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Abstract

We consider the general problem of distributed and fair peqreer (p2p) allocation of a common, refillable resouras
problem recurrs in a number of scenarios, for example griipding, content distribution, Internet Service Providervice
sharing, and file sharing over asymmetric channels. We pressveral distributed schemes for this allocation problemd
show that these schemes guarantee two key properties:y()pastic fairness, in that (even maliciously colluding)ets are
proportionally assigned resources corresponding to wiet tontribute; (i) natural incentive to join and cooper#irly in the
system. We demonstrate the practicability of our appraacdimea prototype p2p file sharing system designed for typasitiential
internet connections, in which download capacities oftigmificantly exceed upload capacities. Our implementatbares file
data when communications are idle using random linear ¢atethat, when needed, an end-user can download a file froenadev

sources at a higher data rate than his home computer’s upigaatity. We present experimental results that supporapailytical
guarantees.
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I. INTRODUCTION

In this paper we focus on a variation of the distributed resewllocation problem, which has a variety of applicatjons
including bandwidth sharing and content distribution irept-peer networks, service sharing among local InteBeatice
Providers (ISPs) and grid computing, to name a few (36; 2d). foblem is formulated as follows: a heterogeneous cidiec
of peers demand the occasional use of a given resource, whidhof them individually have through a limited, but refilig
allotment.limited and refillable resource, Each peer&xperiencewhich it tries to maximize, depends on the time needed to
obtain the resource upon demand. As such, when a peer istiogena isolation, its experience is limited by its resource
capacity in a straightforward manner. However when peamiap to form a network, each peer could potentially enhance
its experience by utilizing unused capacity of other idlersgsee Figure 1).

A. Application 1: grid computing

To take a concrete example of our model, consider the casedo€@mputing. In this scenario, a large number of stanalo
computers are connected via a network, such as an Ethennetdér to perform massive computations or process a large
volume of data in a distributed manner (35). In the contexbaf model, each computer has a limited and refillable CPU
processing capability by virtue of the fact that each CPU pariorm one new task at each time step. The computers spend
most of their life idling (and avilable for peers on the netl)o and the experience of a particular user relates to the ti
needed to perform his task when needed.

To date, most grid computing projects are operated in a olbedirenvironment over privately-owned networksg.,Google’s
data-centers, NSA, NASA). Alternativelyplunteercomputing grids are typically dedicated to specific rede@aroblems ¢.g.,
distributed.net, SETI@home), and they are thus contraled programmed by only a few peers. However, one may readily
envision grid computing in a peer-to-peer (p2p) environtnaliowing peers to share their computer resources overbéicu
network such as the Internet for individual benefit. Suchwoets, however, would have to attract participating peerih(
typically idle computer resources) by providing an inceatio join the network. In addition they would have to provide
guarantees even in the presence of malicious peers tryidgsitopt or manipulate the network’s performance.

B. Application 2: File sharing

Another application of our allocation model concerns p2p $iharing over asymmetric channels.

Many users connect to the Internet through asymmetric limkghich the upload transfer capacities are significantlalen
than download capacities. Internet Service Providersgj®ffmploy this asymmetric design based on the premise tlsatta
Internet use mostly involves downloading content from atredly small number ofontent providerssuch as large data portals,
mail servers, web servers, or the like. For example, calei&s amplitude/phase (CAP) DSL allocates transmissiequiencies
between25KHz and 160KHz for uploads, and frequencies frod0KHz to 1500KHz for downloads, making downloads
significantly faster than uploads. Asymmetric channelsualoin various other practical scenarios, including anataglem
dial-up, wireless cellular Internet connections, and togfeneous sensor networks.
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Fig. 1. Examples of the general resource allocation model.
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Recently the ‘mostly download’ profile of users has stareathange. Users now commonly have access to devices like
digital video cameras, high resolution scanners, high @gpaound recorders, and other audio/video devices thatuoalarge
volumes of digital data. The fast pace of advancement inigierg storage (hard-disks, flash memory) further enaldessuo
generate and store large volumes of diverse data on theie lnmmputers or personal web sites. This is a far call from PCs
even ten years ago for, when the biggest storage requirerfaamitome users were typically from application programsher
operating system - data that did not have to be transferrexhwisers worked remotely.

This change in users’ access profile causes upload speedamben bottleneck for typical remote access. Specificdlly, i
a user wishes to remotely access data stored on a home congudle as a song, image, or video, his access rate is limited
to the minimum of the home computer’s upload capacity andue’s current download capacity at the remote locatior Th
asymmetry in upload and download capacity thus results freeely poor download channel utilization at the remotethos

Resource allocation can be utilized to correct for such ohhassymetries, bypassing the ‘bandwidth: use it or Idse it
service model offered by commercial ISPs. As such, userkd qme-distribute important files throughout their netwoakd
then share bandwidth (the common, refillable resource) deroto improve individual file access on demand. The network
would have to maintain and reimburse ‘credit’ for contribat to the network in a fair and robust manner.

C. Goals

Our goals in this work involve developing distributed resmuallocation schemes and demonstrating, by analysis and
simulations, that they have the following properties:

Fairness: Idle resources are redistributed in proportion to the regmicontributed by each peer to the network.

Incentive: There is a natural incentive for peers to participate angewte with others in the network.

Distributed operation: Only local information is needed in the implementation of thlocation scheme (i.e. no control
information is exchanged and there is no central authdrityx

D. Outline

Throughout this work, we shall use example 2 above, conegrpi2p file sharing, as a concrete, novel application in
which to demonstrate our algorithms. In Section Il we mentome of the related work in the fields of game theory, p2p
systems, grid computing, and coding theory, and contrasettwith our approach in Section II-A. Thereafter, we fofynal
introduce the details of our proposed bandwidth sharingaamh p2p networks in Section 1ll. In Section IV we analyiica
prove the fairness of our system, which are more generalicgble to our broader problem, and show that it possesses a
natural incentive for peer contributions. We simulate masi aspects of our system in Section V to demonstrate itaefsdr
and collaboration features, including specific cases whwakcious peers attempt to gain unfair advantage from tlstesy.
We demonstrate the practical application of our distridutesouce allocation schemes via our implementation of & p
system in Section VI. We also present experimental resultthe encoding/decoding performance of random linear ctales
demonstrate their practicability for the proposed p2p iapfibn. We conclude our findings in Section VII. Acknowletgents
are provided in Section VIII.



Il. RELATED WORK

Many of the studies into distributed resource allocatiocisesnes and grid computing in particular consider marketepla
auction and bidding models, which require exchanging ngessdbids) among peers (37; 34), and in some cases require
some sort of hierarchy to establish mark place policies.(BAgse approaches are usually assume reasonable peeiohehav
namely peers try to optimize some utility function, and &fere have no guarantees in the presence of malicious pgerg t
to disrupt the normal operation of the network. Our approacheared toward a simpler barter economy scheme (38), and
requires neither a hierarchy nor overhead in the form ofrobmbhessages exchange among the peers.

Peer-to-peer (p2p) systems are typically used to diskilsantent on the Internet, and it is estimated that a majaigoor
of the bandwidth available on consumer ISP networks cap#scontent (4). P2p services make scalable content dititib
possible by utilizing peers’ upload bandwidth to servicheotpeers’ download requests. It has been shown througlsisal
simulations and measurements (9; 11; 8; 7; 6; 5; 10; 12; 1&)ttle p2p content delivery model scales gracefully withr use
demands for heterogeneous p2p networks. In the remaindbisoection we describe some of the literature that is aglev
to the different aspects of our proposed system, ending avithief explanation of the novelty of our approach.

Content Distribution Recent works in p2p networks concentrate on mitigating caoperative behavior of peers by adding
incentive schemes. Due to scalability issues most of thesenses are distributed, and require only local informatiwet
is readily available to each peer. Similar to our scheme,nlost common schemes are basedBarter economywhere
peers offer their bandwidth to others according to the arhafirbandwidth allocated to them (2; 21; 22; 23). Although
adding incentive may increase cooperation among reasonedelrs, namely those users that try to optimize their ressur
it usually has no guarantee against malicious peers that twatisrupt others’ usage of the system or gain unfair achgmt
at the expense of other users, and additional measures quiec to reduce their effect on the network. This conclasio
was recently explained in (24) where the authors explaire@ral exploits for a selfish Bittorrent user to achieve afaiun
advantage from the system.

The idea of sharing disk-space for data backup and downlsadst new. For example, the Folder-share system (1) lets
users share their documents with other users. In this systewever, users only download a file from one peer, thus iligit
their download speed to the upload speed of the peer. Iniaddie system assumes that peers do not cheat others when
it comes to offering bandwidth. A different system, the Qustare project (3), provides a large Internet-scale daieage
solution for data security and reliability using erasurelesn

Coding Random linear coding (15; 17; 12) has been used for achighimgetwork coding (14) min-cut bound on multicast
capacity in networks. The authors in (17) proposed randogali coding as a way to avoid the coupon collector’s problEsh (
in a p2p storage system. Their application considers the wdrenparts of the same file are encoded and kept on separate
hosts and then rebuilt. While our system can also operathisnftagmented storage mode, our emphasis is on fairness and
the ability to beat the upload link bottleneck.

Analysis Much of the work on p2p systems characterizes fairness acghiives for peers to cooperate by simulations,
measurements and experiments of p2p systems rather thzal aoglysis, probably because of the complexities arifiog
the size, chaotic nature and heterogeneous conditionshlaaacterize real systems (e.g. (21; 22; 23)). Nevertbethsre has
been some recent queuing theoretic analytical work (11f) dbas a queuing approach to study scalability and resdi¢ac
freeloaders in p2p systems. A game theoretic approach sad®eén applied to the related problem of parallel downtagdlie.,
downloading a large file from several servers in parallelY.25) this problem is analyzed using non-cooperative gdraeretic
tools. However, this approach cannot capture the effectaalicious users.

A. Our approach

Unlike many existing p2p systems that are built for discowgeiand disseminating popular content, our system attetopts
shareunused bandwidtlamong system subscribers. Users who contribute bandwidthet system are rewarded with higher
instantaneous bandwidth availability when they need iallrcases, users are (asymptotically) assured that allviaditd they
share with the network will be returned to them.

Our system also differs from typical p2p file-sharing systdikee (2; 12) in that it is used by remote users, thus difféedimg
between users and network peers. More precisely, when auugashes to access her content (which has been distributed
among the network peers off-line), she downloads contemh fmultiple peers in the network, (possibly) including her own
home computer. This subtle difference means that our systehonger needs the ‘non-dominant’ condition in (Bg,., that
the upload capacity of every peer is necessarily smaller tha sum of upload capacities of all other peers. This, in,tur
means that our system does not require a symmetric inseouaritit-for-tat’ approach to guarantee fairness.(the system
intrinsically evens out contributions asymptotically).

Our proposed system comprisessopeers that collaborate to distribute other peers’ inforomatsing their spare upload
bandwidth. With each hostwe associate a corresponding available upload bandwidémd available download bandwidh;.
Ideally, the upper bound on the download bandwidth avalablpeers isy",_, . u;, although, in practice, a user accessing
the system has a limited download bandwidth that maybe emtilan the overall peer bandwidth in the system.
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Fig. 2. The model of the proposed application. Peers areallpiconnected to the Internet by low bandwidth uploaddirind high bandwidth download
links. Useru owns peeru but downloads content from the peer network at some remateuaterd, ideally at download rate more than,.

We show a pictorial representation of one such network iufei@. It should be noted that a usecan always download
content from his own peeu in parallel with any peej that might have copies of the content. This is not the modehast
p2p content sharing networks, simply because a peer wouldlmwnload content from itself (which it already has). The
subtle difference is an important distinction between oth2p networks and the proposed application because it slfow
the removalof the ‘non-dominant’ condition of the analysis presented8): u; < Zi,#k i, Yk =1...n. Removing the
non-dominant condition also results in the removal of thers,etric barter or ‘tit-for-tat’ requirement for fairnes&s such,
the contribution of peey to v might not equal the contribution of pearto j; only both peer's overall contribution to the
system is made equal through the bandwidth allocation mfesented in this work. Thus, as compared to Bittorrent, our
application maintains a longer term memory of prior bandkwicontributions as described in Section IV. In additionliken
Bittorrent, the number of seeds (peers with relevant blpattses not increase during the lifetime of a download sessio
our application because the downloaded content is uniquedoh user.

Because peer data will be cached on many other (possiblysintorthy) peers in our application, our application sdoul
use data encryption to protect peer data. Our prior work enttpic (26; 27) explained how the inherent encryption pied
through random linear codes could be used in our scenarithdrrest of this paper we will assume that the data security
aspects are addressed through these mechanisms willdnsteaentrate on distributed resource allocation schefaesess,
and incentives for inducing cooperative behavior betwesgrg In particular, we extend our work in (26; 27) to inclunbsv
(bandwidth) allocation rules that provide more generdlizecentives to cooperate, as well as stronger pair-wigadas. In
addition we present a real implementation of the proposstery and characterize the performance of the proposedttoc
schemes through this implementation. The Section (Sed&flpron the implementation also discusses some practicaasp
of implementing the distributed allocation schemes in & sgatem.

IIl. SYSTEM DETAILS

We next describe some implementation details of our sysfEmoughout this description we assume that each user
corresponds to his peeron the network €.g., his home computer).

A. Initialization

Our system is initialized with each peer disseminating @tadamong other peers using a random linear coding approach
motivated by the work in (17) (which applies coding to p2pratee applications). For the purposes of our analysis, wenass
that each peer has an infinite amount of disk space so tha ihewo utility cost for caching other peers’ data. Our patéc
extension of random linear coding efficiently provides segr authenticity and availability of the disseminatedadats we
shall see later in this section.

Consider a long fileX consisting ofb bits to be disseminated in anpeer network. In the standard random linear coding

approach,X is split into & chunks{X;, Xs,..., X} with each chunk mathematically represented asraalement vector
with components in a finite field, of size ¢ = 2P for somep, i.e., X; € F5; with mpk = b. This formulation effectively
translates fileX into & vector chunks. These vectors are, in turn, coded diritonessage vectorst, Ya, ..., Y, } whosei-th

componenty; is computed as

k
m:ZBij-Xj,z'zy..nm (1)
j=1

where eachgs;; is randomly chosen fronf¥, using a cryptographically strong pseudo-random numbeerg¢or (such as is
provided in (19)) seeded with a cryptographic hashi,odnd a secret key known only to the encoding peer. By choosing
B’s at random and appropriately tuning parameterg, andn, we can insure that the-tupless; = [8;;, j=1...k] are
almost surely linearly independent (18). A deterministimgntee of linear independence can be provided througihgest

the encoding peer.



Our encoding is similar to the encoding proposed in (15) fetwork coding-based multicast (14), with two important
technical differences:

1) rather than transmitting’s as message headers, we use them as a secret key, as ekpla(@é; 27);
2) rather than having peers transferring linear combinatiof their information to others on the network, peers m@hs
exactly what was uploaded to their storage area.

The first difference guarantees that no peer can decode ageestored on its system unless it correctly guesses-thple
B: (and knowsthat the guess is correct). The second difference ensua¢péers do not need to perform any computation
when messages are requested from them; they simply forwhad they have stored.

To complete the initialization phase, each plain text mgsd$B i is appended to th&;’s of (1) and these encoded messages
are then uploaded to the participating peers (up tb messages per peer), where they are stored.

This entire initialization phase is executed when free aglbandwidth is available or when new peers join the netwiérk.
peeru has low upload bandwidth and/or many files to share, thenirhialization process may take a long time; however, the
file contents are always still available directly from pedas in the standard client-server model), even during thi@limation
phase.

Some peers may choose to conserve storage space by storingc messages. In this case peers will not have all the
information needed to decode a given fiie.( there would have to be other accessible peers with at least’ messages to
make up the deficit). We wish to emphasize that normally pedfsdownload concurrently from many other peers in order
to speed up data transfer even if any or all of the peers hditbcks each.

B. Accessing data

To decode a file, a user first requests a totak ohessagey;, ...Y;, from multiple peers, preferably in parallel. Peger
transmits to the user at any rate up its available uploadoiigpa;; we will show in Section IV that peej has a natural
incentive to provide a fair amount capacity to useiand that uset is guaranteed a certain favorable minimum capacity from
the overall network regardless of pegs specific behavior. In practice, the rate at which ugereceives data frormy will
also be limited by the user’s download capacity, TCP flow @rdnd fragmentation, and various network-level fluctorasi
although we ignore these effects for the purpose of our aigly Section IV

Once useru has received alk requisite messages from the network, he broadcastom transmissiormessage to all
contributing peers. At this point, the user can multiply Weetor of received messages by the inverse of the apprewiatare
sub-matrix of the coefficient matrig = [3;;] to retrieve the fileX’; the rows of the coefficient sub-matrix are determined from
the IDs of each received message, as explained in Sectign Il

IV. FAIRNESS AND INCENTIVE TO JOIN AND COOPERATE

In this section we introduce an analytical verification of system, with particular attention to itairnessand theincentive
it provides users tgoin and cooperatewithin the network. To this end, we study the steady-stateabier of two bandwidth
allocation rules. Both rules are distributed in the sensg they require only local information be readily availakhteevery
peer, thus avoiding the complexity of building hierarchicatworks and/or centralized resource brokers.

Ouir first allocation rule provides participating users vathincentive to jointhe network. The user is guaranteed to receive at
least heiisolation bandwidth from the network, on average, but potentially mhigherinstantaneou®andwidth. Furthermore,
this provision is guaranteed in the presence of adversasiis colluding to gain more bandwidth from the network. Waws
that the allocation rule iair in the sense that the users are allocdtednetwork bandwidth proportionally to their contribution
to the network.

Our second allocation rule provides a stronger symmetritebaf asymptotic average bandwidths, ditdor-tat relationship
between every pair of users, when the number of independsrs un the network grows large. Moreover, when the users’
download demands are memoryless and most of the networkoisecative, then no other allocation rule can provide an
individual or group of colluding users much better averagemoad bandwidth. As such, minority groups have no ineenti
to seek alternative rules, thus providing users viittentive to cooperate

Section outline In the next section we formalize our theoretical model, tbge with its definitions and assumptions.
Thereafter, we motivate our specific approach through aisalyf a similar system based on thebal proportional fairness
scheme of (8), which we show to provide incentive for useegédon. Sections IV-B, and IV-C discuss our first allocatrate,
proving its key properties: the incentive to join the netkvand fairness. Sections IV-E and IV-F focus on modificatitrest
yield the second allocation scheme, which provigdas-wisefairness {.e., a tit-for-tat relationship) and incentive to cooperate,
but requires each peer to accurately estimate average esandl. We complete our discussion in Section IV-F1 and IV-F2
with a method for estimating these average demands thatpstioally (in time) achieves the desired fairness prapsrt
Finally, in Section IV-G we discuss practical implemerdgataspects of our approach, including the system’s dynagsisanse
time.



A. Theoretical Model

Our formal model considers peers sharing their upload bandwidths in a time-slottedidas with peer: corresponding to
a remote owner, usatr We further denote the individual upload bandwidth of peby p; and, for simplicity, we ignore the
users’ download capacities, assuming thus that the irsstanus download capacity of any user is larger than all tleespe
upload bandwidths combined. We refer to the collection bh.gbeers and users asnatworkor systemand assume that they
are all interconnected and that the users’ demands are beagicast to all network peers.

We also assume an arbitrary demand pattern for each usegledodith a binary indicator random variahlg(t) that is
1 if and only if useri requests bandwidth at time In the most general casél;(t)}:>o are dependent stochastic processes,
which we termdemandprocesses. In some parts of our analysis ,we will assumethialong-term time averages of these
processes converge to

and, furthermore, that the processes are ergodic, meahaighese time averages converge to their statistical éxiparms.
Note that if useri operatesn isolation and downloads only from its own peer, then its download spedithited by u; per
request, which corresponds to a long-term average capatilization of u;y; per time slot.

1) Allocation Rules:Our proposed bandwidth allocation schemes are provideaessions fon,;(¢), the upload band-
width that peer; should devote to user at slott:

Allocation Rule 1

t—1
ij(t) = Mit It 7k, ?
i) S D) Y i (R) ()kz:o“ " ()

Allocation Rule 2

pig (1) = Z ik 3)
2 Il»y(f) Zk o Hui(k

with some arbitrary small positive initial values fpr;(0). Note thatu;;(¢) is generally non-negative, and can be non-zero at
time ¢ only if I;(¢) = 1, that is userj has a request at that time.

Allocation Rule 2 requires each peer to have knowledge dhalusers’ average demands, which in general is unavailable
locally. In section IV-F1 we will discuss how to estimaig locally at each peer while maintaining the network’s asyatipt
(in time) properties.

In contrast, Allocation Rule 1 relies solely on local measnents taken at each peer, and it does not require any transfe
of information among the peers or users, a possible pointdeémsarial attack. In fact, this rule does not even requied t
the average demands converge, and we show within this defnemzework {.e., Theorem 1) that users are provided with
an incentive to join the network. Under a stronger assumptimt demand processes across different users are mutually
independent, we can prove even stronger properties refatedllusion attacks. This independence assumption isonede
for a cooperative, large, and diversified network, as demand generated by independent individual users.

In Section IV-F we provide an asymptotic analysis of AllacatRule 2 under the assumption that the network involves
a large numberp, of non-dominant users (8) and that the average demand amtizith of each user does not scale with
n, meaning thafu;,v; = ©(1). Adding a further assumption that demand processes are mgls® meaning thaf;(t) is
independent of{ I;(k) : k < t}, we further show in Theorem 5 that, if most of the network i®merating then no other
allocation rule can guarantee a significantly larger aweragndwidth for a single adversary or a small group of cofigdi
users.

In the next section, we provide some motivation for our sjechoices of allocation rules by analyzing the benefits and
deficits of an existing sharing scheme.

B. Motivation

Let us consider first the case of independent user demandsramdlocation scheme similar to thlgtobal proportional
fairnessscheme of (8). In this scheme the bandwidth allocated to péemroportional to peei’s contribution among all
actively requesting peers at that time. That is,

i I; ( ),U]
pist) = MlEl D)’

with the understanding th&/0 = 0. As a point of contrast, note that our allocation rules idelself contributiongs;; that
are not part of the work in (8).

(4)



The instantaneous bandwidth that ugereceives,) ", 1;;(t), is at leastu;, and typically larger since not all peers request
bandwidth at all times (although they still contribute totguaial requesters). For a lower bound it is convenient terite
equality (4) as

L ()
() = J J ’ 5
pis(t) = pi+ Zl;ﬁj Li(t) ®)
sincep;;(t) > 0 only if I;(¢) = 1. Taking expectations, we get
1
Elpij(t)] = piviu B (6)
s (1) o Mg+ Zl;ﬁj L(t)m
Vil
i —— Q)
My + Zl;&j Vit

Equality (6) holds since the numerator and the denomindt(d)are presumed independent, and inequality (7) is aneaijdn
of Jensen’s inequality (30). In particular,

i i
Z%‘(ﬂ] > ik — > Vit
[

E
Hj + Zl;ﬁj ML

where last inequality is strict unlesg = 1 for all [ # j.

Fairness properties of the allocation rule of Equation (@) perhaps be better understood when the network consists
of many peers, each of which contributes a small amount ofiwalth. To develop some insight, let us assume for a
moment thatu; is ©(1/n) whereas the per-user demandremains©(1) for all j. When the number of peersis large the
random sumzl# wi I, (t) is roughly Gaussian (assuming independent demand pra)jessth meanzl# w7y and variance
Zl# p3v(1—2) = ©(1/n); therefore the lower bound in (7) becomes asymptoticalgcexrurthermore, when; = ©(1/n)
the denominator in (5) is practically the same for glleading to

i (0)yi = i ()75 (8)

Equation (8) implies that the network fair in the sense that each user receives back the (normalizez)raraf bandwidth
its peer shares with any other user.

Despite these favorable properties, the allocation sch@inbas at least one important drawback, as it lacks a mestmani
for checks and balances and thus gives incentive to peersstepresent themselves. In particular

0 i M
= | it S DTS
Opj Mg D iy ik
providing incentive for peey to declare (possibly deceptively) a high contribution The problem could be avoided if peers
could measure the actual overall contributionotifier peers accurately. Alternatively, a peer can measure ontyribations

that it has received from each one of other peers, and it camubke this as a proxy for overall contribution in (4). Thiade
to the proposed Allocation Rule 1, which is studied in thetrsbsections.

C. Incentive and Fairness Analysis of Allocation Rule 1

We start by showing that Allocation Rule 1 provides an ins@nto join the system, and, under certain reasonable dondit
this incentive is strong. We further show that our rule igése fair in the saturation region and that no other alfiocarule
can do better, under the same assumptions.

1) Definitions: We say that a user has arcentive to joina sharing system if he is guaranteed not to lose average ldthdw
when he joins the network, assuming that the network userg@wperative in obeying a prescribed allocation rule. Téer u
has astrongincentive to join if this guarantee holds even if the netwasders are not cooperative.

For our analysis, we will also usg;(t) to denote the time-average of the bandwidth that yserceives from peer, and
7;(t) to denote the time-average over all bandwidth ysezceives from the network, ank(¢) to denote the time-average of
the demand process:

t—1 n
_ 1 _ L _
fij(t) = 4 > k), mE) =Y m5t), It = 1;(k). )

k=0 i=1

Note that for alli and;j, 0 < I;(¢) < 1 and0 < 7;;(t) < u;, so that the sequencél; (t), i; (), i,j = 1,2,--- ,n}: t > 1)
lie in a compact Euclidean space. As such, for any sequéhce > 0} there is a further subsequen¢g,, : m > 1} for
which the time-averages sequence converge (31):
Hij = n}iinooﬂ_ij(tm)v i = n}gnmm(tm)v y; = lim I_j(tm)-

m—oo -



The limit points7z;; and-~y; are, in general, functions of the sequereg, : m > 1}, but this is not an issue for our general
result of the following theorem.

D. Incentive to join

Lemma 1 and Theorem 1 show that each user has a specific ireémtjoin our network.

Lemma 1 Let {I;(¢) : t > 0}, ¢ <n, be arbitrary demand sequences. For any usé@mplementing Allocation Rule 1, the
long-term average download bandwidth is related to the agerbandwidth in isolation by,

= Yilbi + Z Hii (1 - 7 "}EPOO t_ Z Il Mzz ) . (10)
Proof: Rearranging (2) ,
i ( <Z L(t)ma(t ) =l ()15 (1) (11)

Using the convergence property over the sequdgg|m > 1}, we fix a large enoughn’ so that we can substitute all
Tij (tm) BY Tiij + € (tm), and allZ;(t,,/) by v, + €;(tn), Where the error termig; (t,,,/)| and |e;;(t/)| are upper-bounded
by some smalk > 0, for all m > m’. Herein, we omit the error term subscripts (which do notciftee result) for sake of
clarity.

Summing (11) from¢,,. to ¢, — 1 and dividing byt,, gives
tm—1

— D> it <le (T + e(t )——Zuz ) (i + e(tm)), for m>>m’. (12)

mtt/

1 tm—1 tm—1 tm—1

= X O + b)) = pifi— Y L)+ i > Li0eltn)

tmt:t/ Mot=t, mop=t ,

Noting that>"i" ! I;(t) = t,uT;(tm) — tm:I;(t,) and substitutingy; + e(t,,) for T;(t.,), gives

b — _
ity (%‘ +eltm) = —1i(tm ) + i Z I( = piftyi (75 + e1(tm)) + ea(tm) = piltjiy; + e3(tm)-

tt/

Since all the terms contributing to the errors are boundefbllbws that the total error termas(¢,,) can be made arbitrary
small by increasingn. As such, the right hand side of (12) convergesu;pﬂ% asm grows to infinity. An analysis of the
left hand side similarly shows it to converge gb Ztmo g (t) >, I (t) .

The resulting equation, in asymptotic form, is thus:

t
1 m
— > i (1) > L0 = payiTi,
™M =0

l

Adding % S i (8) 32,(1 = I(t))7im to both sides and recalling that, 7 = 17, we get

t
_ 1 __
fij P = payifgi + o Zﬂij(t) Z(l — L (t)) ;.-
m .

The result follows from considering the cage- i case and dividing byz;. ]

Lemma 1 guarantees that all users receive at least the ambbahdwidth that they would have received in isolation. The
following theorem shows that this result is tight in the setfzat no better guarantee can be provided in the general case

Theorem 1 Let {I;(¢) : t > 0}, ¢ <mn, be arbitrary demand sequences then:

1) For any user; implementing Allocation Rule Jz; > v, u,, for all i (asymptotically in time), and
2) In fact, no other allocation rule can provide a higher guara@ (uniformly for all users) for arbitrary demand processe



Proof: To prove the first part of the theorem we observe that,, . tL fg;o I (k)uii (k) < @, since the indicator
function I is at most 1. As a result,

t
1 1 &
E i |1—=— lim — E Ii(k)pii(k) | >0,
; ( [z m—0 by P ( (

and plugging it into equation (10) provides indeed that> v; u;.

We prove the second part by contradiction. Assume that acatlbn rule exists that guarantees every useith strictly
higher average bandwidth than its isolation bandwidihm; > ~;u;. If we sum this inequality over all users it follows that
this allocation rule must guarantee thay 7z; > > ;s

Next, consider asynchronoumetwork, in which all demand requests are synchronizedinvighgiven time slot i(e., the
demand sequences for all users are identical). In this degtnsituation the average bandwidthailableto all users combined
is equal to the sum of their isolation bandwidths; henceandigss of the allocation rul®" 7z; < Y7 ~;u;, resulting in a
contradiction. |

Note that Theorem 1 makes no assumptions about the naturediefdual demand processes, and more importantly, its
guarantees hold for any user implementing Allocation Ruyleegjardless of what other users might do. As such, even were
the remaining network users to collaborate maliciouslyhieirt allocations, they could not (in the long term) reduciéhfal
users below their isolation bandwidth; this representg@ngtincentive to join the network.

Furthermore, Lemma 1 provides that users following AllaratRule 1 can expect a potentially positive gain beyondrthei
isolation bandwidth, and this gain is roughly inversely gdional to the average amount of self contributions. Thug
system is alsdfair’ , in the sense that users can expect to receive from the retwagroportion to how much they give.

1) Independent demand processéshe specific case where demand processesnalependent across usepermits us
to refine our fairness notion and gain more insight into owtesy. This case could reasonably appear for cooperative and
diversified networks, where users are often anonymousliirghdifferent types of resources.

From a technical perspective, our results in this sectienpaedicated upon the assumption that the limit quantjiigsare
fixed for any subsequends,, or in other words that the sequendes;(t) : t > 0) converge. This is stated more formally in
the following condition.

Condition 1 For eachs, j, the sequenced;(t), u;;(t) : t > 0) are asymptotically stationary ary@;(¢) converges ag — co.

Under this condition, we define
Mg = Jim 7w(t), 7= im 7, ;= lim T(t) (13)

to be the long-term averages corresponding to the quamniiti€d)). Recall that an average upload bandwidth of pegrerating
in isolation isv;;, and that theunallocatedor free average bandwidth i§l — ;) ;.

Theorem 2 Let{I;(¢) : t > 0}, ¢ <n, be mutually independent demand processes of network insglsmenting Allocation
Rule 1 and satisfying Condition 1. Then the average downb@aadiwidth of uset is not only its average bandwidth in isolation
but also fractional portions of the free bandwidth of othesets in the network. That is,

T > vii + % Y (1 — ).
1£i
where the fractional portions are proportional to the ambwi the bandwidth usei shares with the network:
il

Qi = — T~ —-
Y+ Zj;éi Vikjt

Proof: Manipulating Allocation Rule 1 gives

L (O)mi(t)
ia (8) = iz O (14)
1) T7i (1) + 321 D) ma(t)
Under Condition 1this is well approximated (for largeby
(80 as)

Hig (L) = pi— —,
lf) Z.Uji +Zl7éj I ()
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and, furthermore, the expectation jof; (t) asymptotically approachgs;. Since user demands are independent, the numerator
and denominator of (15) are independent, and, taking eapens and applying Jensen’s inequality, we get

— Hi7jlgi . (16)
Hyi + > 15 VI
For the case = j and adding) 141 i 1O both sides, we get

Hij =

T =T+ Y T > it + Y (1= )T (17)
I#i I#i
We complete the proof by expanding; using (16) in (17). ]

Theorem 2 provides important fairness features of our atlon rule. First, it shows that each user has an incentive to
share its bandwidth. The larger the bandwidth she sharativeeito the amount others share, the larger the portionesf fr
bandwidth that she receives. Second, a stromgérwise fairnesscondition holds in the saturated regime — 1 for all 4,
meaning that, in this case, the average amount of bandwigtiraf users share with each other is equal. A formal treatme
of this property follows.

2) Fairness of the network in saturatiorthus far, we have shown that the network provides some gtegram fairness
by allocating larger portions of free bandwidth to userd firavide more dominant portions to the upload of other uséfes
now show that in the saturated regime a strpadr-wise fairnessholds (we will define this more generally in Section IV-E).

Corollary 1 If v; =1 for all ¢ then the Allocation Rule 1 guarantees pair-wise fairnesshsd

T = iz Vi, j. (18)
Proof: Inequality (16) reduces to o
iy = (19)
i
in the considered regime, and holds for @l so thati;; = 7;. ]

A similar result is given in (8), but our system permits sdlbeations.;; and thus no longer requires timn-dominant
condition that each peer’s upload bandwidth is less tharstime of all the other peers’ upload bandwidths.

Note that the pair-wise fairness property of (18) does ndd hogeneral. As previously indicated individual users eajoy
other peer’s free upload bandwidth to increase their totatage upload bandwidth even beyond their own single pser-u
isolated bandwidth.

We next provide a modified allocation rule which seeks to glevairness guarantees even when the network is not sadiirat
at the expense of additional assumptions.

E. Modifications to the Allocation Rule 1

Theorem 2 asymptotically provides a strong incentive farsigo join our network. In this section we provide a motivati
for a modified allocation rule that, under more general ciholé than those of Section IV-D2, further providiesentive to
cooperateas well aspair-wise fairness

We start with formal definitions of these terms, with someilsirities to the well-known Nash equilibrium.

Definition 1 An allocation rule is said to bge,d)-fair if, for all users and for arbitrary small, positive and J, the
average received bandwidth from the network is withiof the average contributed bandwidth to the network (inicigd
self contributions) with probability at leadt — §:

1> 7w — >l < e with probability 1 — 6.
l l

The allocation rule is alsgoair-wise fairif in addition
|i; — Bji| < e with probability 1 — ¢ for all 4, 5.
Definition 2 A useru has anincentive to cooperateith a network of users implementing an allocation rule ey positive

e andd, no other allocation rule for, can provide an additional + ¢ fraction of average download bandwidth with probability
at least1 — 6.
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1) Motivation: We first motivate and provide insight into our modified alltiea rule with yet another hypothetical allocation
rule, based on positive real numbeks .., d,, in the range/0, 1].

Li(t) g [(1 - 51')#52—11@ + 51} , j=i
pij(t) = (20)
i (1= 0:Li(0) S 1ty j#i

Allocation rule of Equation (20) guarantees that ikl user gets at leastu; bandwidth from peef each time it requests
data. The remaining bandwidth is allocated according toattiginal Allocation Rule 1. For the degenerate case whgre:
02 = ... = 0, = 1, each user is guaranteed its isolation bandwidth (namg)y for every time slott, no matter how the rest
of the network operates, and hence there is a strong ineetttijoin the network.

Consider the case of a small network, which has one user vigifn hemandy = 1 — e for small e > 0. In the original
allocation rule this user will allocate some bandwidth sonieighbors, which will entitle him to a large portion of thenlalwidth
of the network in the event that a small number (or none atusérs are requesting data. This asymmetry provides a high
incentive for highly demanding users to join the system]a@kpg its free bandwidth. Of course when only highly derdang
users join the network the gain of each user is reduced andydtem becomes "fair” again, as indicated in Corollary 1.

On the other hand the modified allocation rule reduces theuatraf bandwidth that a high demanding user shares with the
network, hence reducing the probability that the bandwidthshares becomes substantial compared to other, less diagan
users. It follows that if each user is free to choose his évwthen, roughly speaking, highly demanding users would like t
reduce thei® in order to gain more of the free bandwidth of the network, kehe other users would like to keep thé&ihigh
in order to guarantee their isolation bandwidth.

F. Asymptotically(e, §)-pairwise fair Allocation Rule

The observation that the Allocation Rule 1 tends to benegkllyi demanding users, motivates us to consider a modifitatio
that simultaneously provides an incentive to join and coafgeand can be proven to be asymptotically (in the number of
users) fair.

Allocation Rule 2 is similar to the original rule, with the @ption that the time average of the received bandwidths is
normalized by the average demands, with the usual conveofitg = 0. For convenience, we rewrite the Allocation Rule 2
using long term averages notation:

() = 1; (t) T]’;J(t) (21)
Hig(t 7”5
Zl ( )M'n )
Note that we explicitly assume that all average demandg exithe limit, and, furthermore, that these averages arallpc
known a priori to all peers. We demonstrate later how these averages caifidiendly estimated over time.

Theorem 3 Let {I;(¢) : t > 0}, i <n, be mutually independent demand processes satisfyingitond under Allocation
Rule 2. Then
i > pivi + (1 —v)v Zuzau,
I#i
WhereOé»L'l = Wm

The proof is similar to the proof of Theorem 2 and is thus ogalitt

Theorem 3 provides incentive to join the network but is wedkan Theorem 1 due to its additional assumptions on the
demand processes. Nevertheless, we can extend it to prowwipa fairness (Theorem 4), when the number of usegsows
asymptotically large.

For our benefit of analysis, we assume that the demand andviithcof every user do not scale withn, more precisely
wui,vi = ©(1) and, consequently, the network does not considbminant peerwhose bandwidth is larger than the sum of
all the other peers (8).

The large number of users combined with the assumption @peddent demands across users allows us to apply the strong
law of large numbers to the sum

ZI Hll

This sum converges under Kolmogorov’s criterion for indegent non- |dent|callyd|str|buted random variables (32), which
requires the random variables to have finite variang¢eand for the sun}_, 2+ to converge. Clearly, these conditions hold in
our case becausk(t )‘”;L(t) =0(1).

112
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Theorem 4 Allocation Rule 2 is asymptotically (both in time and numinérusersn) (e, §) pair-wise fair for mutually
independent demand processes satisfying Condition 1.

Proof: Note that the Theorem does not specify the precedence o$ytagotics. We will prove the case when we take
the limit over the number of users first. The other case fdl@milarly.
To prove the fairness property we observe that, given theageebandwidth allocations over time, the expectation ef th

denominator in the allocation rule & {Zl Il(t)@ = T;(t). Assuming that there ar®(n) non-zero allocation®;; (t),

we can apply the strong law of large humbers,, for everye 0 > 0 there existny such that

Vn > ng |7z (t) ZI M” | < € with probability at least — 6.

Taking expectations and relying upon Condltlon 1, the alffion rule results in

Hig = [y Iu_” s (22)
Tt

which, for j =i gives that
I — il <e. (23)

Since every peer allocates all of its bandwidth when at lemstuser requests data, the average allocated bandwidtie of t
i-th peer isy;(1 — [[,1 — ) — s, and the(e, §) fairness of the allocation follows. Substituting equati@3) back into
equation (22) proves thg, §) pair-wise fairness property. ]

Note that Theorem 4 provides a pairwise fairness in a morergérsetting than Corollary 1, since it does not require
the network to be saturated. We next show that the modifiettation rule also provides an incentive to cooperate. Hare w
assume that the adversary’s objective is to exploit as méitheonetwork’s free bandwidth as possible. Malicious usesas try
to disrupt but not game the network’s operation are not ctamed in this analysis. Furthermore, we assume that thesatye
cannot predict future user demands; though this assumpligamly holds for memoryless demand processes, it mightadeen
for many practical systems.

Theorem 5 Allocation Rule 2 asymptotically (both in time and numberusérsn) provides an incentive to cooperate for
mutually independent demand processes satisfying Conditi

Proof: To see why the allocation rule provides an incentive to ceaee consider a single user who tries to maximize
his long term average download bandwidth, while the otheraisooperate with the allocation rule. We show that noegat
can guarantee a significant gain in the average downloadvwidtid

Under Condition 1, the allocation rule can be rewritten (fof m):

Li(t) —

'Yj M‘]Z

piz(t) =

t
Zl;ﬁm 'y ( )Nmz

Using the law of large numbers, for an arbitrafy> 0 there exists: > ng such that, almost surely,

Ii(t)— Ij t

F
Zl#m Hii + € + ( ) Hmi B luij (t) = Zl;ﬁmm - + ( ) Hmi (24)

We first explore the left hand inequality, and we note that de@ominator and numerator are independent under our
assumptions. Assuming that the true demand of useran be estimated accurately by the other users, then bygtdkin

expectation and using Jensen’s inequality, the left harduality becomes
Hji _ . Hhi

Hij > i — = pi=——"
T G A it U+ €
and, in the case = j , we have for alli # m,

T >y — €. (25)
We next turn to the right hand inequality of (24) and consither casej = m:
I () Ln()
Ym mi Ym mie

Mim (t) <

=
Dt i — €+ L (t) i 1Zz¢m i — € + _Mmz
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Letting p* = min; p; ande* = i—f’ the independence of humerator and denominator providgs th

Hmii Mo
Fim < [ — <@y ="
et (1)
<(b) ~ Hmi
< i 1y — 2
<(e) Hmi
- 1—e*’

where(® is due to the fact that- —1 >0, () follows from (25), and® is true because we assume tpat= ©(1) for all i.
Finally, summing over all users and under our assumption that, = ©(1), let ., < u,, be the expected bandwidth user
m contributes to the network then for some arbitrary 0 there existh > ng, such that

*

— H *
Mmgl_me* S,Um‘i‘ﬁ

It follows that, under the above assumptions, no matter whatm does he can not gain much more than his own contributed
bandwidth. Combining this result with Theorem 4, we coneldubat usern has no incentive to seek alternative strategies
beyond Allocation Rule 2. This result can be extended to amitefgroup of colluding users, as long as their total bantiwid
remainsO(1).

1) Estimating Average Demand#n practice, the average demands of all users are typicalypaowna priori. Still, it can
be shown that with a simple estimation of the average dempeadaofmed by each peer) Theorems 3,4 still hold, for large
enought.

Consider the following allocation rule (which requires yibcal measurements):

Allocation Rule 3
I(t) ,ujli(t)
TN o i (k)

Hi FT )
A (t)
Zl Il(t) Zz;b I, (k)

pij(t) = (26)

where we have replaceg by the empirical averagé;(t) = % 2;% I;(k), with the typical convention thag =0.

To see why Theorems 3 and 4 still hold (under Condition 1), pathe strong law of large numbers: for large enough
I;(t) < ;. Hence equation (22) still holds, and the rest of the procTlséorem 4 follows. The same reasoning applies also
to Theorem 3.

2) Extensions:n the model discussed so far, the users’ demands are assarbedroadcast to all the peers in the network.
One extension to our model would be to consider networks werelemands can be multi-casted to any desirable subset of
peers. It can be shown that all the theorems except the imeetat cooperate (Theorem 5) still hold as long as the subset
of peers stays fixed through the network’s lifetime. Simp@placel;(t) with I;;(t), and~; with ~;;, for every pair of users.
Theorem 5 does not hold in this case, since the adversaryreak the network int®(n) subnetworks in which the law of
large numbers does not hold anymore.

G. Practical allocation rules

Unfortunately the allocation rules discussed need someaking for practical dynamic networks. Due to the long term
averaging, changes in network capacity and demand with &imereflected very slowly in the sharing protocol. Consider,
for example, the event of adding a new user to an existing orétwising Allocation Rule 1. This user will face a long
"initialization” stage, during which it will contribute hits bandwidth to the system while accumulating enough ditfeto
get its share of the network’s free bandwidth. The situaisoguite different when the distributed version of AllocatiRule 2
is used (Equation (26)). Here the lack of credit is canceletvath the lack of historic demands. In fact, the networklwil
tend to welcome new users with a surge of free bandwidth margfet than their contributions. Although, this warm wele@m
may be interpreted as additional incentive to join the systasers may exploit this behavior to receive much more battdw
from the system by bursting their demands while keeping tlogig term demand’s average constant.

To reduce the surge of free bandwidth, we set the estimatéiseoinitial demandy to 1 (.e., Zf;lo Ii(k) =t for users
joining the system at timé). Note that both Allocation Rules 2 and 1 become identica¢mvi = 1, so that when a new user
enters the network it will initially build credit in as in Adcation Rule 1, but quickly adapt as the estimates of theageer
demands become more accurate. Clearly, the initial valueyfe irrelevant for the asymptotic (in time) properties of the
network.
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(a) Ten users request a large file from the system. Their dmawnl (b) A peer that contributes while not using the network’s re-
rate converges to the upload rate (U/L) of their peers. sources gets rewarded later. A peer that joins later without
contributing earlier suffers comparatively lower dowrdoates.

Fig. 3. Convergence of the proposed approach and benefitnifilmating bandwidth to the system.

V. SIMULATIONS AND EXPERIMENTS

We have implemented a discrete time simulator and an expatahprototype of the p2p system described in Section Il
for the purposes of demonstrating our claims. The resuieesented in the following subsections, and are dividestino
main groups. In the first group, we use our discrete time sitouto demonstrate the theoretical claims of Section 1VséAsh
the simulator assumes a simplified traffic model, where isequests bandwidth for download at time-slatith probability
~;, independently of other users and of the history of the sysi¢ slot¢. In the second group of results, we present the
effectiveness and implementation efficiency of randomainending. Finally, we provide experimental results of orotptype
system and simulation using a more realistic traffic model.

A. Allocation Rule 1

Our simulator permits nodes to initially allocate any feédsiamount of upload bandwidth to their peers, although paciic
experiments assume small, equal, non-zero initial cantiohs between peers. In our experiments, each peer ra@dts
upload bandwidth once per second, and our graphs were setotfer a running average of seconds.

1) Fairness and benefitin our first experiment, ten users request large files fromsystem at the same time, but the
upload capacities of their corresponding peers range fraibps — 1000kbps. Figure 3(a) shows the download rate available
to the user of a peer as plotted against the time in secondsalljnno one has downloaded any content from the other
peers and the peers split their bandwidth randomly amongtlaéir requesting peers. All users demand bandwidth sfaatin
time 0, although their corresponding peers are servingfgrent rates {00kbps — 1000kbps). The distributed system quickly
converges to a fair allocation of users receiving what tlegrésponding) peers contribute.

Our next experiment demonstrates that there is an incefttiveeers to contribute even when their associated usersadre
downloading from the network, as illustrated in Figure 3()this experiment, peeb steadily contributes bandwidth to the
system, but peer does not contribute bandwidth for the fil€t00 seconds; neither pe@rnor peerl request any files from the
system during the initial000 seconds, and, thus, other peers take advantage ofjseenused bandwidth to get a download
capacity that is greater than their upload capadisy.,(1024 kbps). At timet = 1000 seconds, peet starts contributing to
the system and both peebsand 1 start requesting large files as well. We see that Gserceives better service than uger
because of the credited contribution of péer

Our next few graphs demonstrate the benefits of the propogsens to all collaborating peers, commensurate with
Theorem 2. For these graphs, we simulate a three peer netwaodisting of users that have encoded and distributed home
videos to all three peers. The users stream their home videssme remote computer fa2 randomly chosen hours in a
day, meaning that users downloaded for half of the day in k&uf 1 hour.

Figure 4(a) shows a case when peers 0, 1 and 2 have upload idémelng = 256kbps, u1 = 512kbps, pe = 1024kbps
respectively, and their duty-cycles correspond to thesam#anon-zero download capacity. Each peer is available toadlp
to other peers throughout the 24 hour period, and we seehlsatdooperation benefits each user with a download capacity
greater than he would receive in a single-user environnwraded areas indicate gains).
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Rule 1.

Fig. 4. 3 peer networkyo = 256kbps, p1 = 512kbps, p2 = 1024kbps.
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Fig. 5. Dynamics of Allocation rule 1

Figure 4(b) shows a case when peers 0, 1 and 2 have upload iémslng = 256kbps, u1 = 512kbps, e = 1024kbps
respectively, and their duty-cycles correspond to thesaodaon-zero download capacity. Each peer is available toadpto
other peers all through the 24 hour period, and geenly starts contributing to the system after the first threarh.

Two interesting artifacts occur: first, we notice that pées still able to get some service from the network in the fikstith
because peet has not yet requested anything from the network and is isjiits bandwidth between pee®sand 1, being
oblivious to the fact that peer is not contributing (this is corrected in tl#%3 hour time slot). The second artifact concerns
the 3-4-hour time slot, in which peet is penalized for his non-contribution to the system, thotlgh penalty decays by time
t = 4 hours, as all peers start benefiting from the contributediwédth. Note that although Peer 2 is a dominating peer (
e > uo + p1), the system converges to a steady state.

In order to test the dynamics of the peer-wise proportioppt@ach, we simulated a ten peer network with initial uplcstds
of 1024kbps per peer. All users request service throughout. At tisel 000 seconds one peer’s upload bandwidth contribution
drops to512kbps, and there is a consequent decrease in its downloadvisihdas shown in Figure 5(a). Interestingly, the
other peers quickly recover the lost service amongst thiweseThen at time = 3000 seconds, this peer’s upload bandwidth
contribution is restored t@024kbps and the associated user’s bandwidth is restored aoghyrd

We should note that the system has slow dynamics, which coeldpeeded up by disproportionately weighing newer
contributions over older ones. Employing an exponentiaktidecaying weight function on bandwidth utility receiveg &
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Fig. 7. @12 andmz1 as a function of time for a simulation of 40 users, with diffier allocation rules.

peer will speed up the dynamics of the system (see for exarkfare 5(b)); we leave a thorough analysis of this decay for
future work.

B. Allocation Rules 2 and 3

In this section we compare the different allocation rulestoth static and dynamic scenarios. We focus here on asyimpto
(e, 9)- fairness and the effects of newly joint users. We assumepparative network, where the peers’ capacities and average
demands are arbitrary but normalized within raf@el].

Figure 6 showsunfairnessmeasure defined as the ratio between the average bandwadiive® to the one contributed
minus 1, namelyi;l — 1. These measure should be close to 0 for all users in a faironktWhe unfairness measures are
calculated for a simulation of a network d@f users with arbitrary capacities and average demands #ft@00 time slots.
Clearly, Allocation Rule 3 achieves better fairness rasfdt all users.

Figure 7 shows the mutual average bandwidths of users 1 asdaZumnction of time. All allocation schemes have a similar
convergence behavior, yet Allocation Rule 3 achieves bestteng fairness results, ags andzz; tend to converge.

We next compare some of the dynamic properties of the diffeabocation rules. In the dynamic scenario, a user withhbot
average demand and capacity($ is added to a network of0 users afterl000 time slots. Figure 8 shows the behavior of
the different allocation rules for the existing user (usgadd for the new user. The impact of the added user on therexist
users is small, as can be observed in Figure 8(a), where #rages received bandwidths for both static (no user is adaiedi)
dynamic scenarios are shown. The differences betweenlteatbn rules are evident in Figure 8(b), which shows therage
bandwidths of the new user. Allocation Rule 3 provides adeigible excess bandwidth, while Allocation Rules 1 and 2vsho
a monotonic convergence. It can also be observed that Aitoc&ule 2 converges more rapidly to the contributed baddwi
as expected.

The encoding and decoding operations are essentially time,sthe latter using the inverse of the coefficient matrix in
Equation (1), so we only present decoding times in our result
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(a) Bandwidth as a function of time for user 1 for different  (b) Bandwidth as a function of time for the newly added user.
allocation rules. The effect of the new user is shown by trshdd
lines.

Fig. 8. Bandwidth as a function of time for different alloicat rules. At time slot 1000 a new user is added to the network.

The number of messagdsrequired to encode 1MB worth of data depends on different fites and message lengths.
Thus, for example, if we used finite field of size= 232 (i.e., 32 bits/symbol) and a message length= 2! = 32768,
then we would havé: = 8 messages. This number is important because it defines theokithe 8 coefficient matrix. The
number of field operations required to decode messages iatibqu1) isO(mk? +mk). A very largek would also make the
inversion of the coefficient matrix slow(k?) field operations), although in all our experiments the vaifié was reasonably
small and the matrix inversion time was negligible.

From Table | it is apparent that lower valueskofield faster decoding times. What is more important is thatakes sense
to use larger field sizes to further redukeeven with the additional overhead of more expensive fieldrajons; however,
reducingk indiscriminately would be problematic in maintaining faéss due to quantization errors. Table | shows that our
example ofg = 232 andm = 32,768 can be decoded at the rate bf/ B/s. The bottleneck at this speed will probably be
the ISP-offered download rate rather than the computationgload capacities of the various peers.

V1. MPLEMENTATION

A prototype system was developed that combines randonrlicesdes, a checksum using MD5 (33) at the user’s end, and
the allocation rule at the peer's end. The implementatiofieigible, so that the peers could be distributed over philgica
different machines or grouped on one machine. Files arel@ivinto 1 MB sub-files and then sub-divided irgd\/lB encoded
chunks and stored on the peers. Users request each subfilieliradly from all peers. After all sub-files are downloadiaty
are decoded and an MD5 sum is computed to verify that decoslaggsuccessful. Any sub-files that did not decode properly
due to linear dependence are re-requested. This impletitentssumes that initialization (encoding and trandgfigriof files
to the peers) is completed before users request files. Itigeabis means that files cannot be added or modified afteersys
start up without a complete reinitialization.

While our prototype implementation attempts to mirror thedretical model, practical issues required small dewiati
When peers allocate data, there is a minimum number of byrescein be realistically allocated. This means that a user
that has contributefi;; << r; may not receive bandwidth from usgr In this case uset is not being credited for all of its
shared bandwidth and will receive less bandwidth from thivokk than it should in the theoretical model of Section IV-A
The theoretical model also assumes each user needs all ilimdlocated by the network, but in practice this is not thse.

If a user obtains enough data from the network to decode, dieemaining allocated bandwidth is superfluous and coeld b
ignored (and, in fact, is not credited by the receiving peer)

Our results were collected when all peers are located at ar&station, so that their total upload bandwidth is upper
bounded by the workstation’s upload bandwidth. The userg wstributed over physically different terminals. Thetotype
implementation was initialized to simulate a network of cgenclients requesting and downloading mp3 files, randombsen
from a library of 3 MB files. The experiment had 20 peer/usérspand ran for200, 000 time slots. To simulate actual requests,
users were configured to request files from the network agoptd a probability distribution fitted to data of inter-qygimes
for a p2p network (28). This distribution represents theetipetween individual queries (search requests) on activeemions
for peak use in North America. The model is applicable to thiperiment if it is assumed that each query represents a file
request.

Figure 9(a) demonstrates that for both our schemes, evetyganed more than its isolation bandwidth in each time slot
that a file was demanded. This verifies the theoretical cldimuo system providing a natural incentive to join

In terms of fairness Allocation Rule 2 was found to be supesiith 0.0963average unfairnesdefined ast >, | -1
compared to 0.13 average unfairness of Allocation Rule $pite of the implementation deviations from the theordamadel
as well as the inaccuracies in the estimations of the avetagends.
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Fig. 9. Prototype system simulations for different allozatrules.

q \L! m — 214 215 216 217
GF@Y) | 58.8 | 30.05] 14.99| 7.57
GF@®) 17.52| 8.85 | 4.46 | 2.29
GF@2'%) 553 | 281 | 142 | 0.72
GF@3%) | 196 | 1 | 0.51|0.26

TABLE |
DECODING (ENCODING) TIMES IN SECONDS

We also gathered preliminary data on the dynamic propesfiesir prototype implementation with Allocation Rules 2 &hd
In our dynamic scenario a new user (client and peer) are ambdénd network aftei0, 000 time slots; the results are shown in
Figure 9(b). Here the slow process of building credit is ewidfor the new user when Allocation Rule 1 is used. In contras
if Allocation Rule 3 is used, the new user tends to receivergelamount of bandwidth from the network as its demand is
estimated to be near zero. The middle ground is using AliocaRule 3, with the estimated demands initialized to 1. This
scheme removes the initial surge seen when a new user jansetivork, but reduces the “credit buildup” stage seen when
Allocation Rule 3 is used.

We next demonstrate the efficiency of the random linear gpdamponent of our system (and the corresponding decoding
complexity). In order to establish the speed of random lirealing and infer the maximum throughput when the bottl&nec
is the decoding computation on the user’s computer, we haile & simple encoder/decoder following Equation (1) using
Victor Shoup’s number theory library (19) in conjunctiontivithe GNU multi-precision library (GMP) (20). We tested our
system on 1MB of data for various values of message sizdinite field sizeq, and corresponding number of messages
into which the 1MB of data is split. The experiments were parfed on a Pentium 4 dual processor workstation running the
Linux operating system. Fom = 232 and field sizeq = GF(23%), decoding the 1MB (8Mb) data takdssecond. At this
speed the bottleneck will probably be the download link indatband connection (typically less than 8Mb/s), rathen tine
decoding speed of random linear codes.

VII. CONCLUSIONS

In this paper we have discussed several distributed resaltocation schemes relevant to p2p systems, distributied g
computing, and other resource sharing scenarios. We haverddrated the utility of our approach through a peer-terpe
application that enables users to overcome slow uploadviiditd bottlenecks when remotely accessing home server tata
our approach, several peers volunteer to disseminate gieedecontent, thus multiplexing their upload bandwidthsoider
to fill up the downloading user’s data pipe. This model fitsyveell with the typical user pattern of short periods of heavy
link usage interspersed with long idle times.

To address issues of distributed access, our system stdogmation with the aid of random linear coding. This apmioa
allows a user to reconstruct his file from a sufficient numbeemcoded packets, regardless of the source. We have also
experimentally shown the computational feasibility ofngstandom linear codes for large files. Our proposed apprpashdes
a natural incentive for peers to voluntarily join and co@perwithin our framework. Moreover, our system is asympsily
fair, in the sense that each user benefits from unallocatbrie bandwidth in proportion to its contribution to the . As
such, our system is also resilient to adversarial or malicollusion, guaranteeing fairness even when some pearstdese
the prescribed bandwidth allocation rule or attempt torfete with others’ access. These analytic conclusions weligidually
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confirmed through a variety of simulations, including a dated home-video streaming network as well as experimemts o
our prototype implementation of the proposed system.
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