 3. Percentage when of full download and RLC energy are

equal

cast setting. Our protocols are designed to minimize

received bytes on the terminals, a very important

practical parameter for power conservation in wire-

less sensors and mobile devices.

We have provided analytical lower bounds on

the communication complexity of probabilistic algo-

rithms for one-way broadcast reconciliation of data

sets, supported by practical examples. Measurements

on sensor motes further support the case that the

proposed protocols can achieve significant power

savings in broadcast sensor networks.

As future work, we plan to extend the protocols

for large data sets using a divide-and-conquer ap-

proach to limit set size. Understanding the tradeoffs

between various rateless codes in our data set broad-

cast applications is also an important area of future

work.
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