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Fair and distributed peer-to-peer allocation of a
common, refillable resource

Sachin Agarwal, Moshe Laifenfeld, Andrew Hagedorn, Ari Trachtenberg and Murat Alanyali

Abstract

We consider the general problem of distributed and fair peer-to-peer (p2p) allocation of a common, refillable resource.This
problem recurrs in a number of scenarios, for example grid computing, content distribution, Internet Service Providerservice
sharing, and file sharing over asymmetric channels. We present several distributed schemes for this allocation problem, and
show that these schemes guarantee two key properties: (i) asymptotic fairness, in that (even maliciously colluding) users are
proportionally assigned resources corresponding to what they contribute; (ii) natural incentive to join and cooperate fairly in the
system. We demonstrate the practicability of our approaches on a prototype p2p file sharing system designed for typical residential
internet connections, in which download capacities often significantly exceed upload capacities. Our implementationshares file
data when communications are idle using random linear codes, so that, when needed, an end-user can download a file from several
sources at a higher data rate than his home computer’s uploadcapacity. We present experimental results that support ouranalytical
guarantees.

A version of this article appeared as:

• S. Agarwal, M. Laifenfeld, A. Hagedorn, A. Trachtenberg andM. Alanyali, “Fair and distributed peer-to-peer allocation
of a common, refillable resource”, ACM Journal on Parallel and Distributed Computation, 69:12, pp. 974-988

I. I NTRODUCTION

In this paper we focus on a variation of the distributed resource allocation problem, which has a variety of applications,
including bandwidth sharing and content distribution in peer-to-peer networks, service sharing among local InternetService
Providers (ISPs) and grid computing, to name a few (36; 27). Our problem is formulated as follows: a heterogeneous collection
of peers demand the occasional use of a given resource, whicheach of them individually have through a limited, but refillable,
allotment.limited and refillable resource, Each peer’sexperience, which it tries to maximize, depends on the time needed to
obtain the resource upon demand. As such, when a peer is operating in isolation, its experience is limited by its resource
capacity in a straightforward manner. However when peers team-up to form a network, each peer could potentially enhance
its experience by utilizing unused capacity of other idle peers (see Figure 1).

A. Application 1: grid computing

To take a concrete example of our model, consider the case of grid computing. In this scenario, a large number of stand-alone
computers are connected via a network, such as an Ethernet, in order to perform massive computations or process a large
volume of data in a distributed manner (35). In the context ofour model, each computer has a limited and refillable CPU
processing capability by virtue of the fact that each CPU canperform one new task at each time step. The computers spend
most of their life idling (and avilable for peers on the network), and the experience of a particular user relates to the time
needed to perform his task when needed.

To date, most grid computing projects are operated in a controlled environment over privately-owned networks (e.g.,Google’s
data-centers, NSA, NASA). Alternatively,volunteercomputing grids are typically dedicated to specific research problems (e.g.,
distributed.net, SETI@home), and they are thus controlledand programmed by only a few peers. However, one may readily
envision grid computing in a peer-to-peer (p2p) environment, allowing peers to share their computer resources over a public
network such as the Internet for individual benefit. Such networks, however, would have to attract participating peers (with
typically idle computer resources) by providing an incentive to join the network. In addition they would have to provide
guarantees even in the presence of malicious peers trying todisrupt or manipulate the network’s performance.

B. Application 2: File sharing

Another application of our allocation model concerns p2p file sharing over asymmetric channels.
Many users connect to the Internet through asymmetric linksin which the upload transfer capacities are significantly smaller

than download capacities. Internet Service Providers (ISPs) employ this asymmetric design based on the premise that casual
Internet use mostly involves downloading content from a relatively small number ofcontent providers, such as large data portals,
mail servers, web servers, or the like. For example, carrier-less amplitude/phase (CAP) DSL allocates transmission frequencies
between25KHz and 160KHz for uploads, and frequencies from240KHz to 1500KHz for downloads, making downloads
significantly faster than uploads. Asymmetric channels abound in various other practical scenarios, including analogmodem
dial-up, wireless cellular Internet connections, and heterogeneous sensor networks.
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Fig. 1. Examples of the general resource allocation model.

Recently the ‘mostly download’ profile of users has started to change. Users now commonly have access to devices like
digital video cameras, high resolution scanners, high capacity sound recorders, and other audio/video devices that capture large
volumes of digital data. The fast pace of advancement in persistent storage (hard-disks, flash memory) further enables users to
generate and store large volumes of diverse data on their home computers or personal web sites. This is a far call from PCs
even ten years ago for, when the biggest storage requirements for home users were typically from application programs orthe
operating system - data that did not have to be transferred when users worked remotely.

This change in users’ access profile causes upload speed to become a bottleneck for typical remote access. Specifically, if
a user wishes to remotely access data stored on a home computer, such as a song, image, or video, his access rate is limited
to the minimum of the home computer’s upload capacity and theuser’s current download capacity at the remote location. The
asymmetry in upload and download capacity thus results in extremely poor download channel utilization at the remote host.

Resource allocation can be utilized to correct for such channel assymetries, bypassing the ‘bandwidth: use it or lose it’
service model offered by commercial ISPs. As such, users could pre-distribute important files throughout their network, and
then share bandwidth (the common, refillable resource) in order to improve individual file access on demand. The network
would have to maintain and reimburse ‘credit’ for contributions to the network in a fair and robust manner.

C. Goals

Our goals in this work involve developing distributed resource allocation schemes and demonstrating, by analysis and
simulations, that they have the following properties:

Fairness: Idle resources are redistributed in proportion to the resources contributed by each peer to the network.
Incentive: There is a natural incentive for peers to participate and cooperate with others in the network.
Distributed operation: Only local information is needed in the implementation of the allocation scheme (i.e. no control

information is exchanged and there is no central authorityx).

D. Outline

Throughout this work, we shall use example 2 above, concerning p2p file sharing, as a concrete, novel application in
which to demonstrate our algorithms. In Section II we mention some of the related work in the fields of game theory, p2p
systems, grid computing, and coding theory, and contrast these with our approach in Section II-A. Thereafter, we formally
introduce the details of our proposed bandwidth sharing approach p2p networks in Section III. In Section IV we analytically
prove the fairness of our system, which are more generally applicable to our broader problem, and show that it possesses a
natural incentive for peer contributions. We simulate various aspects of our system in Section V to demonstrate its fairness
and collaboration features, including specific cases wheremalicious peers attempt to gain unfair advantage from the system.
We demonstrate the practical application of our distributed resouce allocation schemes via our implementation of the p2p
system in Section VI. We also present experimental results on the encoding/decoding performance of random linear codesto
demonstrate their practicability for the proposed p2p application. We conclude our findings in Section VII. Acknowledgements
are provided in Section VIII.
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II. RELATED WORK

Many of the studies into distributed resource allocations schemes and grid computing in particular consider market place,
auction and bidding models, which require exchanging messages (bids) among peers (37; 34), and in some cases require
some sort of hierarchy to establish mark place policies (34). These approaches are usually assume reasonable peer behavior,
namely peers try to optimize some utility function, and therefore have no guarantees in the presence of malicious peers trying
to disrupt the normal operation of the network. Our approachis geared toward a simpler barter economy scheme (38), and
requires neither a hierarchy nor overhead in the form of control messages exchange among the peers.

Peer-to-peer (p2p) systems are typically used to distribute content on the Internet, and it is estimated that a major portion
of the bandwidth available on consumer ISP networks carriesp2p content (4). P2p services make scalable content distribution
possible by utilizing peers’ upload bandwidth to service other peers’ download requests. It has been shown through analysis,
simulations and measurements (9; 11; 8; 7; 6; 5; 10; 12; 13) that the p2p content delivery model scales gracefully with user
demands for heterogeneous p2p networks. In the remainder ofthis section we describe some of the literature that is relevant
to the different aspects of our proposed system, ending witha brief explanation of the novelty of our approach.

Content Distribution Recent works in p2p networks concentrate on mitigating non-cooperative behavior of peers by adding
incentive schemes. Due to scalability issues most of these schemes are distributed, and require only local informationthat
is readily available to each peer. Similar to our scheme, themost common schemes are based onBarter economy, where
peers offer their bandwidth to others according to the amount of bandwidth allocated to them (2; 21; 22; 23). Although
adding incentive may increase cooperation among reasonable users, namely those users that try to optimize their resources,
it usually has no guarantee against malicious peers that want to disrupt others’ usage of the system or gain unfair advantage
at the expense of other users, and additional measures are required to reduce their effect on the network. This conclusion
was recently explained in (24) where the authors explained several exploits for a selfish Bittorrent user to achieve an unfair
advantage from the system.

The idea of sharing disk-space for data backup and downloadsis not new. For example, the Folder-share system (1) lets
users share their documents with other users. In this system, however, users only download a file from one peer, thus limiting
their download speed to the upload speed of the peer. In addition the system assumes that peers do not cheat others when
it comes to offering bandwidth. A different system, the Oceanstore project (3), provides a large Internet-scale data storage
solution for data security and reliability using erasure codes.

Coding Random linear coding (15; 17; 12) has been used for achievingthe network coding (14) min-cut bound on multicast
capacity in networks. The authors in (17) proposed random linear coding as a way to avoid the coupon collector’s problem (16)
in a p2p storage system. Their application considers the case whenparts of the same file are encoded and kept on separate
hosts and then rebuilt. While our system can also operate in this fragmented storage mode, our emphasis is on fairness and
the ability to beat the upload link bottleneck.

Analysis Much of the work on p2p systems characterizes fairness and incentives for peers to cooperate by simulations,
measurements and experiments of p2p systems rather than actual analysis, probably because of the complexities arisingfrom
the size, chaotic nature and heterogeneous conditions thatcharacterize real systems (e.g. (21; 22; 23)). Nevertheless, there has
been some recent queuing theoretic analytical work (11) that uses a queuing approach to study scalability and resilience to
freeloaders in p2p systems. A game theoretic approach has also been applied to the related problem of parallel downloading (i.e.,
downloading a large file from several servers in parallel). In (25) this problem is analyzed using non-cooperative game-theoretic
tools. However, this approach cannot capture the effects ofmalicious users.

A. Our approach

Unlike many existing p2p systems that are built for discovering and disseminating popular content, our system attemptsto
shareunused bandwidthamong system subscribers. Users who contribute bandwidth to the system are rewarded with higher
instantaneous bandwidth availability when they need it. Inall cases, users are (asymptotically) assured that all bandwidth they
share with the network will be returned to them.

Our system also differs from typical p2p file-sharing systems like (2; 12) in that it is used by remote users, thus differentiating
between users and network peers. More precisely, when a useru wishes to access her content (which has been distributed
among the network peers off-line), she downloads content from multiple peers in the network, (possibly) including her own
home computer. This subtle difference means that our systemno longer needs the ‘non-dominant’ condition in (8),i.e., that
the upload capacity of every peer is necessarily smaller than the sum of upload capacities of all other peers. This, in turn,
means that our system does not require a symmetric instantaneous ‘tit-for-tat’ approach to guarantee fairness (i.e., the system
intrinsically evens out contributions asymptotically).

Our proposed system comprises ofn peers that collaborate to distribute other peers’ information using their spare upload
bandwidth. With each hosti we associate a corresponding available upload bandwidthµi and available download bandwidthλi.
Ideally, the upper bound on the download bandwidth available to peers is

∑

i=1...n µi, although, in practice, a user accessing
the system has a limited download bandwidth that maybe smaller than the overall peer bandwidth in the system.
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Fig. 2. The model of the proposed application. Peers are typically connected to the Internet by low bandwidth upload links and high bandwidth download
links. Useru owns peeru but downloads content from the peer network at some remote computerd, ideally at download rate more thanµu.

We show a pictorial representation of one such network in Figure 2. It should be noted that a useru can always download
content from his own peeru in parallel with any peerj that might have copies of the content. This is not the model inmost
p2p content sharing networks, simply because a peer would not download content from itself (which it already has). The
subtle difference is an important distinction between other p2p networks and the proposed application because it allows for
the removalof the ‘non-dominant’ condition of the analysis presented in (8): µk ≤

∑

i,i 6=k µi, ∀k = 1 . . . n. Removing the
non-dominant condition also results in the removal of the symmetric barter or ‘tit-for-tat’ requirement for fairness.As such,
the contribution of peerj to u might not equal the contribution of peeru to j; only both peer’s overall contribution to the
system is made equal through the bandwidth allocation rulespresented in this work. Thus, as compared to Bittorrent, our
application maintains a longer term memory of prior bandwidth contributions as described in Section IV. In addition, unlike
Bittorrent, the number of seeds (peers with relevant blocks), does not increase during the lifetime of a download session in
our application because the downloaded content is unique for each user.

Because peer data will be cached on many other (possibly untrustworthy) peers in our application, our application should
use data encryption to protect peer data. Our prior work on this topic (26; 27) explained how the inherent encryption provided
through random linear codes could be used in our scenario. Inthe rest of this paper we will assume that the data security
aspects are addressed through these mechanisms will instead concentrate on distributed resource allocation schemes,fairness,
and incentives for inducing cooperative behavior between peers. In particular, we extend our work in (26; 27) to includenew
(bandwidth) allocation rules that provide more generalized incentives to cooperate, as well as stronger pair-wise fairness. In
addition we present a real implementation of the proposed system and characterize the performance of the proposed allocation
schemes through this implementation. The Section (SectionVI) on the implementation also discusses some practical aspects
of implementing the distributed allocation schemes in a real system.

III. SYSTEM DETAILS

We next describe some implementation details of our system.Throughout this description we assume that each useru
corresponds to his peeru on the network (e.g.,his home computer).

A. Initialization

Our system is initialized with each peer disseminating its data among other peers using a random linear coding approach
motivated by the work in (17) (which applies coding to p2p storage applications). For the purposes of our analysis, we assume
that each peer has an infinite amount of disk space so that there is no utility cost for caching other peers’ data. Our particular
extension of random linear coding efficiently provides secrecy, authenticity and availability of the disseminated data, as we
shall see later in this section.

Consider a long fileX consisting ofb bits to be disseminated in ann-peer network. In the standard random linear coding
approach,X is split into k chunks{X1, X2, . . . , Xk} with each chunk mathematically represented as anm-element vector
with components in a finite fieldFq of size q = 2p for somep, i.e., Xj ∈ F

m
2p with mpk = b. This formulation effectively

translates fileX into k vector chunks. These vectors are, in turn, coded intonk message vectors{Y1, Y2, . . . , Ynk} whosei-th
componentYi is computed as

Yi =
k
∑

j=1

βij ·Xj , i = 1 . . . nk, (1)

where eachβij is randomly chosen fromFq using a cryptographically strong pseudo-random number generator (such as is
provided in (19)) seeded with a cryptographic hash ofi, and a secret key known only to the encoding peer. By choosing
β’s at random and appropriately tuning parametersk, p, andn, we can insure that thek-tuplesβi = [βij , j = 1 . . . k] are
almost surely linearly independent (18). A deterministic guarantee of linear independence can be provided through testing at
the encoding peer.
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Our encoding is similar to the encoding proposed in (15) for network coding-based multicast (14), with two important
technical differences:

1) rather than transmittingβ’s as message headers, we use them as a secret key, as explained in (26; 27);
2) rather than having peers transferring linear combinations of their information to others on the network, peers transmit

exactly what was uploaded to their storage area.

The first difference guarantees that no peer can decode a message stored on its system unless it correctly guesses thek-tuple
βi (and knowsthat the guess is correct). The second difference ensures that peers do not need to perform any computation
when messages are requested from them; they simply forward what they have stored.

To complete the initialization phase, each plain text message ID i is appended to theYi’s of (1) and these encoded messages
are then uploaded to then participating peers (up tok messages per peer), where they are stored.

This entire initialization phase is executed when free upload bandwidth is available or when new peers join the network.If
peeru has low upload bandwidth and/or many files to share, then thisinitialization process may take a long time; however, the
file contents are always still available directly from peeru (as in the standard client-server model), even during the initialization
phase.

Some peers may choose to conserve storage space by storingk′ < k messages. In this case peers will not have all the
information needed to decode a given file (i.e., there would have to be other accessible peers with at leastk− k′ messages to
make up the deficit). We wish to emphasize that normally peerswill download concurrently from many other peers in order
to speed up data transfer even if any or all of the peers holdk blocks each.

B. Accessing data

To decode a file, a user first requests a total ofk messagesYi1 . . . Yik from multiple peers, preferably in parallel. Peerj
transmits to the user at any rate up its available upload capacity µj ; we will show in Section IV that peerj has a natural
incentive to provide a fair amount capacity to useru, and that useru is guaranteed a certain favorable minimum capacity from
the overall network regardless of peerj’s specific behavior. In practice, the rate at which useru receives data fromj will
also be limited by the user’s download capacity, TCP flow control and fragmentation, and various network-level fluctuations,
although we ignore these effects for the purpose of our analysis in Section IV

Once useru has received allk requisite messages from the network, he broadcasts astop transmissionmessage to all
contributing peers. At this point, the user can multiply thevector of received messages by the inverse of the appropriate square
sub-matrix of the coefficient matrixβ = [βij ] to retrieve the fileX ; the rows of the coefficient sub-matrix are determined from
the IDs of each received message, as explained in Section III-A.

IV. FAIRNESS AND INCENTIVE TO JOIN AND COOPERATE

In this section we introduce an analytical verification of our system, with particular attention to itsfairnessand theincentive
it provides users tojoin andcooperatewithin the network. To this end, we study the steady-state behavior of two bandwidth
allocation rules. Both rules are distributed in the sense that they require only local information be readily availableat every
peer, thus avoiding the complexity of building hierarchical networks and/or centralized resource brokers.

Our first allocation rule provides participating users withan incentive to jointhe network. The user is guaranteed to receive at
least herisolationbandwidth from the network, on average, but potentially much higherinstantaneousbandwidth. Furthermore,
this provision is guaranteed in the presence of adversarialusers colluding to gain more bandwidth from the network. We show
that the allocation rule isfair in the sense that the users are allocatedfreenetwork bandwidth proportionally to their contribution
to the network.

Our second allocation rule provides a stronger symmetric barter of asymptotic average bandwidths, or atit-for-tat relationship
between every pair of users, when the number of independent users in the network grows large. Moreover, when the users’
download demands are memoryless and most of the network is cooperative, then no other allocation rule can provide an
individual or group of colluding users much better average download bandwidth. As such, minority groups have no incentive
to seek alternative rules, thus providing users withincentive to cooperate.

Section outline In the next section we formalize our theoretical model, together with its definitions and assumptions.
Thereafter, we motivate our specific approach through analysis of a similar system based on theglobal proportional fairness
scheme of (8), which we show to provide incentive for user deception. Sections IV-B, and IV-C discuss our first allocationrule,
proving its key properties: the incentive to join the network and fairness. Sections IV-E and IV-F focus on modificationsthat
yield the second allocation scheme, which providespair-wisefairness (i.e., a tit-for-tat relationship) and incentive to cooperate,
but requires each peer to accurately estimate average user demand. We complete our discussion in Section IV-F1 and IV-F2
with a method for estimating these average demands that asymptotically (in time) achieves the desired fairness properties.
Finally, in Section IV-G we discuss practical implementation aspects of our approach, including the system’s dynamic response
time.
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A. Theoretical Model

Our formal model considersn peers sharing their upload bandwidths in a time-slotted fashion, with peeri corresponding to
a remote owner, useri. We further denote the individual upload bandwidth of peeri by µi and, for simplicity, we ignore the
users’ download capacities, assuming thus that the instantaneous download capacity of any user is larger than all the peers’
upload bandwidths combined. We refer to the collection of all n peers and users as anetworkor systemand assume that they
are all interconnected and that the users’ demands are beingbroadcast to all network peers.

We also assume an arbitrary demand pattern for each user, modeled with a binary indicator random variableIi(t) that is
1 if and only if useri requests bandwidth at timet. In the most general case,{Ii(t)}t≥0 are dependent stochastic processes,
which we termdemandprocesses. In some parts of our analysis ,we will assume thatthe long-term time averages of these
processes converge to

γi = lim
t→∞

1

t

t
∑

k=0

Ii(k),

and, furthermore, that the processes are ergodic, meaning that these time averages converge to their statistical expectations.
Note that if useri operatesin isolation and downloads only from its own peer, then its download speedis limited by µi per
request, which corresponds to a long-term average capacityutilization of µiγi per time slot.

1) Allocation Rules:Our proposed bandwidth allocation schemes are provided as expressions forµij(t), the upload band-
width that peeri should devote to userj at slot t:

Allocation Rule 1

µij(t) =
µi

∑n

l=1 Il(t)
∑t−1

k=0 µli(k)
Ij(t)

t−1
∑

k=0

µji(k), (2)

Allocation Rule 2

µij(t) =
µi

∑n

l=1
Il(t)
γl

∑t−1
k=0 µli(k)

·
Ij(t)

γj

t−1
∑

k=0

µji(k), (3)

with some arbitrary small positive initial values forµji(0). Note thatµij(t) is generally non-negative, and can be non-zero at
time t only if Ij(t) = 1, that is userj has a request at that time.

Allocation Rule 2 requires each peer to have knowledge of allthe users’ average demands,γi, which in general is unavailable
locally. In section IV-F1 we will discuss how to estimateγi locally at each peer while maintaining the network’s asymptotic
(in time) properties.

In contrast, Allocation Rule 1 relies solely on local measurements taken at each peer, and it does not require any transfer
of information among the peers or users, a possible point of adversarial attack. In fact, this rule does not even require that
the average demands converge, and we show within this general framework (i.e., Theorem 1) that users are provided with
an incentive to join the network. Under a stronger assumption that demand processes across different users are mutually
independent, we can prove even stronger properties relatedto collusion attacks. This independence assumption is reasonable
for a cooperative, large, and diversified network, as demands are generated by independent individual users.

In Section IV-F we provide an asymptotic analysis of Allocation Rule 2 under the assumption that the network involves
a large number,n, of non-dominant users (8) and that the average demand and bandwidth of each user does not scale with
n, meaning thatµi, γi = Θ(1). Adding a further assumption that demand processes are memoryless, meaning thatIi(t) is
independent of{Ii(k) : k < t}, we further show in Theorem 5 that, if most of the network is cooperating then no other
allocation rule can guarantee a significantly larger average bandwidth for a single adversary or a small group of colluding
users.

In the next section, we provide some motivation for our specific choices of allocation rules by analyzing the benefits and
deficits of an existing sharing scheme.

B. Motivation

Let us consider first the case of independent user demands andan allocation scheme similar to theglobal proportional
fairnessscheme of (8). In this scheme the bandwidth allocated to peeri is proportional to peeri’s contribution among all
actively requesting peers at that time. That is,

µij(t) = µi

Ij(t)µj
∑n

l=1 Il(t)µl

, (4)

with the understanding that0/0 = 0. As a point of contrast, note that our allocation rules include self contributionsµii that
are not part of the work in (8).
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The instantaneous bandwidth that userj receives,
∑

i µij(t), is at leastµj , and typically larger since not all peers request
bandwidth at all times (although they still contribute to potential requesters). For a lower bound it is convenient to rewrite
equality (4) as

µij(t) = µi

Ij(t)µj

µj +
∑

l 6=j Il(t)µl

, (5)

sinceµij(t) > 0 only if Ij(t) = 1. Taking expectations, we get

E[µij(t)] = µiγjµjE

[

1

µj +
∑

l 6=j Il(t)µl

]

(6)

≥ µi

γjµj

µj +
∑

l 6=j γlµl

. (7)

Equality (6) holds since the numerator and the denominator of (5) are presumed independent, and inequality (7) is an application
of Jensen’s inequality (30). In particular,

E

[

∑

i

µij(t)

]

≥ γjµj

∑

i µi

µj +
∑

l 6=j µlγl
≥ γjµj,

where last inequality is strict unlessγl = 1 for all l 6= j.
Fairness properties of the allocation rule of Equation (4) can perhaps be better understood when the network consists

of many peers, each of which contributes a small amount of bandwidth. To develop some insight, let us assume for a
moment thatµj is Θ(1/n) whereas the per-user demandγj remainsΘ(1) for all j. When the number of peersn is large the
random sum

∑

l 6=j µlIl(t) is roughly Gaussian (assuming independent demand processes), with mean
∑

l 6=j µlγl and variance
∑

l 6=j µ
2
l γl(1−γl) = Θ(1/n); therefore the lower bound in (7) becomes asymptotically exact. Furthermore, whenµj = Θ(1/n)

the denominator in (5) is practically the same for allj; leading to

µij(t)γi ≈ µji(t)γj . (8)

Equation (8) implies that the network isfair in the sense that each user receives back the (normalized) amount of bandwidth
its peer shares with any other user.

Despite these favorable properties, the allocation scheme(4) has at least one important drawback, as it lacks a mechanism
for checks and balances and thus gives incentive to peers to misrepresent themselves. In particular

∂

∂µj

(

γjµj

∑

i µi

µj +
∑

l 6=j γlµl

)

> 0,

providing incentive for peerj to declare (possibly deceptively) a high contributionµj . The problem could be avoided if peers
could measure the actual overall contribution ofother peers accurately. Alternatively, a peer can measure only contributions
that it has received from each one of other peers, and it can then use this as a proxy for overall contribution in (4). This leads
to the proposed Allocation Rule 1, which is studied in the next subsections.

C. Incentive and Fairness Analysis of Allocation Rule 1

We start by showing that Allocation Rule 1 provides an incentive to join the system, and, under certain reasonable conditions,
this incentive is strong. We further show that our rule is pair-wise fair in the saturation region and that no other allocation rule
can do better, under the same assumptions.

1) Definitions: We say that a user has anincentive to joina sharing system if he is guaranteed not to lose average bandwidth
when he joins the network, assuming that the network users are cooperative in obeying a prescribed allocation rule. The user
has astrong incentive to join if this guarantee holds even if the networkusers are not cooperative.

For our analysis, we will also useµij(t) to denote the time-average of the bandwidth that userj receives from peeri, and
µj(t) to denote the time-average over all bandwidth userj receives from the network, andIi(t) to denote the time-average of
the demand process:

µij(t) =
1

t

t−1
∑

k=0

µij(k), µj(t) =

n
∑

i=1

µij(t), Ij(t) =
1

t

t−1
∑

k=0

Ij(k). (9)

Note that for alli andj, 0 ≤ Ij(t) ≤ 1 and0 ≤ µij(t) ≤ µi, so that the sequences({Ij(t), µij(t), i, j = 1, 2, · · · , n} : t ≥ 1)
lie in a compact Euclidean space. As such, for any sequence{t : t > 0} there is a further subsequence{tm : m ≥ 1} for
which the time-averages sequence converge (31):

µij = lim
m→∞

µij(tm), µi = lim
m→∞

µi(tm), γj = lim
m→∞

Ij(tm).
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The limit pointsµij andγj are, in general, functions of the sequence{tm : m ≥ 1}, but this is not an issue for our general
result of the following theorem.

D. Incentive to join

Lemma 1 and Theorem 1 show that each user has a specific incentive to join our network.

Lemma 1 Let {Ii(t) : t ≥ 0}, i ≤ n, be arbitrary demand sequences. For any useri implementing Allocation Rule 1, the
long-term average download bandwidth is related to the average bandwidth in isolation by,

µi = γiµi +
∑

l

µli

(

1−
1

µii

lim
m→∞

1

tm

tm
∑

k=0

Il(k)µii(k)

)

. (10)

Proof: Rearranging (2) ,

µij(t)

(

n
∑

l=1

Il(t)µli(t)

)

= µiIj(t)µji(t). (11)

Using the convergence property over the sequence{tm |m ≥ 1}, we fix a large enoughm′ so that we can substitute all
µij(tm′) by µij + eij(tm′), and allIj(tm′) by γj + ej(tm′), where the error terms|ej(tm′)| and |eij(tm′)| are upper-bounded
by some smallǫ > 0, for all m ≥ m′. Herein, we omit the error term subscripts (which do not affect the result) for sake of
clarity.

Summing (11) fromtm′ to tm − 1 and dividing bytm gives

1

tm

tm−1
∑

t=tm′

µij(t)

(

n
∑

l=1

Il(t)(µli + e(tm′))

)

=
1

tm

tm−1
∑

t=tm′

µiIj(t)(µji + e(tm′)), for m ≫ m′. (12)

For the right hand side term,

1

tm

tm−1
∑

t=tm′

µiIj(t)(µji + e(tm′)) = µiµji

1

tm

tm−1
∑

t=tm′

Ij(t) + µi

1

tm

tm−1
∑

t=tm′

Ij(t)e(tm′).

Noting that
∑tm−1

t=tm′
Ij(t) = tmIj(tm)− tm′Ij(tm′) and substitutingγj + e(tm) for Ij(tm), gives

µiµji

(

γj + e(tm)−
tm′

tm
Ij(tm′)

)

+ µi

1

tm

tm−1
∑

t=tm′

Ij(t)e(tm′) = µiµji(γj + e1(tm)) + e2(tm) = µiµjiγj + e3(tm).

Since all the terms contributing to the errors are bounded, it follows that the total error terme3(tm) can be made arbitrary
small by increasingm. As such, the right hand side of (12) converges toµiµjiγj asm grows to infinity. An analysis of the
left hand side similarly shows it to converge to1

tm

∑tm
t=0 µij(t)

∑

l Il(t)µli.
The resulting equation, in asymptotic form, is thus:

1

tm

tm
∑

t=0

µij(t)
∑

l

Il(t)µli ≍ µiγjµji.

Adding 1
tm

∑tm
t µij(t)

∑

l(1− Il(t))µli to both sides and recalling that
∑

l µli = µi, we get

µij µi ≍ µiγjµji +
1

tm

tm
∑

t

µij(t)
∑

l

(1− Il(t))µli.

The result follows from considering the casej = i case and dividing byµii.

Lemma 1 guarantees that all users receive at least the amountof bandwidth that they would have received in isolation. The
following theorem shows that this result is tight in the sense that no better guarantee can be provided in the general case

Theorem 1 Let {Ii(t) : t ≥ 0}, i ≤ n, be arbitrary demand sequences then:

1) For any useri implementing Allocation Rule 1,µi ≥ γiµi, for all i (asymptotically in time), and
2) In fact, no other allocation rule can provide a higher guarantee (uniformly for all users) for arbitrary demand processes.
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Proof: To prove the first part of the theorem we observe thatlimm→∞
1
tm

∑tm
k=0 Il(k)µii(k) ≤ µii, since the indicator

function I is at most 1. As a result,

∑

l

µli

(

1−
1

µii

lim
m→∞

1

tm

tm
∑

k=0

Il(k)µii(k)

)

≥ 0,

and plugging it into equation (10) provides indeed thatµi ≥ γiµi.

We prove the second part by contradiction. Assume that an allocation rule exists that guarantees every useri with strictly
higher average bandwidth than its isolation bandwidth,i.e., µi > γiµi. If we sum this inequality over all users it follows that
this allocation rule must guarantee that

∑n

i µi >
∑n

i γiµi.
Next, consider asynchronousnetwork, in which all demand requests are synchronized within a given time slot (i.e., the

demand sequences for all users are identical). In this degenerate situation the average bandwidthavailableto all users combined
is equal to the sum of their isolation bandwidths; hence, regardless of the allocation rule

∑n

i µi ≤
∑n

i γiµi, resulting in a
contradiction.

Note that Theorem 1 makes no assumptions about the nature of individual demand processes, and more importantly, its
guarantees hold for any user implementing Allocation Rule 1, regardless of what other users might do. As such, even were
the remaining network users to collaborate maliciously in their allocations, they could not (in the long term) reduce faithful
users below their isolation bandwidth; this represents a strong incentive to join the network.

Furthermore, Lemma 1 provides that users following Allocation Rule 1 can expect a potentially positive gain beyond their
isolation bandwidth, and this gain is roughly inversely proportional to the average amount of self contributions. Thus, our
system is also’fair’ , in the sense that users can expect to receive from the network in proportion to how much they give.

1) Independent demand processes:The specific case where demand processes areindependent across userspermits us
to refine our fairness notion and gain more insight into our system. This case could reasonably appear for cooperative and
diversified networks, where users are often anonymously sharing different types of resources.

From a technical perspective, our results in this section are predicated upon the assumption that the limit quantitiesµij are
fixed for any subsequencetm, or in other words that the sequences(µij(t) : t ≥ 0) converge. This is stated more formally in
the following condition.

Condition 1 For eachi, j, the sequences(Ij(t), µij(t) : t ≥ 0) are asymptotically stationary andµij(t) converges ast → ∞.

Under this condition, we define

µij = lim
t→∞

µij(t), µj = lim
t→∞

µj(t), γj = lim
t→∞

Ij(t) (13)

to be the long-term averages corresponding to the quantities in (9)). Recall that an average upload bandwidth of peeri operating
in isolation isγiµi, and that theunallocatedor free average bandwidth is(1− γi)µi.

Theorem 2 Let {Ii(t) : t ≥ 0}, i ≤ n, be mutually independent demand processes of network usersimplementing Allocation
Rule 1 and satisfying Condition 1. Then the average downloadbandwidth of useri is not only its average bandwidth in isolation
but also fractional portions of the free bandwidth of other users in the network. That is,

µi ≥ γiµi + γi
∑

l 6=i

αil(1− γl)µl.

where the fractional portions are proportional to the amount of the bandwidth useri shares with the network:

αil =
µil

µil +
∑

j 6=i γjµjl

.

Proof: Manipulating Allocation Rule 1 gives

µij(t) = µi

Ij(t)µji(t)

µji(t) +
∑

l 6=j Il(t)µli(t)
. (14)

Under Condition 1this is well approximated (for larget) by

µij(t) = µi

Ij(t)µji

µji +
∑

l 6=j Il(t)µli

, (15)
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and, furthermore, the expectation ofµij(t) asymptotically approachesµij . Since user demands are independent, the numerator
and denominator of (15) are independent, and, taking expectations and applying Jensen’s inequality, we get

µij ≥
µiγjµji

µji +
∑

l 6=j γlµli

. (16)

For the casei = j and adding
∑

l 6=i µli to both sides, we get

µi = µii +
∑

l 6=i

µli ≥ γiµi +
∑

l 6=i

(1− γl)µli. (17)

We complete the proof by expandingµli using (16) in (17).

Theorem 2 provides important fairness features of our allocation rule. First, it shows that each user has an incentive to
share its bandwidth. The larger the bandwidth she shares relative to the amount others share, the larger the portion of free
bandwidth that she receives. Second, a strongerpair-wise fairnesscondition holds in the saturated regimeγi → 1 for all i,
meaning that, in this case, the average amount of bandwidth apair of users share with each other is equal. A formal treatment
of this property follows.

2) Fairness of the network in saturation:Thus far, we have shown that the network provides some guarantee on fairness
by allocating larger portions of free bandwidth to users that provide more dominant portions to the upload of other users. We
now show that in the saturated regime a strongpair-wise fairnessholds (we will define this more generally in Section IV-E).

Corollary 1 If γi = 1 for all i then the Allocation Rule 1 guarantees pair-wise fairness sothat

µji = µij , ∀i, j. (18)

Proof: Inequality (16) reduces to

µij =
µiµji

µi

. (19)

in the considered regime, and holds for alli, j so thatµji = µij .

A similar result is given in (8), but our system permits self allocationsµii and thus no longer requires thenon-dominant
condition that each peer’s upload bandwidth is less than thesum of all the other peers’ upload bandwidths.

Note that the pair-wise fairness property of (18) does not hold in general. As previously indicated individual users canenjoy
other peer’s free upload bandwidth to increase their total average upload bandwidth even beyond their own single peer-user
isolated bandwidth.

We next provide a modified allocation rule which seeks to provide fairness guarantees even when the network is not saturated,
at the expense of additional assumptions.

E. Modifications to the Allocation Rule 1

Theorem 2 asymptotically provides a strong incentive for users to join our network. In this section we provide a motivation
for a modified allocation rule that, under more general conditions than those of Section IV-D2, further providesincentive to
cooperateas well aspair-wise fairness.

We start with formal definitions of these terms, with some similarities to the well-known Nash equilibrium.

Definition 1 An allocation rule is said to be(ǫ, δ)-fair if, for all users and for arbitrary small, positiveǫ and δ, the
average received bandwidth from the network is withinǫ of the average contributed bandwidth to the network (including
self contributions) with probability at least1− δ:

|
∑

l

µli −
∑

l

µil| < ǫ with probability 1− δ.

The allocation rule is alsopair-wise fair if in addition

|µij − µji| < ǫ with probability 1− δ for all i, j.

Definition 2 A useru has anincentive to cooperatewith a network of users implementing an allocation rule if, every positive
ǫ andδ, no other allocation rule foru can provide an additional1+ǫ fraction of average download bandwidth with probability
at least1− δ.
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1) Motivation: We first motivate and provide insight into our modified allocation rule with yet another hypothetical allocation
rule, based on positive real numbersδ1, .., δn in the range[0, 1].

µij(t) =















Ii(t)µi

[

(1− δi)
µii(t)∑

l
Il(t)µli(t)

+ δi

]

, j = i

µi(1− δiIi(t))
Ij(t)µji(t)∑
l
Il(t)µli(t)

, j 6= i.

(20)

Allocation rule of Equation (20) guarantees that thei-th user gets at leastδiµi bandwidth from peeri each time it requests
data. The remaining bandwidth is allocated according to theoriginal Allocation Rule 1. For the degenerate case whereδ1 =
δ2 = ... = δn = 1, each user is guaranteed its isolation bandwidth (namelyγµ), for every time slott, no matter how the rest
of the network operates, and hence there is a strong incentive to join the network.

Consider the case of a small network, which has one user with high demandγ = 1 − ǫ for small ǫ > 0. In the original
allocation rule this user will allocate some bandwidth to its neighbors, which will entitle him to a large portion of the bandwidth
of the network in the event that a small number (or none at all)users are requesting data. This asymmetry provides a high
incentive for highly demanding users to join the system, exploiting its free bandwidth. Of course when only highly demanding
users join the network the gain of each user is reduced and thesystem becomes ”fair” again, as indicated in Corollary 1.

On the other hand the modified allocation rule reduces the amount of bandwidth that a high demanding user shares with the
network, hence reducing the probability that the bandwidthhe shares becomes substantial compared to other, less demanding
users. It follows that if each user is free to choose his ownδ then, roughly speaking, highly demanding users would like to
reduce theirδ in order to gain more of the free bandwidth of the network, whereas other users would like to keep theirδ high
in order to guarantee their isolation bandwidth.

F. Asymptotically(ǫ, δ)-pairwise fair Allocation Rule

The observation that the Allocation Rule 1 tends to benefit highly demanding users, motivates us to consider a modification
that simultaneously provides an incentive to join and cooperate and can be proven to be asymptotically (in the number of
users) fair.

Allocation Rule 2 is similar to the original rule, with the exception that the time average of the received bandwidths is
normalized by the average demands, with the usual convention of 0

0 = 0. For convenience, we rewrite the Allocation Rule 2
using long term averages notation:

µij(t) = µi

Ij(t)
µji(t)
γj

∑

l Il(t)
µli(t)
γl

. (21)

Note that we explicitly assume that all average demands exist in the limit, and, furthermore, that these averages are locally
known a priori to all peers. We demonstrate later how these averages can be efficiently estimated over time.

Theorem 3 Let {Ii(t) : t ≥ 0}, i ≤ n, be mutually independent demand processes satisfying Condition 1 under Allocation
Rule 2. Then

µi ≥ µiγi + (1− γi)γi
∑

l 6=i

µlαil,

whereαil =
µil

µil+γi

∑
j 6=l

µjl
.

The proof is similar to the proof of Theorem 2 and is thus omitted.
Theorem 3 provides incentive to join the network but is weaker than Theorem 1 due to its additional assumptions on the

demand processes. Nevertheless, we can extend it to prove pair-wise fairness (Theorem 4), when the number of usersn grows
asymptotically large.

For our benefit of analysis, we assume that the demand and bandwidth of every useri do not scale withn, more precisely
µi, γi = Θ(1) and, consequently, the network does not consist adominant peer, whose bandwidth is larger than the sum of
all the other peers (8).

The large number of users combined with the assumption of independent demands across users allows us to apply the strong
law of large numbers to the sum

∑

l

Il(t)
µli(t)

γl
.

This sum converges under Kolmogorov’s criterion for independent non-identicallydistributed random variables (32), which
requires the random variables to have finite variance,σ2

i and for the sum
∑

i

σ2

i

i2
to converge. Clearly, these conditions hold in

our case becauseIl(t)
µli(t)
γl

= Θ(1).
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Theorem 4 Allocation Rule 2 is asymptotically (both in time and numberof usersn) (ǫ, δ) pair-wise fair for mutually
independent demand processes satisfying Condition 1.

Proof: Note that the Theorem does not specify the precedence of its asymptotics. We will prove the case when we take
the limit over the number of users first. The other case follows similarly.

To prove the fairness property we observe that, given the average bandwidth allocations over time, the expectation of the
denominator in the allocation rule isE

{

∑

l Il(t)
µli(t)
γl

}

= µi(t). Assuming that there areΘ(n) non-zero allocationsµli(t),
we can apply the strong law of large numbers,i.e., for every ǫ, δ > 0 there existn0 such that

∀n > n0 |µi(t)−
∑

l

Il(t)
µli(t)

γl
| < ǫ with probability at least1− δ.

Taking expectations and relying upon Condition 1, the allocation rule results in

µij ≍ µi

µji

µi

, (22)

which, for j = i gives that
|µi − µi| < ǫ. (23)

Since every peer allocates all of its bandwidth when at leastone user requests data, the average allocated bandwidth of the
i-th peer isµi(1 −

∏

l 1 − γl) → µi, and the(ǫ, δ) fairness of the allocation follows. Substituting equation(23) back into
equation (22) proves the(ǫ, δ) pair-wise fairness property.

Note that Theorem 4 provides a pairwise fairness in a more general setting than Corollary 1, since it does not require
the network to be saturated. We next show that the modified allocation rule also provides an incentive to cooperate. Here we
assume that the adversary’s objective is to exploit as much of the network’s free bandwidth as possible. Malicious usersthat try
to disrupt but not game the network’s operation are not considered in this analysis. Furthermore, we assume that the adversary
cannot predict future user demands; though this assumptionclearly holds for memoryless demand processes, it might be naive
for many practical systems.

Theorem 5 Allocation Rule 2 asymptotically (both in time and number ofusersn) provides an incentive to cooperate for
mutually independent demand processes satisfying Condition 1.

Proof: To see why the allocation rule provides an incentive to cooperate, consider a single userm who tries to maximize
his long term average download bandwidth, while the other users cooperate with the allocation rule. We show that no strategy
can guarantee a significant gain in the average download bandwidth.

Under Condition 1, the allocation rule can be rewritten (fori 6= m):

µij(t) = µi

Ij(t)
γj

µji

∑

l 6=m
Il(t)
γl

µli +
Im(t)
γm

µmi

Using the law of large numbers, for an arbitraryǫ′ > 0 there existsn > n0 such that, almost surely,

µi

Ij(t)
γj

µji

∑

l 6=m µli + ǫ′ + Im(t)
γm

µmi

≤ µij(t) ≤ µi

Ij(t)
γj

µji

∑

l 6=m µli − ǫ′ + Im(t)
γm

µmi

. (24)

We first explore the left hand inequality, and we note that thedenominator and numerator are independent under our
assumptions. Assuming that the true demand of userm can be estimated accurately by the other users, then by taking the
expectation and using Jensen’s inequality, the left hand inequality becomes

µij ≥ µi

µji
∑

l 6=m µli + µmi + ǫ′
= µi

µji

µi + ǫ′
.

and, in the casei = j , we have for alli 6= m,
µi ≥ µi − ǫ′. (25)

We next turn to the right hand inequality of (24) and considerthe casej = m:

µim(t) ≤ µi

Im(t)
γm

µmi

∑

l 6=m µli − ǫ′ + Im(t)
γm

µmi

= µi

Im(t)
γm

µmi
∑

l 6=m µli − ǫ′ + 1
γm

µmi

.
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Letting µ∗ = mini µi andǫ∗ = 2ǫ′

µ∗ , the independence of numerator and denominator provides that

µim ≤ µi

µmi

µi − ǫ′ +
(

1
γm

− 1
)

µmi

≤(a) µi

µmi

µi − ǫ′

≤(b) µi

µmi

µi − 2ǫ′

≤(c) µmi

1− ǫ∗
,

where(a) is due to the fact that1
γm

− 1 ≥ 0, (b) follows from (25), and(c) is true because we assume thatµi = Θ(1) for all i.
Finally, summing over all usersi, and under our assumption thatµm = Θ(1), let µ∗

m ≤ µm be the expected bandwidth user
m contributes to the network then for some arbitraryǫ > 0 there existn > n′

0, such that

µm ≤
µ∗
m

1− ǫ∗
≤ µ∗

m + ǫ.

It follows that, under the above assumptions, no matter whatuserm does he can not gain much more than his own contributed
bandwidth. Combining this result with Theorem 4, we conclude that userm has no incentive to seek alternative strategies
beyond Allocation Rule 2. This result can be extended to any finite group of colluding users, as long as their total bandwidth
remainsΘ(1).

1) Estimating Average Demands:In practice, the average demands of all users are typically unknowna priori. Still, it can
be shown that with a simple estimation of the average demand (performed by each peer) Theorems 3,4 still hold, for large
enought.

Consider the following allocation rule (which requires only local measurements):

Allocation Rule 3

µij(t) = µi

Ij(t)
µji(t)

∑t−1

k=0
Ij(k)

∑

l Il(t)
µli(t)∑t−1

k=0
Il(k)

, (26)

where we have replacedγj by the empirical averageIj(t) = 1
t

∑t−1
k=0 Ij(k), with the typical convention that00 = 0.

To see why Theorems 3 and 4 still hold (under Condition 1), we apply the strong law of large numbers: for large enought,
Ij(t) ≍ γj . Hence equation (22) still holds, and the rest of the proof ofTheorem 4 follows. The same reasoning applies also
to Theorem 3.

2) Extensions:In the model discussed so far, the users’ demands are assumedto be broadcast to all the peers in the network.
One extension to our model would be to consider networks werethe demands can be multi-casted to any desirable subset of
peers. It can be shown that all the theorems except the incentive to cooperate (Theorem 5) still hold as long as the subset
of peers stays fixed through the network’s lifetime. Simply replaceIi(t) with Iij(t), andγi with γij , for every pair of users.
Theorem 5 does not hold in this case, since the adversary can break the network intoΘ(n) subnetworks in which the law of
large numbers does not hold anymore.

G. Practical allocation rules

Unfortunately the allocation rules discussed need some tweaking for practical dynamic networks. Due to the long term
averaging, changes in network capacity and demand with timeare reflected very slowly in the sharing protocol. Consider,
for example, the event of adding a new user to an existing network using Allocation Rule 1. This user will face a long
”initialization” stage, during which it will contribute all its bandwidth to the system while accumulating enough ”credit” to
get its share of the network’s free bandwidth. The situationis quite different when the distributed version of Allocation Rule 2
is used (Equation (26)). Here the lack of credit is canceled out with the lack of historic demands. In fact, the network will
tend to welcome new users with a surge of free bandwidth much larger than their contributions. Although, this warm welcome
may be interpreted as additional incentive to join the system, users may exploit this behavior to receive much more bandwidth
from the system by bursting their demands while keeping their long term demand’s average constant.

To reduce the surge of free bandwidth, we set the estimates ofthe initial demandγ to 1 (i.e.,
∑t−1

k=0 Ij(k) = t for users
joining the system at timet). Note that both Allocation Rules 2 and 1 become identical when γ = 1, so that when a new user
enters the network it will initially build credit in as in Allocation Rule 1, but quickly adapt as the estimates of the average
demands become more accurate. Clearly, the initial value for γ is irrelevant for the asymptotic (in time) properties of the
network.
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(a) Ten users request a large file from the system. Their download
rate converges to the upload rate (U/L) of their peers.
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(b) A peer that contributes while not using the network’s re-
sources gets rewarded later. A peer that joins later without
contributing earlier suffers comparatively lower download rates.

Fig. 3. Convergence of the proposed approach and benefit of contributing bandwidth to the system.

V. SIMULATIONS AND EXPERIMENTS

We have implemented a discrete time simulator and an experimental prototype of the p2p system described in Section III
for the purposes of demonstrating our claims. The results are presented in the following subsections, and are divided into two
main groups. In the first group, we use our discrete time simulator to demonstrate the theoretical claims of Section IV. Assuch
the simulator assumes a simplified traffic model, where useri requests bandwidth for download at time-slott with probability
γi, independently of other users and of the history of the system at slot t. In the second group of results, we present the
effectiveness and implementation efficiency of random linear coding. Finally, we provide experimental results of our prototype
system and simulation using a more realistic traffic model.

A. Allocation Rule 1

Our simulator permits nodes to initially allocate any feasible amount of upload bandwidth to their peers, although our specific
experiments assume small, equal, non-zero initial contributions between peers. In our experiments, each peer reallocates its
upload bandwidth once per second, and our graphs were smoothed over a running average of10 seconds.

1) Fairness and benefit:In our first experiment, ten users request large files from thesystem at the same time, but the
upload capacities of their corresponding peers range from100kbps− 1000kbps. Figure 3(a) shows the download rate available
to the user of a peer as plotted against the time in seconds . Initially no one has downloaded any content from the other
peers and the peers split their bandwidth randomly among allother requesting peers. All users demand bandwidth starting at
time 0, although their corresponding peers are serving at different rates (100kbps− 1000kbps). The distributed system quickly
converges to a fair allocation of users receiving what the (corresponding) peers contribute.

Our next experiment demonstrates that there is an incentivefor peers to contribute even when their associated users arenot
downloading from the network, as illustrated in Figure 3(b). In this experiment, peer0 steadily contributes bandwidth to the
system, but peer1 does not contribute bandwidth for the first1000 seconds; neither peer0 nor peer1 request any files from the
system during the initial1000 seconds, and, thus, other peers take advantage of peer0’s unused bandwidth to get a download
capacity that is greater than their upload capacity (i.e., 1024 kbps). At timet = 1000 seconds, peer1 starts contributing to
the system and both peers0 and 1 start requesting large files as well. We see that user0 receives better service than user1
because of the credited contribution of peer0.

Our next few graphs demonstrate the benefits of the proposed system to all collaborating peers, commensurate with
Theorem 2. For these graphs, we simulate a three peer networkconsisting of users that have encoded and distributed home
videos to all three peers. The users stream their home videosto some remote computer for12 randomly chosen hours in a
day, meaning that users downloaded for half of the day in chunks of 1 hour.

Figure 4(a) shows a case when peers 0, 1 and 2 have upload bandwidths µ0 = 256kbps, µ1 = 512kbps, µ2 = 1024kbps
respectively, and their duty-cycles correspond to the areas of non-zero download capacity. Each peer is available to upload
to other peers throughout the 24 hour period, and we see that this cooperation benefits each user with a download capacity
greater than he would receive in a single-user environment (shaded areas indicate gains).
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(a) Each peer contributes all through the 24 hour period. The
shaded regions are indicative of the gains of using Allocation
Rule 1.
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(b) Peer 1 starts contributing after the first 3 hours. The shaded
regions are indicative of the gains of using the proposed approach.

Fig. 4. 3 peer network,µ0 = 256kbps, µ1 = 512kbps, µ2 = 1024kbps.
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(a) Simulation scenarios showing incentive to contribute while
idle, and the dynamics of Allocation rule 1
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(b) Simulation scenarios showing incentive to contribute while
idle, and the dynamics of a modified approach with “time-
decaying” contributions of other peers. The denominator of
Equation (2)) is multiplied by a decay factor0.99 in every time-
slot.

Fig. 5. Dynamics of Allocation rule 1

Figure 4(b) shows a case when peers 0, 1 and 2 have upload bandwidths µ0 = 256kbps, µ1 = 512kbps, µ2 = 1024kbps
respectively, and their duty-cycles correspond to the areas of non-zero download capacity. Each peer is available to upload to
other peers all through the 24 hour period, and peer1 only starts contributing to the system after the first three hours.

Two interesting artifacts occur: first, we notice that peer1 is still able to get some service from the network in the first hour
because peer2 has not yet requested anything from the network and is splitting its bandwidth between peers0 and1, being
oblivious to the fact that peer1 is not contributing (this is corrected in the2-3 hour time slot). The second artifact concerns
the3-4-hour time slot, in which peer1 is penalized for his non-contribution to the system, thoughthis penalty decays by time
t = 4 hours, as all peers start benefiting from the contributed bandwidth. Note that although Peer 2 is a dominating peer (
µ2 > µ0 + µ1), the system converges to a steady state.

In order to test the dynamics of the peer-wise proportional approach, we simulated a ten peer network with initial uploadrates
of 1024kbps per peer. All users request service throughout. At timet = 1000 seconds one peer’s upload bandwidth contribution
drops to512kbps, and there is a consequent decrease in its download bandwidth, as shown in Figure 5(a). Interestingly, the
other peers quickly recover the lost service amongst themselves. Then at timet = 3000 seconds, this peer’s upload bandwidth
contribution is restored to1024kbps and the associated user’s bandwidth is restored accordingly.

We should note that the system has slow dynamics, which couldbe speeded up by disproportionately weighing newer
contributions over older ones. Employing an exponential time decaying weight function on bandwidth utility received by a
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Fig. 7. µ12 andµ21 as a function of time for a simulation of 40 users, with different allocation rules.

peer will speed up the dynamics of the system (see for example, Figure 5(b)); we leave a thorough analysis of this decay for
future work.

B. Allocation Rules 2 and 3

In this section we compare the different allocation rules for both static and dynamic scenarios. We focus here on asymptotic
(ǫ, δ)- fairness and the effects of newly joint users. We assume a cooperative network, where the peers’ capacities and average
demands are arbitrary but normalized within range[0, 1].

Figure 6 showsunfairnessmeasure defined as the ratio between the average bandwidth received to the one contributed
minus 1, namelyµi

µi
− 1. These measure should be close to 0 for all users in a fair network. The unfairness measures are

calculated for a simulation of a network of40 users with arbitrary capacities and average demands after50, 000 time slots.
Clearly, Allocation Rule 3 achieves better fairness results for all users.

Figure 7 shows the mutual average bandwidths of users 1 and 2 as a function of time. All allocation schemes have a similar
convergence behavior, yet Allocation Rule 3 achieves better strong fairness results, asµ12 andµ21 tend to converge.

We next compare some of the dynamic properties of the different allocation rules. In the dynamic scenario, a user with both
average demand and capacity of0.5 is added to a network of40 users after1000 time slots. Figure 8 shows the behavior of
the different allocation rules for the existing user (user 1) and for the new user. The impact of the added user on the existing
users is small, as can be observed in Figure 8(a), where the average received bandwidths for both static (no user is added)and
dynamic scenarios are shown. The differences between the allocation rules are evident in Figure 8(b), which shows the average
bandwidths of the new user. Allocation Rule 3 provides considerable excess bandwidth, while Allocation Rules 1 and 2 show
a monotonic convergence. It can also be observed that Allocation Rule 2 converges more rapidly to the contributed bandwidth
as expected.

The encoding and decoding operations are essentially the same, the latter using the inverse of the coefficient matrix in
Equation (1), so we only present decoding times in our results.
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The number of messagesk required to encode 1MB worth of data depends on different field sizes and message lengths.
Thus, for example, if we used finite field of sizeq = 232 (i.e., 32 bits/symbol) and a message lengthm = 215 = 32768,
then we would havek = 8 messages. This number is important because it defines the size of theβ coefficient matrix. The
number of field operations required to decode messages in Equation (1) isO(mk2+mk). A very largek would also make the
inversion of the coefficient matrix slow (O(k3) field operations), although in all our experiments the valueof k was reasonably
small and the matrix inversion time was negligible.

From Table I it is apparent that lower values ofk yield faster decoding times. What is more important is that it makes sense
to use larger field sizes to further reducek, even with the additional overhead of more expensive field operations; however,
reducingk indiscriminately would be problematic in maintaining fairness due to quantization errors. Table I shows that our
example ofq = 232 andm = 32, 768 can be decoded at the rate of1MB/s. The bottleneck at this speed will probably be
the ISP-offered download rate rather than the computationsor upload capacities of the various peers.

VI. I MPLEMENTATION

A prototype system was developed that combines random linear codes, a checksum using MD5 (33) at the user’s end, and
the allocation rule at the peer’s end. The implementation isflexible, so that the peers could be distributed over physically
different machines or grouped on one machine. Files are divided into 1 MB sub-files and then sub-divided into1

8 MB encoded
chunks and stored on the peers. Users request each subfile individually from all peers. After all sub-files are downloadedthey
are decoded and an MD5 sum is computed to verify that decodingwas successful. Any sub-files that did not decode properly
due to linear dependence are re-requested. This implementation assumes that initialization (encoding and transferring of files
to the peers) is completed before users request files. In practice this means that files cannot be added or modified after system
start up without a complete reinitialization.

While our prototype implementation attempts to mirror the theoretical model, practical issues required small deviations.
When peers allocate data, there is a minimum number of bytes that can be realistically allocated. This means that a useri
that has contributedµij << µj may not receive bandwidth from userj. In this case useri is not being credited for all of its
shared bandwidth and will receive less bandwidth from the network than it should in the theoretical model of Section IV-A.
The theoretical model also assumes each user needs all bandwidth allocated by the network, but in practice this is not thecase.
If a user obtains enough data from the network to decode, thenall remaining allocated bandwidth is superfluous and could be
ignored (and, in fact, is not credited by the receiving peer).

Our results were collected when all peers are located at one workstation, so that their total upload bandwidth is upper
bounded by the workstation’s upload bandwidth. The users were distributed over physically different terminals. The prototype
implementation was initialized to simulate a network of remote clients requesting and downloading mp3 files, randomly chosen
from a library of 3 MB files. The experiment had 20 peer/user pairs and ran for200, 000 time slots. To simulate actual requests,
users were configured to request files from the network according to a probability distribution fitted to data of inter-query times
for a p2p network (28). This distribution represents the time between individual queries (search requests) on active connections
for peak use in North America. The model is applicable to thisexperiment if it is assumed that each query represents a file
request.

Figure 9(a) demonstrates that for both our schemes, every user gained more than its isolation bandwidth in each time slot
that a file was demanded. This verifies the theoretical claim of our system providing a natural incentive to join.

In terms of fairness Allocation Rule 2 was found to be superior with 0.0963average unfairnessdefined as1
n

∑n

i=1 |
µi

µi
− 1|

compared to 0.13 average unfairness of Allocation Rule 1, inspite of the implementation deviations from the theoretical model
as well as the inaccuracies in the estimations of the averagedemands.
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Fig. 9. Prototype system simulations for different allocation rules.

q ↓, m → 214 215 216 217

GF(24) 58.8 30.05 14.99 7.57
GF(28) 17.52 8.85 4.46 2.29
GF(216) 5.53 2.81 1.42 0.72
GF(232) 1.96 1 0.51 0.26

TABLE I
DECODING (ENCODING) TIMES IN SECONDS.

We also gathered preliminary data on the dynamic propertiesof our prototype implementation with Allocation Rules 2 and3.
In our dynamic scenario a new user (client and peer) are addedto the network after10, 000 time slots; the results are shown in
Figure 9(b). Here the slow process of building credit is evident for the new user when Allocation Rule 1 is used. In contrast,
if Allocation Rule 3 is used, the new user tends to receive a large amount of bandwidth from the network as its demand is
estimated to be near zero. The middle ground is using Allocation Rule 3, with the estimated demands initialized to 1. This
scheme removes the initial surge seen when a new user joins the network, but reduces the ”credit buildup” stage seen when
Allocation Rule 3 is used.

We next demonstrate the efficiency of the random linear coding component of our system (and the corresponding decoding
complexity). In order to establish the speed of random linear coding and infer the maximum throughput when the bottleneck
is the decoding computation on the user’s computer, we have built a simple encoder/decoder following Equation (1) using
Victor Shoup’s number theory library (19) in conjunction with the GNU multi-precision library (GMP) (20). We tested our
system on 1MB of data for various values of message sizem, finite field sizeq, and corresponding number of messagesk
into which the 1MB of data is split. The experiments were performed on a Pentium 4 dual processor workstation running the
Linux operating system. Form = 232 and field sizeq = GF (232), decoding the 1MB (8Mb) data takes1 second. At this
speed the bottleneck will probably be the download link in broadband connection (typically less than 8Mb/s), rather than the
decoding speed of random linear codes.

VII. C ONCLUSIONS

In this paper we have discussed several distributed resource allocation schemes relevant to p2p systems, distributed grid
computing, and other resource sharing scenarios. We have demonstrated the utility of our approach through a peer-to-peer
application that enables users to overcome slow upload bandwidth bottlenecks when remotely accessing home server data. In
our approach, several peers volunteer to disseminate the desired content, thus multiplexing their upload bandwidths in order
to fill up the downloading user’s data pipe. This model fits very well with the typical user pattern of short periods of heavy
link usage interspersed with long idle times.

To address issues of distributed access, our system stores information with the aid of random linear coding. This approach
allows a user to reconstruct his file from a sufficient number of encoded packets, regardless of the source. We have also
experimentally shown the computational feasibility of using random linear codes for large files. Our proposed approachprovides
a natural incentive for peers to voluntarily join and cooperate within our framework. Moreover, our system is asymptotically
fair, in the sense that each user benefits from unallocated network bandwidth in proportion to its contribution to the system. As
such, our system is also resilient to adversarial or malicious collusion, guaranteeing fairness even when some peers donot use
the prescribed bandwidth allocation rule or attempt to interfere with others’ access. These analytic conclusions wereindividually
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confirmed through a variety of simulations, including a simulated home-video streaming network as well as experiments on
our prototype implementation of the proposed system.

.
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