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Abstract

We investigate whether smartphones can be used to distinguish differ-
ent users based on their gait, the rhythmical body movements of human
beings as they walk. To this end, we propose, describe, and experimen-
tally evaluate a system that classifies peoples’ gait patterns using the
tri-axial accelerometer of the Motorola Droid phone. The system employs
the wavelet transform to extract features from raw acceleration data and
the k Nearest Neighbors (kNN) algorithm to perform the classification.
Preliminary experimental results show that the system achieves high clas-
sification rates (i.e. above 90%) when users walk at approximately con-
stant speeds regardless of variations in environment. Our results show
promise toward using gait as a means of user recognition.
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1 Introduction

Cell phone technology has progressed rapidly in its roughly forty year history.
Analog voice-only cell phones have given way to digital transmission phones,
followed by non-voice data access and culminating with today’s smartphones,
which have full Internet access, processing power and storage space that are
roughly one generation behind desktop computers, as well as a wide variety
of on-board sensors. In today’s world, about 83 % of U.S. citizens own a cell
phone and 17 % of U.S. citizens (approximately 26.1 million people) own a
smartphone [2].

Smartphone capabilities seem innumerable today, and we put this notion to
the test by attempting to use the the on-board accelerometer of the Motorola
Droid to advance the smartphone’s user recognition. It is envisioned that this
means of user identification could be utilized as a component of a larger recog-
nition system, one that might fully amalgamate all relevant sensor/phone data
to generate a ”sense” of whether a legitimate user has possession of the phone
at any given instant, and if so, which known user.

Biometric signatures, based on a user’s natural features, are a natural ap-
proach to user recognition, as they are often high in entropy and hard to forge
and forget. Human gait is a particularly appealing biometric feature for phones
because it tends to be unique [22], is passively observable with the use of ac-
celerometers, and is easily measured as a user carries his phone around. While
measuring gait is not applicable to every scenario (i.e. when a user carries their
phone in a purse or other attenuating medium, or when the user is driving, etc.),
the goal of this paper is to show that a user’s gait has a property of uniqueness
that the on-board accelerometer can measure in some instances, a feature that
indicates potential further use.

2 Background

2.1 Gait

When people walk, the movement of their limbs and body exhibits characteris-
tic patterns. The word gait describes the manner or the style of walking–rather
than the walking process itself [26]. It is a complex spatial-temporal behavior
biometric [17] and a substantial amount of research suggests that it is suffi-
ciently distinctive to allow for identity authentication [22, 5, 27]. One of the
key advantages of gait compared to other biometrics is its unobtrusiveness [5],
meaning that no special instructions are needed to get the user’s walking gait.
The implication here is that one can potentially use gait as a passive biometric,
i.e. gait patterns can be captured without the user’s constant involvement.

Gait analysis has long been a active research topic for a variety of applica-
tions. It has been used in medical and pathological research to detect motion
patterns and abnormal walking [18, 3]. It has also been used to recognize
friends without familiarity cues [8] and to classify gender [27].

2



A multitude of different techniques have been employed to generate gait
analysis. Biomechanical models have been developed to specify gait character-
istics such as joint moments and powers (kinetic analysis), joint angles, angular
velocities and angular accelerations (kinematic analysis) [14]. Alternatively, a
digital image processing system has been proposed to perform kinematic anal-
ysis of human gait [24]. Ultimately, most current approaches are vision-based,
since they either extract features from the image or map the image to a spec-
ified set of models [7, 4, 10, 15]. However, the hardware associated with these
systems is usually expensive and cumbersome, making them difficult to deploy
practically with regards to smartphones.

Another interesting approach to gait analysis involves the use of accelerome-
ters. Acceleration has been associated with gait analysis since at least 1964 [13],
and the acceleration patterns of people walking on different surfaces have been
explored in [21]. Accelerometers have also been used to detect leg injury [28].

Most previous works use multiple sensors on different parts of the body.
Our goal here is to use just one tri-axial accelerometer on the phone to cap-
ture gait patterns. The work in [16] considers using a single accelerometer
mounted on a cellphone to distinguish between different types of gaits (walking,
running). Rather, the focus of our work is in distinguishing between users. Re-
cent work [11] proposes an approach based on time-delay embedding to classify
smartphone users. Our work is distinct from [11] in its processing method (our
approach relies on wavelets). It should also be noted that our entire solution,
both training and classification, is sufficiently light-weight to be executed on-line
by the phone (i.e. without any additional laptop or desktop processing).

2.2 Sensors

Due to technological advancements in mobile phones, embedded sensors have
become more common in a typical cell phone design. Models, such as the
Motorola Droid, sport six different highly sensitive and accessible sensors. The
Droid then can use these sensors for a variety of applications. For example,
an ambient light sensor allows the Droid to adjust its backlighting for different
ambient lighting conditions. Similarly, a magnetometer affords the Droid an
accurate compass.

For our purposes, we chose to use the Droid’s accelerometer alone to classify
a user’s gait. The highly sensitive accelerometer outputs acceleration data in
the x, y, and z axes of the phone. We chose to use the accelerometer over
other on-board sensors in part because it is largely insensitive to the phone’s
orientation. In other words, the Euclidean norm of the acceleration vector
remains unchanged regardless of the the phone’s orientation within the user’s
pocket (one common mode of carrying a phone). As such, the accelerometer
accurately captures the periodic motion of the user’s leg during walking.

The Droid’s magnetometer could also be used to help with measuring gait,
but its accuracy can be significantly affected by proximate magnetic fields, which
need to be considered within the consequent signal processing. The Droid phone
also sports an orientation meter (outputting Azimuth, Pitch and Roll for the
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Figure 1: System Flowchart

device), but this is actually just an algorithmic combination of accelerometer
and magnetometer data, so it provides no new information for gait analysis.

3 System description

The goal of our system is to demonstrate the classification and identification
of several walking gaits based on extracted accelerometer data. Figure 1 shows
the high-level flow chart of our system. The main components of our system
are discussed in detail in the following subsections.

3.1 Preprocessing with wavelet transform

The system draws raw x, y, and z-axis accelerometer readings directly from the
phone using the operating system’s existing Application Programming Interface
(API). Due to the asynchronous operating system structure [1], sensor data
arrive at irregular intervals, controlled only by a suggested qualitative delay
(fastest, game, normal and UI). As a result, interpolation (linear in our case) is
needed to provide the regular sampling intervals needed for much of our discrete
signal processing [25].

The goal of the preprocessing step is thus to transform the raw data into some
desired form from which useful features can be extracted. The Fourier transform
is an obvious candidate for such processing because it provides the frequency
domain representation of the accelerometer signal. However, one of the major
shortcomings of the Fourier transform is that it does not offer good localization
in time, i.e. the transformed representation contains only information in the
frequency domain.
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The wavelet transform [20] is a tool that cuts up data, functions, or operators
into different frequency components, and then studies each component with a
resolution matched to its scale. The wavelet transform of a signal depends
on two variables: scale (or frequency) and time, and provides a tool for time-
frequency localization.

A mother wavelet ψ(x) is a finite length and fast-decaying oscillating wave-
form. The mother wavelet “gives birth” to an entire family of wavelets by means
of two operations: dyadic dilations (represented by j) and integer translation
(represented by k) [23]:

ψj,k(x) = 2j/2ψ(2jx− k) (1)

The set {ψj,k, j, k ∈ Z} constitutes a complete orthonormal system for
L2(R).

A wavelet transform is the representation of the original signal by wavelets:

cj,k = 〈f(x), ψj,k(x)〉 (2)

f(x) =
∞
∑

j

∞
∑

k

cj,kψj,k(x) (3)

where the 〈·〉 is the inner product operator and cj,k are called wavelet coefficients.
One of the most interesting wavelet methods is multi-resolution analysis(MRA) [19],

which decomposes a signal into approximate spaces and detail spaces. Multi-
resolution analysis allows the wavelet decomposition to preserve the interesting
features of the original function, but it will express the function in terms of a
relatively small set of coefficients [23].

In addition, the wavelet transform is ideal for signals with discontinuities
and sharp peaks, which are quite common in accelerometer readings. It can
also accurately deconstruct and reconstruct finite, non-periodic and/or non-
stationary signals.

For our analysis the Daubechies 4 tap wavelet family [9] and a multiresolu-
tion decomposition level of 4 are used. A typical decomposition is illustrated
in Figure 2, where s is the original signal, d1,d2, · · · are detail coefficients
and a1,a2, · · · are approximate coefficients. The original signal is completely
characterized by [a4,d4,d3,d2,d1].

In order to include only the most relevant information, the dimension of the
feature space should not be too high. Thus, the Euclidean norms of each level
of coefficients are used as entries of the feature vectors, i.e.,

[

||a4|| , ||d4|| , ||d3|| , ||d2|| , ||d1||
]

, (4)

where || · || is the Euclidean norm operator. This approach greatly reduces the
dimension of the feature space.
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Figure 2: Multi-resolution wavelet decomposition of level 4

3.2 Classifier

After the multi-resolution wavelet decomposition, all input signals are repre-
sented as vectors in the feature space. Figure 3 shows a sample scatter plot of
the first three dimensions of the feature space.

The operation of the system requires an initial training period, during which
the classifier is provided with learning data with known ground truths. The
system uses the k Nearest Neighbors (kNN) algorithm as a classifier. kNN is a
nonparametric pattern recognition technique that assumes no knowledge of the
statistics of the underlying distribution. Let ωi(i = 1, · · · , L) be a class space
of size L (in our case, ωi represents user i and L the total number of users).
Given a test sample X, i.e., a transformed feature vector from the accelerometer
reading, the number of neighbors from each class among the k selected samples
is counted. The test sample is then classified to the class represented by a
majority of the k nearest neighbors [12]:

ki = max{k1, · · · , kL} → X ∈ ωi (5)

where k1 + · · ·+kL = k and ki is the number of neighbors from ωi(i = 1, · · · , L)
among the k nearest neighbors. It has been shown that when the sample number
is large, kNN yields the tightest error bounds possible above the Bayes optimal
probability of error for all smooth distributions [6].

4 Experiments

4.1 Overview

The goal of our experiments, run on the Motorola Droid phones, is to deter-
mine the performance of the proposed system in classifying a user’s gait, under
simplistic conditions. To achieve this, we construct an Android application
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Figure 3: Scatter plot of feature vectors . Different colors represent different
subjects

that constantly records accelerometer data (with corresponding timestamps)
and stores the information into a file on the Droid’s SD card. After initiating
the application, a subject places the Droid into his or her pants’ pocket. The
application records accelerometer data as the subject walks. In each individual
experiment, all subjects walk at a constant speed. After a set period of time,
the subject stops walking, removes the Droid out of his or her pocket, and ter-
minates the program. Data recorded during the action of taking the Droid in
or out of a subject’s pocket are trimmed from the data files. We collect two sets
of data files. The first set provides training data, through which we compute
the feature vectors corresponding to each user. The second set provides testing
data that are classified using the techniques described in Section 3. Please note
that although our experiments strive to include people of different heights and
genders wearing different pants and shoes, they are by no means exhaustive and
are not intended to be. Rather, the purpose of our experiments is to show the
potential of using gait as a biometric on mobile phones.

4.2 Details and Results

We conduct five main experiments, in which set-up and results are explained
in detail below. In each experiment, the accelerometer signal from each file
is linearly interpolated with an interval of 10 ms and the Euclidean norm of
the acceleration vector is calculated. The interpolated and vectorized signal is
then divided into non-overlapping segments, each of which consists of 200 sample
points. The wavelet transform is applied to each segment and the feature vector
is generated using methods described in Section 3.

During the training period, the feature vector of each segment and its cor-
responding class are recorded. They form our training data. During the testing
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period, the feature vector of each segment is classified using the kNN algorithm,
where the distance is measured as the Euclidean distance between vectors. The
class of the integral signal is determined by doing a majority vote of the classi-
fication results of individual segments. The algorithm is run for different values
of k, i.e., k = 4, 8, 16, 32, 64. Fig. 4 depicts the results of each of the experi-
ments. The max and min bars respectively correspond to the highest and lowest
classification rates obtained over all tested values of k.

Experiment I Our first experiment involves two subjects, A and B. The
two subjects follow the procedure detailed in Section 4.1, in which their walking
motion consists of closely moving along a flat hallway over a distance of ap-
proximately 205.6 feet, within a 40 second time frame (i.e., the walking speed
is 1.57 meters/second). Subjects A and B each provide 25 files of training data
walking in this manner. Each subject then walks eight more times in a similar
fashion, and submits the resulting files as testing data. In this experiment, our
system correctly classifies all of the 16 testing data files, regardless of the value
used for k.

Experiment II The second experiment involves the same two subjects, A
and B. The goal here is to determine whether our classification mechanism is
equally effective at a slower walking speed. Please note that the subjects walk
at close to the same speed as each other; if they do not, we run the risk of
classifying subjects by the speed of their gait rather than the details unique to
each person’s gait. Both subjects obey the protocol described in Section 4.1,
but this time they walk the hallway distance of 205.6 feet at a slower speed,
that is, in 53 seconds corresponding to a walking speed of 1.18 meters/second.
As in the first experiment, each subject provides 25 files of training data, and
another eight files of testing data. In that case, the system reaches a maximum
classification rate of 94% and a minimum of 88% over the different values of k.

Experiment III We conduct a third experiment to test the effect of a change
in the environment on the classification abilities of the system. Previously, the
subjects walked in a straight line down a flat hallway. Here, the subjects walk in
a variety of different ways, such as around a circle with a 22-foot radius, along a
hill (traveling both up and down), wearing different pants, using different Droid
phones, or walking in a mostly-straight line only to suddenly and quickly change
direction. Subjects A and B walk at the same speed as in the Experiment II.
Since the goal here is to determine how significantly our classification rates
are affected when the users walk in varied environments as opposed to a normal
straight, flat walk, the subjects provide training data in which they walk straight
down the hallway. Subjects A and B each provide 91 files of testing data,
gathered during their walks in the various environments. The system classifies
the testing data with a high level of accuracy: when the classification rates are
averaged over all environments, the system achieves a maximum classification
rate of 98% and a minimum classification rate of 85%.
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Figure 4: Results of the five experiments.

Experiment IV The first three experiments all involve binary classifications
between subjects A and B. In the fourth experiment, we introduce two more
subjects (C and D) for the purpose of testing the ability of the system to classify
users correctly even in non-binary situations. All four subjects participate in this
experiment, in which they walk 205.6 feet in 53 seconds (1.18 meters/second)
down a straight hallway. Each subject provides a minimum of 20 training data
files, and then an additional eight files for testing purposes. In this case, the sys-
tem reaches a maximum classification rate of 91% and a minimum classification
rate of 84%, across all tested variations of k.

Experiment V The intent of our last experiment is to determine how well
the proposed system can classify subjects if they are not walking at a consistent
speed, meaning each trail is walked at a different constant speed. Subjects A and
B follow the protocol in Section 4.1, walking in a straight line down a hallway,
but they do not walk at a constant speed across trials. In this experiment, 95
files of training data experiment are gathered for each subject, as they walk
straight down a hallway (regardless of speed). Subjects A and B each provides
22 files in total for use as testing data. The results for classifying users across
varies speeds prove decidedly inferior to the results of the other experiments.
The classification rates for the twenty-two testing trials lie between a maximum
of 82% and a minimum of 68%.

We conclude by noting that future work may include significantly exhaustive
testing of this gait-based-recognition prototype, exploring different classification
algorithms for performance comparisons, or incorporating other sensor/phone
data for more advanced recognition abilities.
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