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Rateless Coding with Feedback
Andrew Hagedorn, Sachin Agarwal, David Starobinksi, and Ari Trachtenberg

Abstract

The erasure resilience of rateless codes, such as Luby-Transform (LT) codes, makes them particularly suitable
to a wide variety of loss-prone wireless and sensor network applications, ranging from digital video broadcast
to software updates. Yet, traditional rateless codes usually make no use of a feedback communication channel,
a feature available in many wireless settings. As such, we generalize LT codes to situations where receiver(s)
provide feedback to the broadcaster. Our approach, referred to as Shifted LT (SLT) code, modifies the robust
soliton distribution of LT codes at the broadcaster, based on the number of input symbols already decoded at the
receivers. While implementing this modification entails little change to the LT encoder and decoder, we show both
analytically and through real experiments, that it achieves significant savings in communication complexity, memory
usage, and overall energy consumption. Furthermore, we show that significant savings can be even achieved with a
low number of feedback messages (on the order of the square root of the total number of input symbols) transmitted
at a uniform rate. The practical benefits of Shifted LT codes are demonstrated through the implementation of a real
over-the-air programming application for sensor networks, based on the Deluge protocol.

A version of this paper appeared as:
• A. Hagedorn, S. Agarwal, S. Starobinski, and A. Trachtenberg, “Rateless Coding with Feedback”,

IEEE INFOCOM 2009.

I. I NTRODUCTION

Point-to-multipoint wireless data communication,i.e., from a broadcaster to multiple downstream receivers,
is gaining popularity with emerging wireless broadcast channels like digital video broadcast and cellular
data broadcast [1] that support digital data broadcasting to multiple receivers. Broadcast scenarios also
appear naturally in wireless sensor networks, most notablyduring software updates. Unlike analog broad-
cast, digital broadcast may also allow a back channel for receivers to communicate with the broadcaster,
enabling interactive applications and protocols such as (n)ack-based data dissemination.

Point-to-multipoint wireless communication poses several unique challenges. First, wireless channels
are prone to lost packets (packet erasures) due to interference, occlusion, multi-path, etc.; as a result,
different receivers may, and often do, receive different subsets of the transmitted data packets. Second,
energy constraints often require receivers to be off duringvarious (often differing) time periods during a
given broadcast, again leading to the reception of different subsets of broadcast packets at each receiver.
The same energy constraints also typically limit computation and memory on receiver units, thus providing
a natural limit on the complexity of error coding for the communication channel. Finally, receivers are
usually heterogeneous, with the least capable device dictating, or at least heavily influencing, the broadcast
protocols.

Erasure codes, which have theratelessproperty of being applicable to any channel loss probability, give
application architects many options in choosing appropriate codes to address the problems listed above.
For example, 3GPP [1] broadcast uses the Raptor rateless code [2] to implement robust video and data
dissemination over cellular wireless channels. Yet, most existing rateless codes do not harness the back
channel (from the receiver to the broadcaster) for feedback. The major contribution of this paper is to
show that a small amount of feedback, whereby receivers periodically inform the broadcasting sources
about the number of successfully decoded input packets, canlead to major communication, memory, and
energy usage gains through a judicious modification of the encoding procedure.

The authors are with Boston University department of Electrical and Computer Engineering, except the second author whois with Deutsche
Telekom A.G., Laboratories.
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In this paper, we propose a new class of rateless codes exploiting feedback, called Shifted LT (SLT)
codes. These codes operate similarly to LT codes, except that they shift the original LT probability
distribution (the so-called “robust soliton distribution”) used to generate the degree of encoded symbols,
based on the feedback provided by receivers. We show that these codes keep enjoying the same theoretical
properties as the original LT codes, but also achieve significant communication gain as they exploit the
feedback information to better distribute the degree of encoded symbols. Our codes employ the the same
encoding and decoding algorithms as LT codes, and in addition avoid the redundant encoded symbols
when LT codes are used throughout the transmission.

Next, we develop and analytically justify a number of heuristics to limit communication complexity on
the feedback channel. In particular, we devise approaches that limit the number of feedback message to
the order of the square root of the total number of input symbols, similar to the Real Time (RT) oblivious
codes [3] reviewed in the sequel.

We compare the performance of SLT codes to LT and RT codes, both though simulation and through
implementation of a real over-the-air programming (OAP) protocol for sensor networks, based on Del-
uge [4] (to the best of our knowledge, this is the first reported implementation of RT codes and LT codes
for sensor networks reprogramming). We demonstrate that SLT codes significantly outperform both of
these codes in terms of communication complexity by reducing the number of encoded symbols required
for decoding at each receiver. Moreover, unlike RT codes, SLT codes do not congest the feedback channel
toward the end of the decoding procedure. Our simulations and experiments also provide insight into the
computation, memory, and energy usage of the three types of codes. We also compare these coding-based
approaches to standard uncoded Deluge. We use the terms “symbols” and “packets” interchangeably in
this work.

A. Organization

We focus our literature search on recent advances in rateless codes in Section II. Some of these coding
schemes have similar encoding and decoding algorithms to ours, but the codes themselves are designed
differently. Then, in Section III we present a formal problem setup for describing the subsequent analysis
of our proposed Shifted LT codes. This is followed by a brief introduction to LT and RT codes, two
other rateless codes similar to ours, in Sections III-B and III-C respectively. In Section IV we introduce
Shifted LT codes and discuss their properties. In Section V we develop several heuristics to make our
codes more practical. We experimentally compare the performance of LT, RT, and Shifted LT codes in
Section VI.The application of these codes to the Deluge sensor software updating system is discussed in
Section VII. Conclusions and future work are provided in Section VIII.

II. RELATED WORK

Fixed rate LDPC [5] and Turbo codes [6] are used for erasure correction to protect against data packet
losses. The well known random linear rateless codes are efficient in communication but are deemed
expensive in computation complexity for many practical applications. LT codes [7] and their subsequent
derivative, Raptor codes [2], are usually regarded as the first practical rateless codes with efficient decoding
algorithms to implement the fountain codes introduced in [8].

Recently, several new rateless codes have been proposed forspecific applications and data content.
Growth codes [9] have been proposed for data aggregation in lossy sensor networks (i.e., aggregating data
from multiple senders to one receiver). RT [3] codes supporta low memory the receiver but need more
encoded transmissions. The authors in [10] and [11] proposerateless codes for channel erasure-resistant
software updates on sensors. However, the random linear codes used in [10] limit the applicability of their
approach to large transmissions. The authors in [11] use a genetic algorithm to converge upon rateless
codes without explicitly describing the mathematical structure of the code.

The rateless codes proposed in [12] differentiate input data based on their post-decoding importance in
video playback, protecting key video frames more than others. This is not the case with our application
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of Deluge sensor software updates, where each transmitted byte is considered equally important and
moreover, all transmitted bytes should be received in orderfor the transmission to be successful.

In contrast to the schemes listed above, we present a ShiftedLT code that uses a feedback channel to
improve the overall communication/computational complexity of LT codes. Though there has been work
on coding with feedback as a form of hybrid ARQ, for example doped fountain code [13] where feedback
is used to restart LT decoding when a ripple has stopped, our work focuses on situations where sender
and receiver share some (undetermined) common data. We compare our approach to LT codes and RT
codes through extensive experimental data on a simulator and on sensor motes. We note that SLT codes
are also applicable in situations where a fraction of the transmitted symbols are already available at the
receivers (for example, an outdated copy) [14].

III. PRELIMINARIES

A. Setup

The broadcaster (encoder) hask input symbols that need to be transmitted to all the receivers over a
shared wireless broadcast channel (hence, there is no dedicated communication link from the broadcaster
to each receiver). Each input symbol may be relatively large(e.g. 10s of kilobytes), making it infeasible
to provision a dedicated point-to-point channel for each receiver. In our setup we assume the availability
of some additional information - the number of input symbolsalready decoded at the receivers - at the
broadcaster. This information may be modeled as a numbern ≤ k that is periodically sent from each
receiver to the broadcaster via the feedback channel.

In the description of LT, RT and Shifted LT codes in Sections III-B, III-C, and IV respectively we
limit the discussion to one broadcaster and one receiver in order to focus on the coding schemes. We
briefly discuss multiple-receiver heuristics for applyingour codes to broadcast scenarios in Section V-C
and show the application of the coding schemes to the Deluge broadcast software update application with
multiple receivers in Section VII.

B. LT Codes

We next describe Luby’s LT codes [7] and their encoding and decoding methods. In Section III-B.3
we provide motivation for our modification of LT codes for ourspecific problem.

1) Code construction:LT codes were first proposed in [7], based on a model similar totheir Low-
Density Parity-Check matrix cousins [15]. The main contributions of Luby involved demonstrating the
utility of ratelessness through codes based on therobust solitonprobability distribution. Codes generated
through this distribution have low encoding and decoding complexity (O(k ln k

δ
) exclusive or operations

for reconstruction probability1− δ), as well as a low overhead ofk + O(
√

kln2(k)) expected number of
encoded symbols needed to decodek input symbols at the decoding host [7].

The robust soliton distribution is based on two distributions also proposed in [7]: theideal soliton
distributionρ(·)

ρ(1) =
1

k

ρ(i) =
1

i(i − 1)
∀i = 2 . . . k

and the distribution

τ(i) =
R

ik
for i = 1, . . . ,

k

R
− 1

τ(i) = R ln

(

R

k

)

/k for i =
k

R

τ(i) = 0 for i =
k

R
+ 1, . . . , k,
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whereR = c · ln(k
δ
)
√

k, c > 0 is a “suitable constant”, andδ is the maximum probability of decoding
failure.

Adding the ideal soliton distributionρ(·) to τ(·) and normalizing, Luby obtained the robust soliton
distribution µk(·). Note that the robust soliton distribution has a characteristic spike ati = k

R
, based on

the contribution ofτ (·).
2) Encoding and decoding:LT codes have remarkably simple encoding and decoding algorithms.
In order to create an encoded symbol an encoding host first chooses a degreed based on the robust

soliton distribution, and then, uniformly at random, selects d distinct input symbols (which we calllimbs)
from among thek input symbols being encoded. The sum of these input symbols over a suitable finite
field (typically F2) comprises the value of the encoded symbol, which is transmitted to the decoder. The
indices of the input symbols selected must also be made available to the decoder, either in the form of
a shared seed for a pseudo-random function, or through explicit communication. The encoding process
therefore creates a bipartitedecoding graphwith input symbols on the left connected to (possibly multiple)
encoded symbols on the right.

For its part, the decoding host uses a simple greedy specialization of the belief propagation algo-
rithm [16], which is typically faster than Gaussian elimination in practice. Specifically, the decoder begins
by identifying encoded symbols of degree1, meaning that each is an exact copies of one input symbol;
this initial ripple thus yields the value of some input symbols.

The known input symbols represent one known parameter in allencoding symbols that use them. As
such, encoding symbols of degree2, which utilize one of these input symbols, can now be utilized to
decode some other input symbols (i.e. given ax and x ⊕ y, one can deducey), resulting in the second
ripple. In fact, each ripple involves utilizing known inputsymbols to reduce the number of unknown
parameters in all encoding symbols that utilize these symbols. The robust soliton distribution is designed
to determine input symbols at a rate that maintains a nearly constant ripple size, allowing all input symbols
to be retrieved eventually with high probability. The encoding and decoding complexity of LT codes was
shown to beO(klog(k)) in [7].

3) Inefficiency under feedback:The design of LT codes presumes no input information on the decoding
host. In our case, the decoder already has decodedn input symbols, meaning that any addends of an
encoded symbol from the known input setN are redundant. For example, if input symbolsi1 andi2 have
been decoded, then it is computationally redundant to compute an encoded symbolx1 = i1 ⊕ i2, as it
provides no new information about input symbols.

The number of theseredundantencoded symbols grows with the ratio of input symbols known at
the decoder to input symbols total (i.e., n

k
). More precisely, a given collection ofd distinct limbs of an

encoded symbol is a subset ofN , the input symbols known at the decoder, with probability

d
∏

i=0

n − i

k − i
.

As such, ifn input symbols are known at the decoder, then an additional LT-encoded symbol will provide
no new information to the decoder with probability

k
∑

d=1

µk(d)

(

d
∏

i=0

n − i

k − i

)

, (1)

which quickly approaches1 as n → k. It is thus not surprising that the LT codes become less efficient
as the decoder learns more input symbols.

C. RT Oblivious Codes

Real Time oblivious codes [3] codes do not randomize the degree of encoded symbols as LT codes do.
Instead, starting from degree1 encoded symbols, an RT encoder transmits encoded symbols ofincreasing
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degree based upon feedback about the number of decoded symbols. Moreover, the RT oblivious decoder
simplifies the memory requirement by discarding any undecoded symbols in real-time, instead of storing
these for later decoding as an LT decoder does. The price for this simplified decoder is the increased
number of encoded symbol transmissions, although the authors in [3] develop an optimal algorithm for
choosing the degree distribution that minimizes the probability of having to discard an encoded symbol. RT
codes require a feedback channel, although the authors showthatO(

√
k) successful feedback transmissions

suffice for their scheme.
The real time characteristic of the RT decoder yields input symbols at a near constant rate (hence the

‘real time’), although the decoded input symbols are unordered and therefore, may not be immediately
useful. Moreover, the feedback is non-uniform, with most ofit occurring toward the end of decoding. This
may lead to congestion of the feedback link and a data implosion problem at the broadcaster if it gets
overwhelmed by feedback messages. As we shall see in SectionVI, our Shifted LT codes yield excellent
performance even when feedback is sent at uniformly (in number of decoded input symbols) through the
decoding process.

IV. SHIFTED LT CODES

A. Intuition

Intuitively, the robust soliton distribution of LT codes istoo sparse (i.e., there are too many lower degree
encoded symbols) to accommodate known input symbols on the decoder end. Then known input symbols
serve the function of degree1 encoded symbols, disproportionately skewing the degree distribution for
LT encoding. We thus propose toshift the robust soliton distribution to compensate for the additional
functionally degree1 symbols available at the decoder.

B. Construction

Formally, then input symbols at the decoder end have the effect of degree1 encoded symbols, which
can be immediately decoded. As such, thesen symbols reduce the degree of each encoding symbols by an
expected

(

1 − n
k

)

fraction, possibly making some of the received encoded symbols redundant. Our goal
is to counter this effect by creating encoded symbols in a waythat redistributes the encoding degrees to
the original robust soliton distribution after thesen input symbols have been removed.

Definition The Shifted LT distribution is given by

γk,n(j) = µ(k−n)(i) for round

(

i

1 − n
k

)

= j,

wherek represents the number of input symbols in the system,n represents the number of input symbols
already known at the decoder, and round(·) rounds to the nearest integer.

Lemma IV.1 For any n < k, γk,n(j), j = 1 . . . k is a probability distribution.

Proof: The proof hinges on the observation that1
1−n

k

≥ 1 whenn < k. As such, i
1−n

k

and i′

1−n

k

will
differ by at least 1 for any different integersi and i′, meaning that

∑

j γk,n(j) =
∑

j µ(k−n)(j) = 1.
We construct a Shifted LT code exactly as an LT-code, but based on the Shifted LT distributionγ. More

precisely, givenn, the number of input symbols already decoded, we pick a degree d with probability
γk,n(d) and then xor a corresponding number of thek input symbols, chosen distinctly and uniformly at
random.

Any encoding node chosen through theµk distribution to have degreed, will have degree roughly d
1−n

k

in the new distribution, meaning that we can expectd of the input symbols used in the encoding to not
be from then known to the decoder. Note that our construction applies regardless of the constantsc and
δ chosen for the LT distribution.
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C. Analysis

The following lemma, adapted from the results of [7], quantifies the communication complexity of
Shifted LT codes.

Lemma IV.2 A decoder that knowsn of k input symbols needs

m = (k − n) + O

(√
k − n ln2

(

k − n

δ

))

(2)

encoding symbols under the Shifted LT distribution to decode all k input symbols with probability at least
1 − δ.

Note that Lemma IV.2 represents a roughly1− n
k

fraction of the encoding symbols needed for standard
LT codes, which is particularly effective asn approachesk. The downside of this shift is that encoding
symbols have relatively higher expected degrees.

Lemma IV.3 The average degree of an encoding node under theγ distribution is given byO
(

k
k−n

ln (k − n)
)

(for 0 ≤ n ≤ k − e, e being the base of the natural logarithm).

Proof: The proof follows from the definitions, since a node with degreed in theµk distribution will
correspond to a node with degree roughlyd

1−n

k

in the Shifted LT distribution. Thus, the average degree
is:

d̄k =

k
∑

j=1

jγk,n(j)

=
k−n
∑

i=1

round

(

i

1 − n
k

)

µ(k−n)(i)

= O

(

k

k − n

) k−n
∑

i=1

iµ(k−n)(i),

and the result follows from the average degree ofµ given in [7].
In practice,k ≫ e, and the degree is set ton for n ≥ k − e at the encoding host.
The first step in decoding a Shifted LT code involves removingall n known input symbols, and their

incident edges, from the decoding graph. Our next lemma establishes the computational complexity of
this removal process, after which the resulting graph lookslike the decoding graph of a standard LT code
under the robust soliton distribution.

Lemma IV.4 For a fixed δ, the expected number of edgesE removed from the decoding graph upon
knowledge ofn input symbols at the decoding host is given byE = O (n ln(k − n))

Proof: The total degree of encoding symbols must equal the total degree of input symbols in the
decoding graph, meaning, by Lemma IV.3, that:

md̄k = kd̄′
k,

whered̄′
k is the average degree of an input symbol. As such, the expected total degree ofn input symbols

is given by
n

m

k
d̄k.
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Rewriting, with the aid of Lemma IV.2 and recalling thatδ is presumed constant:

E ≤ n
(k − n) + O

(√
k − n ln2(k − n)

)

k

O

(

k

k − n
ln (k − n)

)

= O

(

ln2(k − n)√
k − n

)

n ln(k − n)

= O(n ln(k − n)).

We now assemble the various lemmas to determine the computational complexity of Shifted LT decod-
ing. Specifically, the decoding computational complexity is the sum of the operations for first removing
the edges corresponding to then input symbols known at the decoder (Lemma IV.4) and subsequent
operations for decoding an LT code comprised ofk − n input symbols (O((k − n)log(k − n)) from [7].

Theorem IV.5 For a fixed probability of decoding failureδ, the number of operations needed to decode
using a Shifted LT code isO (k ln(k − n)).

V. HEURISTICS FORPRACTICAL IMPLEMENTATION

A. Shifted LT codes with feedback

Shifted LT codes lend themselves to a scheme in which a recentvalue of n is available to the encoder
via feedback. In such a scheme the transmitting node would start with n = 0 for which the probability
distribution of the Shifted LT code is the robust soliton distribution of LT codes, and update the distribution
on the fly as feedback is received.

Ideally, the Shifted LT encoder (broadcaster) would changethe degree distribution for every new value
of n at the decoding receiver. Unfortunately, this would involve sending a large number of feedback
messagesi.e., every timen changes at the decoder. Fortunately, Shifted LT codes perform well even when
the encoder has an approximate value of the actual number of decoded input symbolsn at the decoder.
In particular, an underestimate ofn at the encoder may increase the number of encoded symbols required
to decode, but will not lead to decoding failure in general. For example, using the original LT code is
equivalent to fixing the value ofn = 0 at the encoder and never modifying the robust soliton degree
distribution.

1) Non-uniform restriction on feedback:The rate of change in the average degree of an encoded symbol
(Lemma IV.3) with increasingn is not uniform during the decoding process of Shifted LT codes. In fact,
most input symbols are decoded aftern surpasses a certain valuen = αk, 0 ≤ α ≤ 1. A feedback message
containing the most recent value ofn is sent only when the average degree changes by a constant (since
the previous feedback). This leads to anon-uniform restrictionheuristic that limits the feedback of Shifted
LT codes toO(

√

(k)) transmissions, the same as RT codes.
To investigate this heuristic for limiting the feedback of Shifted LT codes and determine the constant

mentioned above, we start by computing the value ofα for which the rate of change in the degree with
respect ton is at least1.

Lemma V.1 For n ≤ k − e, the value ofα for which the derivative of the average degree with respect

to n is at least1 is approximately1 −
√

log k

k
.

Proof: First, note that the average degree of a Shifted LT encoded symbol (Lemma IV.3) is a
non-decreasing function for0 ≤ n ≤ k − e. Consider its derivative with respect ton (we ignore the
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Fig. 1. Feedback strategies for uniform and non-uniform restrictions on Shifted LT and RT codes. Each circle qualitatively corresponds to
a situation in which the current value ofn is fed back to the encoder.

constant associated with big-Oh notation for this analysis).

d

dn

( k

k − n
log(k − n)

)

=
k

(k − n)2
(log(k − n) − 1) (3)

Substitutingn = αk, equating the derivative to1, and noting thatk ≫ 1 ≥ α ≥ 0, log(1−α)
k

≤ 0, and
1
k
→ 0, yields the statement of the Lemma.

Sincek ≫ e usually, it is not practically important to analyze the casewhenk − e ≤ n ≤ k.
The corresponding value ofn, denoted bynNU = k −

√
klog k is somewhat smaller than that for

RT codes in [3], where the authors show that the degree increases by more than1 per change inn for
nRT = k −

√
k, as illustrated in Fig. 1.

Early in the decoding, whenn < nNU , the average degree of an encoding symbol increases by

1

2

√

k log k − log k ≈ 1

2

√

klog k, (4)

obtained by evaluating the expression in Lemma IV.3 atn = 0 and atn = nNU and subtracting the former
from the latter. We limit the feedback to every time the average degree changes by

√
log k (from its value

at the previous feedback), leading to approximately1
2

√
k feedbacks (obtained by dividing (4) by

√
logk).

During the later decoding stage (n ≥ nNU ) the heuristic sends at most
√

k feedbacks, one each time
the degree changes by (at least)

√
log k. Therefore in total, this heuristic sendsO(

√
k) feedbacks asn

increases from0 to k, which is equal to the RT code’s feedback.
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2) Uniform restriction on feedback:In this scheme, the current value ofn is communicated back to
the encoder every timen increases by

√
k, resulting in

√
k feedbacks asn increases from0 to k, as

illustrated in Fig. 1. This heuristic has the advantage of not congesting the feedback channel toward the
end of decoding, unlike RT codes and the non-uniform restriction on feedback.

3) Performance without final Feedback :Fig. 1 illustrates the congestion issue toward the end of
decoding in RT and Shifted LT codes using the non-uniform restriction heuristic. In the worst case, it
may happen that all the feedback packets are dropped due to congestion toward the end of decoding.
We now show that Shifted LT codes will outperform RT codes when no feedback is transmitted to the
encoder aftern = k−

√
k. In [3] it is shown that RT codes require

√
k logk encoded symbols to recover

the final
√

k + 1 input symbols without feedback. Shifted LT codes outperform RT codes in this regard as
they require less packets to recover the final

√
k + 1 input symbols without feedback. As a consequence

of Lemma IV.2 Shifted LT codes requires
√

k + 1 + (k + 1)
1

4 log2 (
√

k + 1) encoded symbols to recover
the final

√
k + 1 input symbols without any further feedback.

As k grows toward infinity, a ratio test comparing the relative growth rates of the two functions shows
that the function

√
klogk grows strictly faster than

√
k + 1 + (k + 1)

1

4 log2 (
√

k + 1). Therefore, Shifted
LT codes requires fewer encoded packets and is able to recover the final

√
k + 1 input symbols more

quickly if all feedback is lost toward the end of the decodingprocess due to congestion in the feedback
channel.

B. Systematic code heuristic

A simple heuristic mentioned in [3] is to use systematic versions of the codes; first transmit all the
input symbols and then use the coding scheme to recover the missed symbols. This reduces the amount
of transmission required by both SLT and RT codes to obtain the file. Additionally, at low levels of loss
this mitigates the need for restricting feedback.

C. Heuristic for multiple receivers

LT, Shifted LT, and RT codes can be applied to broadcast scenarios with one broadcaster and multiple
receivers. LT codes are advantageous because they require no back channel, and the operation of the
receivers can be completely asynchronous. That is, each receiver can start receiving and decode encoded
packets at any time because no receiver feedback is utilized. On the other hand, RT and Shifted LT codes
modify the degree distribution based on feedback from the receivers (in fact, they would be completely
ineffective for a newly joining receiver if the minimum degree of encoded packets is≥ 2). On the
other hand, Shifted LT codes generally require much less communication than LT and RT codes and
result in significant communication and corresponding power savings across the receivers, as we show in
Sections VI and VII.

The Shifted LT construction presented in Section IV-B uses the value ofn obtained via feedback. Using
an underestimate ofn to design the code will result in more redundant encoded symbols but will not stall
the decoder. Therefore in case the number of decoded input symbolsn is not equal across the receivers,
the broadcaster can use the least value ofn across the receivers while creating the Shifted LT encoded
symbol. In the worst case,n = 0, resulting in the encoder creating LT encoded symbols and then the
broadcast channel’s usage is equivalent to using LT codes. However, for alln > 0, Shifted LT codes
require lesser communication to deliver thek input symbols to the receivers as compared the LT codes.

VI. SIMULATIONS

In our analysis we have defined Shifted LT codes and outlined their properties as well as provided heuristics
for practical implementations. We utilize the engineered constantsc = 0.9 and δ = 0.1, following the
related literature [9]. In this section we show the properties of the Shifted LT codes and their variants, and
compare them to LT codes and RT codes via simulation. Later, in Section VII, we outline the performance
of these codes for the Deluge software updating applicationon sensor motes.



10

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

Encoded symbols transmitted

E
n
co

d
e
d
 S

ym
b
o
ls

 in
 M

e
m

o
ry

 

 

RT codes
Shifted LT codes
LT codes

Fig. 2. Memory usage at the decoder as a function of the numberof transmitted symbols.

A. Comparison of Shifted LT, LT, and RT codes

The first simulations compare Shifted LT (SLT), LT, and RT codes when there is a feedback channel
between the encoder and decoder. In each round of the simulation an encoded packet is generated and
transmitted, and decoding is attempted on the received packet (as well as any stored in memory) at the
decoder. If an input symbol is recovered then feedback is sent as dictated by each code. For these first
simulations Shifted LT codes do not limit their feedback.

For this simulation three metrics were examined: forward channel communication complexity, feedback
channel communication complexity, and memory usage. As thenumber of input symbols increases Shifted
LT codes requires fewer encoded transmissions than both LT and RT codes. Fork=500, on average Shifted
LT codes requires 59% less redundancy than RT codes and 21% less redundancy than LT codes (on average,
over 100 trials). On the other hand, the feedback channel communication complexity for Shifted LT codes
is greater than either RT codes or LT codes. While RT codes is limited by the changes in its degree and
LT codes transmits no feedback, the Shifted LT code transmits feedback every time it recovers one or
more input symbols. However, as we will show in Section VI-B most of this feedback is unnecessary. The
final metric, memory usage, is shown in Fig. 2 which examines memory usage as the number of encoded
transmissions increases for each code. Both LT codes and Shifted LT codes store encoded symbols that
are not decoded and require more memory than RT which requires a constant amount of memory since
it does not store any packets in memory.

B. Heuristics

To limit the amount of feedback we described non-uniform anduniform restrictions in Sections V-A.1
and V-A.2 respectively. Each of these restricts the amount of feedback toO(

√
k), the level of RT codes.

Our simulations examine the forward channel and feedback channel communication complexity for varying
k under these restrictions and compare them to RT and LT codes.

The number of encoded packets required to obtain allk input symbols is shown in Fig. 3. Whenk is
small each restriction policy performs similarly, however, as the number of input symbols grows the non-
uniform restriction performs best. At 1000 input symbols onaverage it requires 1314.8 encoded packets
compared to 1412.3 for uniform restriction.
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Fig. 3. Number of encoded symbols required to disseminate all k input symbols.

In Fig. 4 we show the number of feedbacks for the various heuristics and codes. It is interesting to
note that both the uniform and non-uniform restriction on Shifted LT codes do not increase continuously
with k. This is due to the sudden completion of the decoding toward the end of the decoding process and
rounding issues of integer degrees.

The main issue with the feedback channel could be its lean rate of data transfer as compared to
the forward channel. Simulations to investigate this scenario restrict the relative rate of the feedback
compared to the forward channel; for example, by limiting the feedback channel rate to one tenth of the
forward channel rate. Fig. 5 shows that under these conditions the Shifted LT code without any restriction
on feedback performs poorly. This is due to the large amount of feedback of delayed and inaccurate
information (aboutn) reaching the encoder. Both our heuristics (uniform and non-uniform restriction)
perform well under limited feedback conditions.

Another heuristic discussed in Section V-B is a systematic version of each code. The entire input file is
transmitted first without encoding and then encoded packetsare transmitted to recover any lost packets.
The simulations to investigate this heuristic consist of 100 randomized trials for 100 input symbols for RT
and SLT codes and examine the communication complexity withpacket loss on the forward and feedback
channel. The effect of packet loss on the feedback channel isshown in Fig. 6 which compares RT codes
and Shifted LT codes when the forward channel loss is fixed at 5percent (chosen because of the similar
performance with no feedback loss of each code). As the feedback loss increases the RT code has a
significant increase in the number of encoded packets required, while SLT codes are more tolerant to the
loss of feedback packets.
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Fig. 4. The number of feedback messages sent for the different codes for increasing number of input symbolsk. The “Shifted LT - no
restriction” transmits too many (O(k)) feedbacks and has been left out of this figure.

C. Multiple receivers

As mentioned in the Introduction, the benefits of Shifted LT codes should be evident in multiple receiver
environments as well. Fig. 7 shows this benefit concretely for a 50-node broadcast network, wherein Shifted
LT codes require roughly 10% fewer transmissions than LT codes. We note that the amount shifted in
these cases is conservatively based on theminimumnumber of input symbols decoded by any node in
the network, which can even be a third of theaveragenumber of input symbols decoded on each node
depending on how the (random) encoded packet loss affects each node’s decoding process.

VII. SHIFTED RATELESSDELUGE

Over-the-Air programming (OAP) represents a key enabling technology for wireless sensor networks,
allowing the dissemination of program images over a wireless channel to numerous, typically energy-
limited motes. Several OAP protocols have been proposed in the literature, but thede factostandard is
the Deluge protocol. The work in [10] extended the Deluge protocol to make use of random linear coding
for robust software delivery. We further extend both these works to consider the use of Shifted LT, LT, and
RT codes. To the best of our knowledge, this is the first implementation of the Deluge protocol using these
three rateless codes. This extension of Deluge required a complete redesign of the data communication
and request aspects of the Deluge protocol, but maintains the higher level API so that our version of
rateless Deluge can be swapped with the traditional Deluge without changing existing tools.

For clarity, we describe experiments based on a fully-featured implementation of the Deluge protocol
utilizing LT, Shifted LT, and RT codes for broadcast communication. Our experiments were conducted
primarily on TelosB motes, containing an 8MHz micro controller with 10K RAM, and transmitting in the
2.4GHz spectrum at 250 kbps. The motes operated under the TinyOS operating system, and applications
were written in nesC, a C-variant commonly used with TinyOS.For fine-grained energy measurements,
we further utilized the TOSSIM TinyOS simulator [17] and itsextension PowerTOSSIM.

A. Computation

Our first experiment consisted of two TelosB motes, in which one mote serves a single page (consisting
of multiple packets) to the other mote. The objective of thisexperiment was to track computational
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Fig. 5. The number of encoded symbols needed to decode 100 input symbols, as a function of the feedback channel rate.

load on the motes for the various rateless encoding systems:LT, SLT, and RT. Fig. 8 shows that the
sample SLT computation load spikes more often than the RT load, mostly due to the need to recompute
shifted distributions. These shifts can be instead pre-computed at the expense of increased memory usage.
The overall computation time of RT and LT codes is comparable(8.83 seconds versus 10.82 seconds
respectively), but the Shifted LT codes require significantly more computation time (23.22) overall when
the distributions were recomputed.

B. Communication and Energy

Our second experiment consisted of eleven motes, one of which broadcast five pages in memory (totally
11.5K) to the ten other motes. All feedback channels from theten motes to the broadcaster were set to
have a 5% packet loss rate, and the forward channel loss rateswere varied from 0% to 9%.

Our results in Fig. 9, averaged over fifty trials, show that Shifted LT codes transmit fewer packets
than LT codes for complete dissemination of the five pages, and that both LT variants are significantly
more efficient than RT codes, especially as packet loss ratesincrease. Equally importantly, Fig. 10 shows
the energy measurements of the various codes measured usingPowerTOSSIM simulator software (which,
unfortunately, cannot simultaneously measure computation time). These experiments demonstrate that
Shifted LT codes provide a roughly 15% improvement in energysavings compared to RT codes, which
can be quite significant for battery-powered sensors. In effect, the significantly lower communication costs
of SLT codes outweigh their additional computational burden, with respect to LT and RT codes. All the
codes outperform standard Deluge (no coding) for even moderate packet loss rates in the forward channel.

VIII. C ONCLUSIONS

In the typical case when a feedback channel is present, Shifted LT codes provide an easily implemented
improvement over existing rateless codes, most notably Luby-Transform (LT) and Real-Time oblivious
(RT) codes. The corresponding improvements in communication complexity, energy usage, and, in certain
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Fig. 6. The number of encoded symbols needed to decode 100 input symbols, as a function of the feedback channel loss rate. The forward
channel loss rate is fixed at 5%.

cases, memory requirements are even starker within a broadcast environment where these savings are
multiplied by the number of receivers.

The reason for the improvements is intuitively linked to increasing efforts needed by existing decoders
to target undecoded symbols. Our shifted codes demonstratethat a modest amount of feedback can
significantly reduce this problem, and result in valuable savings, which we demonstrate analytically, in
simulations, and through a re-implementation of the popular Deluge software updating protocol for wireless
sensor networks.

We expect that our improvements would carry over to derivatives of the rateless codes, such as the well-
known raptor codes. Our basic approach of modifying the degree distribution via “Shifting” is applicable
to codes other than LT codes. Applying our methods to other codes remains an important future goal. In
our Shifted LT code the feedback channel only serves to communicate the state of the decoding process
to the encoder; other side information, such as channel characterization information, may eliminate the
need for the feedback channel.
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Fig. 8. The amount of time required to decode a randomly chosen encoded packet, as a function of the number of encoded symbols already
transmitted.
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using variants of the Deluge over-the-air programming protocol.
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