(© Copyright by Ari Trachtenberg, 1996



COMPUTATIONAL METHODS IN CODING THEORY

BY
ARI TRACHTENBERG
S.B., Massachusetts Institute of Technology, 1994

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois



iii

COMPUTATIONAL METHODS IN CODING THEORY

Ari Trachtenberg, M.S.
Computer Science

University of Illinois at Urbana-Champaign, 1996
Alexander Vardy, C.L. Liu, Advisor

We consider various computational techniques in algebraic coding theory along two
lines of work. First we investigate optimization of non-linear codes by relaxing min-
imum distance constraints, developing, in the process, two algorithms for improving
a given non-linear code and a method of visualizing algebraic codes in three dimen-
sions. Secondly, we study the Generalized Lexicographic Construction, and show
that it produces as special cases the lexicodes and derivatives with properties such
as trellis-orientation, trellis-state boundedness, and local optimality. We implement
algorithms for generating these families of codes and, in the process, improve upon
work by Conway and Sloane [9], Brualdi and Pless [6], Kschischang and Horn [24],
and Zhang [48].



To my future wife Felicia, the v/2, and my family

v



Acknowledgments

First and foremost, the author would like to thank his Electrical Engineering advisor
Professor Alexander Vardy for his patience, guidance, and encouragement throughout
the course of this work. The author would also like to thank his Computer Science
advisor Professor Dave Liu, whose support made this cross-disciplinary work possible.

In addition, the author would like to thank the Computational Science in Engi-
neering program for their financial support in the form a fellowship that has allowed
for this continuing work. The author would also be remiss were he not to thank his
father, Lazar Trachtenberg, for his professional criticism and guidance throughout
this process.

Finally, the author is required to thank his future wife Felicia Moss whose per-

sistent encouragement and support allowed for a timely completion of this work.



Contents
Chapter
1 Introduction. . . . . . . . .. ..
1.1 Motivation . . . . . . . . oL
1.2 Algebraic Codes . . . . . . . . . . L
1.3 Communications Model . . . . . . .. ... ... o0,
1.4 Trellis Decoding . . . . . . . . ..o
1.5 Problem Statement . . . . . . .. ... oo L
1.6 Thesis Organization . . . . . . . . . ... .. ..
2 Relaxed Minimum Distance Constraints . . . . . .. ... ... ...
2.1 Maximum Likelihood Decoding . . . . . ... ... ... .. ... ..
2.2 Probabilityof Error . . . . . . .. ... oL
2.3 Optimality of Perfect Codes . . . . . .. . ... ... ... .. ....
2.4 Improving Known Codes . . . . . .. ... .. ... ... ...,
2.5 Augmenting Non-Linear Codes . . . . . ... ... ... .. .....
2.6 Visualization . . .. . ... ... Lo
3 The Lexicographic Construction . . . . . . . ... ... ........
3.1 Lexicodes . . . . . .. ...
3.2 'Theoretical Underpinnings . . . . . . .. . .. ... ... ... ..
3.2.1 Equivalence of Lexicodes and Lexicographic Construction . . .
3.2.2 Relation among Subsequent Lexicodes . . . . ... ... ...
3.3 Bounds on Code Parameters . . . . . .. ... ... ... . ......
4 Generalized Lexicographic Construction . . . . . .. ... ... ...
4.1 Terminology . . . . . . . . L
4.2 Choosing Subsequent Vectors . . . . ... .. ... ... ... ...
4.2.1 Standard Lexicographic Construction . . . . . . . ... . ...
4.2.2 Trellis-Oriented . . . . . . . . .. .. oo

4.2.3 Corollaries . . . . . . . .,

vi

DD O e W NN = -

11
14
14
15
17



vii

4.2.4 Locally Optimal Codes . . . . . . . .. ... ... ... .... 44

4.3 The Algorithm . . . . . . .. .. ... 46

4.4 State Bounded Codes . . . . . . . . . .. . 49

4.5 Computations . . . . . . . . . .. 50

451 Data . . . . . . 50

452 Analysis . . . . ... 51

5 Conclusion . . . . . . . . . 53

5.1 Summary . . ... 53

5.2 Future Directions . . . . . . . . . . . . .. 54
Appendix

A Sample Algorithm Output . . . . . .. ... ... ... ... ... 56

B GLC Code Parameters . . . . . . . . . . . . . 58

B.1 Lexicodes and Trellis-Oriented GLC codes . . . . . . . . .. . . ... 58

B.2 State Bounded GLC Codes . . . . . . . . . . . . . ... ... ... 67

C Comparisons . . . . . . . . . . . . . e e 71

Bibliography . . . . .. . ... 74



viii

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4

4.1

B.1
B.2
B.3
B.4
B.5
B.6

Displayed are improvements to several known codes. . . . . . . . . .. 15
Augmented codes generated by the algorithm in Section 2.5. . . . . . 17
Generator matrix for the (8,4,4) lexicode. . . . . ... ... .. ... 22
A graphical diagram relating to the inductive proof of Theorem 3.1. . 24
Coset leaders and buddies for the (4,1,4) lexicode. . . .. ... ... 26
A partial table of coset leaders of the (6,2,4) lexicode. . . . . .. .. 28
MSGM for the (8,4,4) codein Table 3.1. . . . . . ... ... ... .. 39
Parameters of d =4 codes. . . . . .. ... oo 29
Parameters of d =6 codes. . . . . . . .. ... o0 62
Parameters of d =8 codes. . . . . . . .. ..o 65
Codes with a trellis log-state bound of 4. . . . . . .. .. ... . ... 68
Codes with a trellis log-state bound of 5. . . . . . .. ... ... ... 69
Codes with a trellis log-state bound of 6. . . . . . .. ... ... ... 70



1X

List of Figures

1.1
1.2
1.3

2.1
2.2

2.3
24

3.1
3.2

3.3

4.1

4.2

Al

C.1
C.2
C.3
C4

An example of a non-linear code. . . . . . .. ... ... ... ...
An example of a linear code. . . . . . . ... ... ... ...
A minimal trellis of the (6,2, 4) linear code in Figure 1.2. . . . . . ..

A Binary Symmetric Channel with crossover probability p. . . . . . . 10
This graph compares the probability of error of a code and its improve-

ment. . . . ... e e e e e e e 16
Code improvement as a function of crossover probability. . . . . . . . 16
A visualization of the (6,2,4) linear code of Figure 1.2. . . . . . . .. 20
A simple (n = 3, M = 4,d = 2) binary lexicode. . . ... .. ... .. 22
The length of the dimension 3 lexicodes plotted versus their minimum

distance d. . . . . . . . . e 32
Lower bounds on lexicode dimension. . . . . . ... ... ... ... 35

State-complexity comparison of a trellis-oriented code and extended

BCHcode. . . . . . . . . . oo 51
State-complexity comparison of a trellis-oriented code and regular BCH

code. . . . L 52
The (64, 50, 6) trellis-oriented GLC code. . . . . . . ... ... .... 57
Decoding complexity comparison of d =6 codes. . . . . . ... . ... 72
Decoding complexity comparison of d =8 codes. . . . . . ... .. .. 72
Maximum state comparison of d =6 codes. . . . . . .. ... ... .. 73

Maximum state comparison of d =8 codes. . . . . . ... .. ... .. 73



Notation

Unless otherwise stated or inferred from context, all arithmetic operations throughout this
paper are carried out over the binary field Fy. Furthermore, examples are based on the

following code, C, also found in Figure 1.2 on page §:

0 0 0 0 0 O
0 01 1 11
1111 0 0
11 0 0 1 1
‘ Introduced ‘ Expression‘ Denotes ‘ Ezample

Page 2 (n,M,d) a code with length n containing | See Figure 1.1 on page 8
code M vectors of minimum Hamming
distance d from each other.
Page 2 (n,k,d) a linear code of length n repre- | See Figure 1.2 on page 8
code senting a k dimensional subspace
of vectors with minimum Ham-
ming distance d from each other.
Page 11 0(v,C) or | the minimum distance from a vec- | §(000011,C) = 2
d(v) tor v to a code C; C is omitted in
context.
Page 11 B. the ball of vectors that are | Boggooo =all weight 0, 1
closer to the codeword c than to | and 2 vectors
any other codeword, ties broken
arbitrarily.
Page 18 bin(7) The binary representation of the | bin(6) = 110
integer ¢
Page 18 alb The concatenation of ¢ and b (111]010) = 111010
Page 23 a' The concatenation of a with itself | (01)® = 010101
1 times
Page 23 L(C) or | the k’th code with minimum dis- | £} is given in Figure 3.1
Eg or Ly tance d produced by the lex- | on page 22
icographic construction starting
with the code C code; d is omitted
in context; if C is omitted, we as-
sume that C is the zero code (i.e.
no codewords)
Page 23 L(n,k,d) | the lexicode with parameters | we show that these are
or Ly (n,k,d); n and k omitted in | equivalent to £¢ so the
context. same example holds

continued on next page...




continued from previous page...

xi

Introduced ‘ Ezpression‘

Denotes

‘ Ezample

Page 26 Bu(l)  or | the buddy of coset leader | under | By110(0101) = 0011
B(1) v; 1.e. the coset leader of the coset
containing [ 4+ v. v is omitted in
context.
Page 26 k(v) the coset containing the vector v | x(000001) =
{000001,001110,
111101, 110010}; see
also the standard array
on page 4
Page 27 a the binary complement of a. 01010 = 10101
Page 27 f(a,l) notational convenience for (a|l). | £(000,101) = 000101
Page 27 h(a,l) notational  convenience  for | based on v = 0110,
(@lBy(l)); v is understood from | h(010,0101) = 1010011
context.
Page 30 Tom the length of £2 ; d is supplied in | for d = 4, n3=7 as per
context. Table B.1 on page 59
Page 38 Isl(v) the location of the least significant | 1s1(10110) = 2
bit of a bit sequence.
Page 38 msl(v) the most significant location of a | msl(10110) =5
bit sequence.
Page 38 MSGM a Minimum Span Generator | Table 4.1 on page 39
Matrix.
Page 40 G; row ¢ of the generator matrix G. | (3 for the code genera-
tor matrix in Table 3.1
on page 22 is 1010101
Page 37 GLC! (r,w,C) | the Generalized Lexicographic | See Example 6 on
or GLC’ | Construction; if arguments are | page 37
or GLC supplied, refers to the GLC based
on C over the functions r and w
iterated ¢ times, where missing ar-
guments are inferred from context
Page 37 r1(C) a function returning the covering | r;(C) =3
radius of the code C
Page 37 wy(C) a function returning the lexico- | w;(C) = 010101
graphically earliest vector of dis-
tance r(C) from C
Page 43 w(C) a function returning the lexico- | wy(C) = 101010
graphically latest vector of dis-
tance r(C) from C

continued on next page...



xii

continued from previous page...

‘ Introduced ‘ Expressz'on‘ Denotes

Ezample
|

Page 39

wo(C)

a function returning the vector of
distance r;(C) from C that pro-
duces locally optimal code param-
eters for subsequent codes

w,(C) = 101010




Chapter 1

Introduction

Algebraic coding theory (henceforth coding theory) is a branch of engineering with
roots in mathematics and applications to computer science. It mainly concerns the
development and design of efficient communication schemes over unreliable channels.
Obvious forms of channels include a noisy telephone line, an inaccurately controlled
Compact Disk laser, or even data bus communications on a computer amid bombard-
ment by outside radiation. Since algebraic codes are used to correct errors induced
over such channels, they are sometimes called error-correcting codes. At its mathe-
matical foundation, coding theory is a classical problem in sphere packing in which
codewords are represented by spheres, and our objective is to pack as many spheres
as possible into an n—dimensional space. From its applied perspective, coding the-
ory includes the polynomial approximation of global searches that are known to be
NP-hard.

1.1 Motivation

The applications of coding theory have grown to some importance in the last several
years, making the computational study of codes quite exciting. Codes have been used
in various applications for various different reasons.

Codes are often used when there is little or no error tolerance across a commu-
nications channel, as some information loses all value when any part of it is garbled.
For example, encrypted messages generally cannot be decrypted if even the smallest
error is introduced into the transmission. As another example, consider programming
code in C or FORTRAN. If any part of the text is garbled, the programming code is
rendered un-compilable at best, and erroneous at worst.

Another use of codes concerns increasing throughput. This has mainly been evi-
denced in the last several years by the upgraded modem speeds from 9.6K Baud to
28.8K Baud. Essentially, a regular phone line introduces so many errors at 28.8K



Baud, that normal transmission becomes useless. However, with the aid of error-
correcting codes, it is possible to transmit at the higher speed and correct the errors
incurred, maintaining a good transmission quality. Codes are currently used in Com-
pact Disks to correct inevitable storage errors induced by imprecise laser technology
[17]. They are also used in Random Access Memory storage for maintaining mem-
ory coherence; in smaller RAM’s a simple parity-check code is employed, but more
sophisticated codes are required when memory storage increases. Modem lines, inter-
net lines, and especially wireless cellular phones (which communicate over very noisy
media) also employ various error-correcting codes. Finally, satellite and deep space
communications require rather complicated codes, such as the Golay Code. Thus,
the study of algebraic codes is quite practical, and the development of complicated

codes inevitably will require the use of vast computational resources.

1.2 Algebraic Codes

A code is any set of M vectors over a finite field I} with the property that any two
vectors in the code are of Hamming distance greater than or equal to d. The code
is said to have parameters (n, M, d) and is sometimes called a non-linear block code.
Figure 1.1 depicts examples and counter-examples of a (6, 3,4) code.

It is often convenient to restrict codes to a certain structure. For this purpose,
we make use of a linear code, which is any k-dimensional subspace of F with the
property that any two vectors in the code are of Hamming distance greater than or
equal to d. A linear code thus has parameters (n, k, d) and is depicted in Figure 1.2.

Because of its structure, an (n, k,d) linear code C is also said to have a k x n
generator matriz G such that C = {UG TV E F’;} Similarly, the code C also has a
parity check matriz H such that He!' = 0 Ve € C; for any vector v, Ho' is called
the syndrome of v and is 0 precisely for v € C. For example, the generator matrix

and parity check matrix for the linear code in Figure 1.2 are:

110000

1111 11
G:OO H:OO 00
111100 101010
101001



1.3 Communications Model

In the basic coded-communication model, a message is encoded at a source, sent over
a noisy channel, and decoded at the receiver. As explained in [4], encoding of a non-
linear code is achieved by an explicit, one-to-one correspondence between message
bits and codewords, and decoding is achieved by finding the closest codeword to the
channel output and inverting the correspondence. For a linear code, the correspon-
dence is represented by the generator matrix, which describes a transformation from
the space of messages to the space of encodings. The decoding is done by using a
standard array[4, p.41] which organizes all the vectors in the encoding space into
cosets of the code over Fy, each with its own coset leader of lowest weight.! Given
this model of communications, a code of minimum distance d can be used to correct

(d — 1) /2 errors. The following example illustrates a typical coded communication.

Example 1 Consider that we want to send a message “1 0 1 1” over a noisy channel
using the linear code in Figure 1.2. Then we would follow these steps in its coded

transmission:
1. Encoding:

(a) We separate our message into blocks of length 2, since we are dealing with

a dimension 2 code. Thus, our message becomes “1 0 1 1”.

(b) We encode each block of the message, by left-multiplying it by the gener-

ator matrix:

00111

[10} 2[001111}
111100
00111

[11} :[110011}
11100

! Cases of more than one minimum-weight vector are divided in an arbitrary, but fixed, manner.



2. Transmission: The message “0 01111 11001 1” is transmitted over a
noisy channel. Let us suppose that on error is made in each block, and that
the received messageis “1 01111 101011.”

3. Decoding:

(a) We generate the standard array of the code by listing codewords on the
first row, and cosets of the code on each subsequent row, with the least-
weight coset members (i.e. the coset leaders) in the first column:

000000 | 001111 111100 110011

000001 | 001110 111101 110010

000010 | 001101 111110 110001

000011 | 001100 111111 110000

100000 | 101111 011100 010011
100100 | 101011 011000 010111

(b) We find the cosets containing the received vectors in the standard array.

In this case, the received words (emphasized above), are found on the last
two lines of the standard array and are translated to the codeword in their

column, 001111 in this case.

(c) The errors in the received word are given precisely by the coset leader of
the found cosets, if that coset is of weight < (d — 1) /2.

Though the standard array imparts a good understanding of the structure of a
code, its size prevents it from being used in decoding all but the simplest of codes.
Instead, for complicated codes, trellises [10, 13] are often used together with the
Viterbi algorithm [33].

1.4 Trellis Decoding

A trellis is a time-indexed graph that represents a particular code. Massey [37] was
the first to rigorously define the trellis, but the terminology of the definition has

evolved since, and the following definition is loosely based on [33, p. 3].

Definition 1.1 ([37, 33]) A trellis T = (V, E) of rank n is a finite, directed, edge-
labelled graph with the following properties:



1. each vertex v € V has an associated depth d € {1,2,3,... ,n}
2. each edge e € F connects vertices at depth ¢ to depth ¢ + 1, for some %

3. there is one vertex A at depth 0 and one vertex B at depth n

The edge labels on a trellis can be used to represent any code. For example,
Figure 1.3 shows the trellis for the code in Figure 1.2. There is a one-to-one corre-
spondence between the paths from A to B and the codewords in the code, where the
correspondence can be seen by concatenating the labels along the path chosen. For
example, the topmost path from A to B corresponds to the codeword 111100.

The Viterbi algorithm [45] decodes a received message through a modified breadth-
first search of the trellis which tries to find the codeword that is closest in Hamming
distance to the received word (and, hence, the most likely transmitted word). Specif-
ically, for any vector v received over a communications line, the Viterbi algorithm
goes through a trellis level-by-level, determining, for each vertex w at depth ¢, which
path from A to w is closest to the received vector v, making use of the previous iter-
ation to avoid extra work. Thus, when the algorithm reaches depth n, it has found
the path from A to B which is closest to v, and, hence, the codeword that was most
likely sent over the channel.

[33] demonstrates that the Viterbi algorithm requires 2|E| — |V| + 1 operations
to run on a trellis with |E| edges and |V/| vertices. Thus, in order to reduce the
decoding complexity, it is often advantageous to use a minimal trellis. By definition,
any trellis representing a code may not have fewer edges or vertices at any time index
than a minimal trellis, so that the Viterbi algorithm has minimal running time on a
minimal trellis.

Bahl, Cocke, Jelinek, and Raviv [2] discovered a method for constructing the
unique minimal trellis representing a particular linear code C. Their BCJR trellis is
based on the parity-check matrix for the code being represented and is explained in
further detail in [33][p.13]. However, it is important to note that, while the BCJR
trellis is minimal for a particular code, trellis structure is actually very dependent on
code permutation. Hence, the optimal trellis for a code would be one that minimizes

edges and vertices over all permutations of the code.



1.5 Problem Statement

We consider two problems in this thesis.

Our first problem concerns codes in general, and involves their optimization by
relaxing minimum distance constraints. Specifically, though the minimum distance of
a code is the traditional measure of a code’s performance, we analyze different factors
that are more important than the minimum distance in determining the probability
of decoding error for a code in practical and non-asymptotic cases.

Our second problem concerns linear codes, where we study parametrically good
lexicographic codes (henceforth lexicodes) generated by the lexicographic construc-
tion. We consider how to construct these codes and generalize their construction for

use in several applications.

1.6 Thesis Organization

Chapter 2 addresses our first problem. There we determine an expression for the
probability of decoding error of a code, show the optimality of the Perfect Codes
with respect to this expression, and develop two algorithms for improving non-linear
codes based on these ideas. We conclude the chapter with a method of visualizing
and interactively designing these highly-dimensional codes on a three-dimensional
projection such as a rendered effect on a computer screen.

We address the second problem in Chapters 3 and 4. Specifically, in Chapter 3
we analyze the lexicographic construction that generates the linear lexicodes, which
have very good code parameters. We discuss the equivalence of the lexicographic
construction and the lexicodes discussed in [9]. More importantly, we develop a
relationship between subsequent codes in the family generated by the lexicographic
construction; this relationship is quite general and is also used in Chapter 4. Finally,
we develop bounds on code parameters of the codes in the lexicographic construction,
improving on pre-existing bounds in [6].

In Chapter 4, we generalize the lexicographic construction to produce specifi-
cally designed codes whose parameters are almost as good as the parameters of the
lexicodes. We develop algorithms to generate the lexicodes and codes with locally
optimal parameters. We also design two types of codes for fast decoding: trellis-

oriented codes and trellis-state bounded codes. Finally, we implement the algorithms



designed to significantly extend the list of computed lexicodes first published in [9],
produce codes with lower decoding complexity than the heuristically improved codes
in [24], and generate trellis-state bounded codes that demonstrate some improvement
over the similar work in [48].

Finally, in Chapter 5 we summarize the work of this thesis and present directions
for future research. The several appendices contain the analyzed data from the

algorithms we have implemented.



O v
000000 000000
00111 1 001 11 1
101100 1 11100

Figure 1.1: An example of a non-linear code. The left code is not a (6,3,4) code over F§ because the
Hamming distance between the first and third vectors is 3, which is less than the required distance
of 4. The right code is a non-linear (6, 3,4) code over F§. Each row represents a vector in the code.

el Baal el ]

Ol | =[O
OoO|l=|l—=|lo

=l =lOo|l o
== Oo

o= Oo
—|lo|l~|o
O|l—=|—=| O
O|l=|=| O
~|lol~|o
= o= O

0
0
0
0

Figure 1.2: An example of a linear code. The right code is a (6,2,4) linear code. The left code is
not a (6,2,4) linear code because: a) the first and third vectors have Hamming distance 3 < 4, b)
it is not a subspace as the sum of the first and third vectors is not in the code.

depth: 0 1 2 3 4 5 6

Figure 1.3: A minimal trellis of the (6,2, 4) linear code in Figure 1.2. Solid lines indicate transition
on a “1” and dotted lines indicate transition on a “0”. The transition through any path from time
0 to time 6 represents one code word.



Chapter 2

Relaxed Minimum Distance Constraints

Traditionally, the minimum distance of a code has been used as the measure of a
code’s performance because a code with minimum distance d can correct |(d — 1)/2]
channel errors for any input. However, as this chapter shows, it is sometimes better
to focus error-correction on only a certain fraction of inputs in favor of getting a
better probability of error.

Section 2.1 begins with an explanation and intuition for the various communica-
tions models on which this work is based. In Section 2.2 we develop an expression for
the probability of decoding error of a code under the models explained in Section 2.1.
This expression will be used as an objective measure for a code’s performance in the
subsequent sections. Section 2.3 shows that perfect codes have an optimal probability
of decoding error. In Section 2.4 we apply the results of Section 2.2 to develop an
algorithm that optimizes a code with respect to the probability of decoding error.
We investigate a similar algorithm in Section 2.5 that generates non-linear codes with
good parameters. Finally, in Section 2.6 we explore the visualization and interactive

development of algebraic codes, as related to the ideas in the previous sections.

2.1 Maximum Likelihood Decoding

Many channel models exist in the literature [11, Chapter 8]. Though none of the
models are completely accurate, the Binary Symmetric Channel (henceforth, BSC)
is a fairly good approximation to how noise interferes with transmission. Figure 2.1
shows the BSC model, in which a transmitted bit has a probability 1 — p of being
received correctly, and a probability p of being garbled in transmission, where p is
called the crossover probability.

A decoder that minimizes its probability of decoding error conditional on the
message it received from a channel is called a maximum likelihood decoder. Over a

BSC, maximum likelihood decoding is achieved by minimum distance decoding [31].



10

input: output:
0 > 0
1 1

Figure 2.1: A Binary Symmetric Channel with crossover probability p.

That is to say, given a vector r received over a BSC, the optimal strategy for decoding
is to decode to the closest codeword (in terms of Hamming distance) to 7. Consider

the following example:

Example 2 Consider the (6, 3,4) non-linear code from Figure 1.1 with the input “I

2 3.7 We trace the steps of encoding and then minimum distance decoding:

1. Encode the input according to the code as the sequence of blocks: “0 00000
001111 1111007

2. Send the message over the Binary Symmetric Channel. Let us assume this
channel has crossover probability 3/18 so that we may expect three errors in
the transmission of the 18 bits above. One possible received sequence would
then be “000000 101111 011110 where bold face indicates an

error.

3. Decode the received sequence by finding the closest codewords and translating
back into a message word. Specifically,
000000 is itself a codeword, and so is translated directly to 1.
101111 isclearly closest to 0 0 1 11 1 and is thus translated to 2.
011110 is of distance 2 from both codewords “1 1110 0” and “00 1 1

17, indicating a decoding failure.

4. The decoder outputs: 1 2 (failure).



11

2.2 Probability of Error

The minimum distance of a code is often a good measure for how well the code will
function under minimum distance decoding over a BSC. However, we will show that
it is not an optimal measure of a code’s effectiveness by showing that, by relaxing
minimum distance constraints, we can increase the probability of correct decoding
of a code which is, after all, the ultimate measure of a code’s effectiveness. The

following lemma appears in similar form, but different proof, in [31][p. 10].

Lemma 2.2.1 Consider an (n, M,d) code C over a field F being sent over a binary
symmetric channel with crossover probability p. The probability of correct decoding
using minimum distance decoding (ties broken arbitrarily), where all codewords in C

are equally probable is given by:

1
c _ d(v,C) _ o \n—90(v,C)
Prog=<7% 091 -p) (2.1)
velm
where 0(v,C) = miél (v,c) (2.2)
ceC -

d(v, C) is essentially the distance between v and the code C, and, where clear from

context, will be referred to as §(v). It is one of the key factor in this probability.

Proof Consider a (one-to-one) encoding function £ : M — C mapping each
message in the set M= {1... M} onto a respective codeword. Similarly consider
the maximum likelihood decoding function D : " — M that hypothesizes a sent
message based on a received word. Finally, consider the error e caused by the random
noise through the BSC.

We can also assign to each codeword ¢ € C a ball B, of all the vectors that are
closer to ¢ than to any other codeword, with ties broken according to the decoding
rule. In other words, every vector in B, will be decoded to ¢ and B_.’s partition F"
over all c € C.

Since the encoding function E' is one-to-one and we are using minimum distance

decoding, we may rewrite the definition of probability of correct decoding as so:



12

= Z Pr (D (E(m) + e) =m | m is the message) * Pr(m is the message)

meM
= Z Pr(c+ e € B, | ¢ = the encoded message) *x Pr(c = the encoded message)
ceC
1
= M*X(;Pr(che € B,)
ce

Since B.’s partition F", we may unambiguously define a function ¢(v) such that
v € Bg(y) and rewrite the summation as:

1 _ !
:M*ZPr(c(v)—i-e =)

vefn

and, finally, we are using minimum distance decoding over a BSC, so:

1 ¢ —d(c(v),v
= o 30 PN gy

veln
1
=2 2P pn - 60)
veln

O

The requirement that all codewords in C should be equally probable in Lemma 2.2.1
is not very restrictive because it is the basis for the optimality of minimum distance
decoding [31, p. 10].

An interesting corollary of Lemma 2.2.1 supplies us with the probability of error
for decoding with a linear code, which is found in many textbooks on the matter,
such as [32, p. 18]:

Corollary 2.2.1.1 The probability of error of an (n, k,d) linear code C with w; coset

leaders of Hamming weight © is given by:

n
Pré =1- Z w;p'(1 — p)"™"
i=0



13

Proof It is observed that all elements of the same coset have the same distance
from C. Thus, by Lemma 2.2.1:

1 .
=1- % * Z 2kp‘5(l)(1 - D) (1)

coset leader [ of C

n
=1- Z wip' (1 — p)™ ™"
i=0

|

A non-linear form of Corollary 2.2.1.1 can similarly be deduced, with a trivial

proof:

Corollary 2.2.1.2 The probability of error of an arbitrary (n, M,d) code, where w;

indicates the number of vectors in T of distance i from the code, is given by:
1 &~
C _
Prerr =1- M ;wipz(l _p)n !
To fully understand the implications of Lemma 2.2.1 we supply a simple example.

Example 3 Consider the linear (6,2,4) code in Figure 1.2. Through exhaustive
enumeration, we can seen the following information about the vectors in " and
their contribution to the probability of correct decoding for a BSC with crossover

probability p = 0.1:

i | w; | Ypi(l—p)n
0 | 4 0.53144
1 | 24| 035429
2 | 28| 0.04592

3 8 0.01312
total: | 64 0.93312

The probability of error of this code is 1 — 0.93312 ~ 0.06688. The vectors that
are most influential in reducing this probability of error are those that are closest to
the code.



14

2.3 Optimality of Perfect Codes

Example 1.1 seems to suggest that the optimal code, in terms of decoding error, will
be as close as possible to all the vectors in the decoding sphere. This, in fact, can be

made rigorous with the following lemma:

Lemma 2.3.1 For 0 <p< %,

a<b<ep'(1—p)"*>p(1—p"?

The proof is immediate from the fact that 0 <p < i <= p<1l—p.

|

Because of Lemma 2.3.1 we see that the optimal code, in terms of decoding error,
will spread its codewords out as far as possible from each other, so that there will be
few vectors in " that will be close to the code. In other words, w; will be as small
as possible for any 7. There are at least (’;) vectors of distance 4 from any particular
codeword. Among the linear codes, it is the Perfect Codes [4][p.43] which achieve
this number with equality and will be the optimal codes for any fixed length n and

number of codewords M.

2.4 TImproving Known Codes

Lemma 2.2.1 gives us a better standard of a code’s efficiency than the traditional
minimum distance. It is true that the minimum distance of a non-trivial code!
ultimately bounds §(v), combining with Lemma 2.3.1 to give us the following crude
bound on the probability of correct decoding:

PrS < - p (2.3)
Nevertheless, Lemma 2.2.1.2 gives us the counter-intuitive realization that, at a cer-
tain point, for a fixed n and M, the lower the minimum distance between some
codewords, the higher the probability of correct decoding. In other words, it is some-
times better to be able to decode a certain region of the the coded space very well, at
the expense of other regions, in order to ultimately improve the probability of correct

decoding. We can see this idea more clearly in the following example:

!By a non-trivial code we mean a code whose covering radius is not greater than its the minimum
distance.



15

Example 4 Consider the following non-linear (6,4, 1) code:

0 01 0 0 0
11 01 1 0
0 1 1 1 0 1
1 0 0 0 1 1

Using Lemma 2.2.1 we can see that this code has probability of error ~ 0.055216,
which is less than the probability of error of the (6,2,4) code in Figure 1.2. Thus,
despite the lower minimum distance, the code in Example 4 has the lower probability
of error (and, hence, the higher probability of correct decoding). The improvement

of the code in 4 can be seen in Figure 2.2

We have implemented a simple algorithm, similar to a genetic algorithm, that,
through random perturbations, tries to improve the probability of error of a code.
Some results are given in Table 2.4. It is particularly important to note that the
amount of improvement achieved by this algorithm is very sensitive to the crossover
probability of the channel. Figure 2.3 illustrates how the improvement in probability
of error of the modified (12,4, 6) lexicode versus the standard lexicode depends on

crossover probability.

Base Code Base Pr.,, | Improved Pr.., | Gain

(6,2,4), linear (Figure 1.2) 8.1x10* 6.2 %10°* 23.5%
(7,8,4), non-linear[32, p. 51] || 1.366 * 1073 | 1.283 %103 6.1%
(12,4,6), lexicode [9] 9.908 *107° | 9.328 %107 5.9%

Table 2.1: Displayed are improvements to several known codes. The improvements are the result
of implementing a perturbation algorithm based on relaxing minimum distance in favor of lowering
the probability of error of several known codes. The crossover probability used is p = 0.01

2.5 Augmenting Non-Linear Codes

The idea of random perturbations expressed in Section 2.4 can also be used to develop
generate good codes. Specifically, starting with a code of fixed minimum distance
d, one may randomly perturb codewords in an effort to create a hole where extra

vectors can be added into the code.



0's

16

Figure 2.2: This graph compares the probability of error of a code and its improvement. Specifically,
the probability of error of the non-linear (6,4,1) code in example 4 (higher) and linear (6,2,4) code

of Figure 1.2 (lower) are plotted against the crossover probability, p, of the channel.

0. 004

0.003

0. 002

0.001

o's

Figure 2.3: Code improvement as a function of crossover probability. The improvement in the prob-
ability of correct decoding achieved by relaxing minimum distance is plotted against the crossover

probability of the channel.



17

Example 5 Consider the following two codes with length 4 and minimum distance

2:

0 0 0 0
0 0 0 0

01 1 0
0 1 1 1

01 0 1
1 0 1 1

1 0 1 1
1 1 0 0

1 1 0 0
Code 1

Code 2

No more vectors can be added to Code 1 without lowering its minimum distance of
2 because it has a covering radius 1 < 2 and is, hence, non-trivial. However, by
perturbing the emphasized vector in Code 1 and changing it from 0111 to 0110, we
have changed the covering radius to 2, so that the vector 0101 may be added to Code
1 to get Code 2, a code with the same minimum distance and length, but containing

a larger number of vectors.

The simplistic algorithm demonstrated in Example 5 is actually remarkably ef-
fective in generating some of the best known non-linear codes, and is also a good way
of finding non-linear improvements to good linear codes. Table 2.5 shows some of the

results of running this algorithm on various codes.

Length | Min. Number of Vectors Comments
Dist. || in Base Code | in Augmented Code
11 4 0 72 Best known to date
12 4 0 127 Best known has 144-152 vectors
12 6 16 24 Best known to date;
based on (12,4,6) Lexicode
17 8 0 32 Best known has 36-37 vectors

Table 2.2: Augmented codes generated by the algorithm in Section 2.5.

2.6 Visualization

The algorithms in Sections 2.5 and 2.4 involve a random search that does not consider
the structure of a code. Though these algorithms seem to be effective, it is some-
times important to be able to visualize a code to better understand its structure and

establish an intuition about its workings. However, algebraic codes tend to reside in



18

many dimensions, and it is necessary to project them into three dimensions so that
they may be visualized.

One conventional method for viewing n-dimensional binary data involves split-
ting up a three-dimensional viewing area into (g) half-spaces (polytopes) in such a
way that each of the sectors formed shows the relationships among three different
dimensions of the data. The problem with this technique is that it will enable viewing
of only a small fraction of the the number of direction relationships? between vectors
in F}. Specifically, since each cube has 12 edges, the number of direct relationships
we will be able to view is:

12 (Z) - %n(n —1)(n—2) (2.4)
However, since each vector in [Fj is next to n — 1 other vectors in the space, there are
altogether 2"(n — 1) direct relations among vectors, a number exponentially bigger
than what we view with this method. In addition, it is quite difficult to view (g)
different cubes, much less to understand the data they represent in such a fashion.

There is a way to view more of the direct relations among vectors in a a vector
space, and it concerns a particular generalization of Gray code. Gray code is the
sequence of vectors starting from the zero vector that is in one-to-one correspondence
with the set of all binary vectors and has the distinguishing property that consecutive
vectors differ in exactly one bit. Thus, the following would be a subsequence of Gray
code:

0,1,10,11,110,111,101, 100, ... (2.5)
Given an integer 4, it is well known [40, p.886ff] that the i’th vector in the Gray
code, G(i), is precisely (bin(z) XOR bin (|7/2])), where bin(i) refers to the binary
representation of the integer 7. Since Gray code is in one-to-one correspondence with
all binary vectors, the inverse function G™1(v) is well-defined.

We now define a mapping from F3/® x F3/® x F3/® (isomorphic to F%) to Z; 5 that
will be the basis of our new projection. In this mapping we use a|b to indicate the
concatenation of a and b (e.g. 111|010 = 111010). We map:

fil(z,y,2) — (G H(2),G ' (y), G (2)) (2.6)
Thus, for example, f(1,10,11) = (1,2, 3) following the ordering in 2.5.

2Two vectors are directly related if they are of Hamming distance 1 from each other.



19

Clearly, Mapping 2.6 has the property that neighbors in the projection correspond
to direct relations in [y because of the definition of Gray code. Moreover, for n
a multiple of 3, the projection of this mapping is merely a cube of length ¢=27/3
filled with length 1 cubes; Figure 2.4 shows this image as rendered by an interactive
visualizer that we have developed using OpenGL. Based on our understanding of the
image, we can count the number of edges in it, which corresponds to the number of
visible direct relations.

Specifically, if we for any of the ¢ spaces between successive planes x = ¢ and

T =14+ 1 we can count a total of (£ + 1)?

edges. If we repeat this for the disjoint
spaces between planes y = 7 and y = 7+1 and again for the planes z =7 and z = i+1,

we get the following formula for the number of edges in the projection:
300+ 1) =3 (2"3) ((2/3) +1) (2.7)
In the case that n is not a multiple of 3, we may merely pad n to the next multiple

of 3 to get an appropriate bound. The specific fraction of all the direct relations that

are visible with this method is:

3 (2) (@) + 1)
2n(n —1)
. 1
n—so0 3(n—1)

We can see a marked improvement in the number of direct relations that we

visible fraction of relations =

can view with this method over the conventional method. Though we still lose a
lot of information, the fractional loss is linearly bounded, rather than exponentially
bounded as it is in the conventional case. Moreover, the relations are presented in a

more intuitive and visible form using this method.



20

Figure 2.4: A visualization of the (6,2,4) linear code of Figure 1.2. Visualization is based on the
method described in Section 2.6.



21

Chapter 3

The Lexicographic Construction

We now shift our attention to a linear codes, where structure can be utilized to
understand the properties of a code. Specifically, we shall concern ourselves with
lexicographic codes, or lexicodes for short, and their generalization through the lexi-
cographic construction.

In Section 3.2, we prove that the lexicographic construction does, indeed, pro-
duce lexicodes when iteratively applied to the O code. In addition, we establish a
relationship between subsequent codes in the lexicographic construction that will be
employed in subsequent sections and in Chapter 4 as the basis for a fast algorithm
for generating the lexicographic construction. Based on this relationship, we develop
a few bounds for the parameters of the lexicodes in Section 3.3; one of these bounds
will give us a closed-form expression for the parameters of all lexicodes of dimensions
1, 2, and 3. These bounds come together to give a bound on the rate of lexicodes
which is asymptotically better than that found in the similar work by Brualdi and
Pless [6].

3.1 Lexicodes

Lexicodes were introduced by Conway and Sloane in [8, 9] as algebraic codes with
enigmatically good code parameters. Lexicodes include, among other famous optimal
codes, the Golay code, the Hamming codes and some extended Quadratic Residue
codes [9, 32]. [6, 9, 30] also showed that lexicodes are linear. Trial comparison [9]
to optimal linear codes with corresponding length and dimension parameters show
that lexicodes are within one of the optimal minimum distance, and, hence, they are
quite good approximations to optimal codes.

Lexicodes are formed by iteratively adding the lexicographically earliest vector?

li.e. the earliest vector in dictionary order. Thus 01111 would come before 10000.



22

of distance at least d from the vectors already added. For example, to generate the
binary lexicographic code of length 3 and minimum distance d = 2, we would set
up the following lexicographically ordered table. A e in the table indicates that the

vector is in the code.

000 | 001 | 010 | O11 | 100 | 101 | 110 | 111

Figure 3.1: A simple (n = 3, M = 4,d = 2) binary lexicode.

We will prove in Section 3.2 that, since lexicodes are linear, they may be produced
alternatively by a more general method called the lexicographic construction which
iteratively adds non-zero basis vectors in lexicographic order. In this construction,
one is given a code C with parameters (n, k,d) and covering radius p, and adds to
it the first vector in the lexicographic order that is of distance p from C, padding
the vector with d — p extra ones on the left. In this way, a code with parameters
(n+d—p, k+1,d) is produced. For example, if d = 2 then the first two basis vectors
produced by the lexicographic construction will be (011,101), which generate the
lexicode in Figure 3.1.

As an example, consider the (8,4, 4) code C, with covering radius p = 2, generated
by the vectors in Table 3.1. We can see that the vector 00000011 is the lexicograph-

1111
110011
1010101
11000011

Table 3.1: Generator matrix for the (8,4,4) lexicode.

ically earliest vector of distance p(= 2) from C. Hence, we pad it with d — p = 2
ones to get the new codeword 1100000011. With this new vector, we have a (10, 5, 4)
code. Note that the generality of this construction comes from the fact that it can
generate not only ordinary lexicodes, as happens when we apply it to the 0 code, but

also lexicographic extensions of any other code whose generator matrix is known.



23

3.2 Theoretical Underpinnings

In this section we introduce some of the theoretical underpinnings of the lexicographic
construction. In Subsection 3.2.1 we prove that the lexicographic construction pro-
duces exactly all the lexicodes. This will enable us to apply our results of the analysis
of the lexicographic construction to lexicodes. In Subsection 3.2.2, we develop an
explicit, iterative construction of the coset leaders in each coset of the code under
addition over F,. The knowledge of these coset leaders will be the basis, in Chapter 4,

of a fast algorithm for generating the lexicographic construction.

3.2.1 Equivalence of Lexicodes and Lexicographic Construction

We will prove an equivalence between lexicodes and the lexicographic construction
in two parts. In the first part, we present an inductive proof that the codes produced
by the lexicographic construction starting at the 0 code are, in fact, the lexicodes.
We will use the notation £¢(C) to denote the k’th code with minimum distance d
produced by the lexicographic construction starting with the code C; where d is
obvious from context, we will abbreviate to Lx(C), and we will omit C when we
desire the zero code to be the starting code of the construction. In the second part,
we show, conversely, that every lexicode can be lexicographically constructed from
the 0 code.

Theorem 3.1 An (n,k,d) code C is a lexicode if and only if C = L¢.

Proof We first prove that £ is always a lexicode, by induction on k for a fixed
d. It should be noted that, by construction, a lexicode is uniquely determined by its

parameters.

Base Case For k =1 it is clear that £, = £; = (19) = {071} where 1¢ has
the usual meaning of d successive 1’s. L; is clearly a (d, 1, d) lexicode because 1¢ is
the smallest vector of weight greater than or equal to d in F¢, and any other vector

in F¢ will be of minimum distance less than d from either 0¢ or 1¢.

Inductive Hypothesis Assume that Ly is equal to the (n, k, d) lexicode, L(n, k, d)
(or, in context, just Ly).



24

Induction From the definition of the lexicographic construction, £y has length
n + p, where p is the covering radius of L, so that it has code parameters(n + p, k +
1,d).

Consider an (n+ p, k', d) lexicode Ly . Such a code can be constructed by picking
lexicographically-earliest vectors in Fy ”. Clearly, L, C Ly because, when we are
constructing Ly, any vector in F} will come before any other vector in Fy ™ — F2 so
that we will be relegated to first including all vectors in Lj. Consequently, from our
inductive assumption, £, C L. This also implies that &' > k, but equality cannot
happen because Ly will always contain the vector (17|z) that is not in £y (z is the
vector of distance p from Ly). Thus, we conclude that &' > k.

When building L/, after we have included all the vectors of L as stated above,
we will next have to include the lexicographically first vector that is of distance d
from L. Assume, without loss of generality,? that we add the vector v = (ult), where
t denotes the n least significant bits of v and has distance w from L, and u denotes
the remaining bits of v and will have distance d —w from L. Since L has length n,
it has only zeroes outside of the first n bits, implying that v will have d —w ones after

the first n bits. Table 3.2 shows the relationship between these variables graphically.

000...0
000...0 Ly
000...0
v = t u
{wt(t) =d —w} | {wt(u) = w}

Table 3.2: A graphical diagram relating to the inductive proof of Theorem 3.1. v is shown with the
corresponding weights of its two sub-vectors.

Since the definition of lexicodes requires us to pick the lexicographically earliest

(d=max(w)) a5 any other v will lead to a lexicographically

v to add, we must pick u =1
later vector v = (u|t), no matter what ¢ is. However, by definition of covering

radius, max(w) = p so that we will pick w = 1(47?). Then, given this u, we pick

2We have shown above that such a vector must always exist



25

the lexicographically earliest ¢ of distance p from L; to maintain the definition of
lexicodes. One can see that we have added the same vector v as would be added by
the lexicographic construction. Since lexicodes are known to be linear [9, 6], it must
be that Ly will include the entire subspace spanned by L and this new vector v, so
that Lr1 C Ly

However, any vector v’ € F5*” that we would add to Ly, would have its n least
significant bits of distance less than or equal to p from Ly, and its other bits will
of distance less than or equal to [(d — p)/2] from L;,;. Since p < d (by definition,
we add vectors to the lexicode until this condition is fulfilled), we may apply the
triangle inequality to get that v’ would be of distance less than p + [(d — p)/2] =
[(d+ p)/2] < d from Ly so that it could not be added to L, without violating
the definition of lexicodes. Thus, it must be that L5 = L.

<

For the second part of the proof, assume that we have an (n,k,d) lexicode
L(n,k,d). Suppose that £¢ has length n'. From the first part of the proof, we
know that L{ is a lexicode. Thus, if n’ > n, then L(n,k,d) C L£{ and, otherwise,
L4 C L(n, k,d) by the same rationale as in the first part of the proof. Either way,
since £{ and L both have dimension k, it follows that they must be equal [1, p. 93].

|

Thus, we have shown the equivalence of lexicodes and the lexicographic con-
struction. Because of this equivalence, we will concern ourselves mostly with the
lexicographic construction, which is easier to handle, and apply the results to lexi-

codes.

3.2.2 Relation among Subsequent Lexicodes

The relationship between the coset leaders of subsequent codes in the lexicographic
construction will be the basis of the improved performance of Algorithm 4.1 on
page 46, Chapter 4. Upon further research, we have already discovered that Brualdi
and Pless [6, Thm 2.2] have noticed this same relationship, but in a different form
which is less conducive to our results. Before we establish this relationship, however,

we must introduce some terminology.

Definition 3.1 Given:



26

e a linear code C with parameters (n, k,d)
e a coset leader | for a coset of C
e a vector v € Fj

the buddy of [ is the coset leader of the coset containing | + v, and is denoted (,(l)
or just B(l) when v is clear from context. We will also denote the coset containing
[ + v with the notation k(I + v).

As an example, Table 3.3 shows the coset leaders and buddies for the (4,1,4)
lexicode generated by (1111) together with the vector v = 0101. The bold buddies
denote the instances when [ + v is not itself a coset leader and some computation is
required to determine §(l). We can also see from Table 3.3 that the coset buddies
are just a permutation of the coset leaders. This is, in fact, true in general, as the

following lemma will show.

Coset leader 1 | 1 +v || B(I)

0000 | 0101 || 0101
0001 | 0100 || 0100
0010 | 0111 || 1000
0011 | 0110 || 0110
0100 | 0001 || 0001
0101 | 0000 || 0000
0110 | 0011 || 0011
1000 | 1101 || 0010

Table 3.3: Coset leaders and buddies for the (4,1,4) lexicode. The (4,1, 4) lexicode is generated by
(1111)

Lemma 3.2.1 For a code C with o fized set of coset leaders S,
S'={p():1€8}=8.

Proof: We show that f(-) is a one-to-one correspondence.
Indeed, if [,I' € S and B(I) = B(I'), then, by definition, [ + v and " + v must

be in the same coset, implying (by linearity) that [ and !’ are in the same coset, so



27

that [ = I’ since our coset leaders are fixed for each coset. This shows that 3(-) is an
injection.
It is obvious that ((-) is a surjection from the definition of &’. Hence, 3(-) is a

one-to-one mapping and the lemma follows.

O

Now we have the background for the main theorem of this section, upon which
our lexicographic construction algorithm in Chapter 4 will be based. This theorem
can also be seen as a generalization of Lemma 3.2.1. Note that the notation a is used

to denote the binary complement of a (i.e. @ = 1% + a).

Theorem 3.2 Consider an (n, k,d) code with a fized set of coset leaders S, and the
code C' obtained by adding a generator g = (12|v) for v € F} and A € 7Z. Then
the set 8" containing the coset leaders of C' can be obtained from S according to the

following bijective mapping:

fileSw——1e8 if foranya €T,

p_ at e swe@s),

alBy(l) i wt(all) > wt (alBy(1)) .

Table 3.4 shows a direct correspondence between some of the vectors I’ € 8’ and
the coset leaders in the (6,2, 4) lexicode (s.f.r. Table 3.3) to aid with the intuition of
this proof.

Proof: For reasons of simplification, let us denote
f(a,l) = (a [ 1) and h(a,l) = (@ | (1)) (3.2)
This proof rests upon two observations.

The first observation is that f(a, 1) and h(a,!) are always in the same coset in the

new code €. This is clear because:

f(a,l) +h(a,l) =a+a | [l + B()]
=1% | [+ (I +v+c)], for some c e C
- (1% [v) + (0% | ¢)



28

al|l |al|pBy(l)| correspondingl' € S'
00 0000 | 11 0101 00 0000
01 0000 | 10 0101 01 0000
10 0000 | 01 0101 10 0000
11 0000 | 00 0101 11 0000
00 0001 | 11 0100 00 0001
01 0001 | 10 0100 01 0001
10 0001 | 01 0100 10 0001
11 0001 | 00 0100 00 0100
00 0010 | 11 1000 00 0010
01 0010 | 10 1000 01 0010
10 0010 | 01 1000 10 0010
11 0010 | 00 1000 00 1000
00 0011 | 11 0110 00 0011
01 0011 | 10 0110 01 0011
10 0011 | 01 0110 10 0011
11 0011 | 00 0110 00 0110

Table 3.4: A partial table of coset leaders of the (6,2,4) lexicode. It is derived from the (4,1,4)
lexicode, using Theorem 3.2 with v = 0101 and A = 2. Spaces between bits are used to highlight
which vectors are being concatenated.

Since (02 | ¢) € (02|C) and g = (12|v), it follows that f(a, !)+h(a,l) is an element
of (¢9+ (04 | C)) C C implying that f(a,!) and h(a,!) are in the same coset in C'.
The second observation on which this proof is based is that, for any two different
coset leaders [ and I’ of C and for all a,a’ € F2, f(a,l) and f(a’,I') are not in the

same coset. To prove this observation we need consider two cases.

If a#a' then the observation is trivial because f(a,l) + f(a’,l') will have a
leading bits that are different from 0 and 12, but all the codewords in €' must
have leading bits 02 or 12 (the leading bits are determined by the added generator
g=1%|v).



29

If a=a’' then f(a,l) +f(a',l') = 0% | I+ I'. Since | + I’ was given to be not in
C, f(a,l) and f(a’,!') are not in the same coset. This is because all codewords that
are in C' but not in C must start with 14,

Based on the above two observations, we see that f and h represent the same
one-to-one correspondence between pairs (a,!) and the cosets of C'. Thus, in order
to determine the coset leaders of C', we are left merely with the task of determining
this correspondence between pairs (a,l) and the coset leaders of the corresponding
code.

By inspection, we see that for each a € Fy and coset leader [ of C, & (f(a,l)) is

comprised of two types of vectors:

e those of the form (a | ¢), for ¢ in the same coset as [

e and those of the form (a | (v + ¢)), for v + ¢’ in the same coset as 3(1)

In addition, f(a,l) cannot have weight greater than the weight of (a | ¢) because
wt(a | ¢) —wt(f(a,l)) = wt(c) — wt(l) > 0 as [ is a coset leader of the k(c).

Similarly, h(a,l) cannot have weight greater than (a | (v+c')) because
wt(a | (v+¢)) —wt(h(a,l)) = wt(v + ¢) — wt(8(l)) > 0 because §(I) is the coset
leader of (v + ¢').

Thus, all the vectors in & (f(a, 1)) will have weight not greater than min{wt(f(a, 1)),
wt(h(a,l))} so that we may arbitrarily choose as a coset leader that vector f(a,!) or
h(a, ) which has minimum weight. Moreover, since this mapping gives us a ||F2| =
24-fold increase in the number of coset leaders, which corresponds to the total number
of coset leaders C' should have, this mapping must, in fact, give us all the coset leaders

of C', and the theorem is proved.

3.3 Bounds on Code Parameters

Theorem 3.2 in section 3.2, together with Lemma 3.2.1, give us a description of a
the coset leaders of L£,, in terms of its the coset leaders of its predecessor in the
lexicographic construction, £, ;. The maximum weight coset leader of £,,, in turn,
determines the covering radius of a lexicode and, hence, the code parameters of the

subsequent lexicode in the construction.



30

However, the maximum weight coset leader actually depends on the permutation
I — (1) of coset leaders, as in Lemma 3.2.1, that a lexicode imposes on its pre-
decessor. In this section we will consider some counting arguments that bound the
maximum weight coset leader in each subsequent code, and, thus, impose a bound on
the parameters of lexicodes. Derivation of these bounds will also give us a closed-form
expression for the parameters of all lexicodes of dimensions 1, 2, and 3.

First we derive a simple upper bound on the covering radius, py,, of £Z,.

Lemma 3.3.1 p,, < Vﬂ’gi”HJ

Proof: Consider the m — 1’th lexicode £,,_1, and its coset leaders, being used to
construct the m’th lexicode. Given any coset leader [ of L., 1, 3,(l) is also a coset
leader of L,, 1. Thus, in such a case, both [ and (3(I) must have weight at most
pm—1. This, in turn, means that, for all coset leaders [ of C and for all a € F3* (where

A =d — py_1 as per the lexicographic construction) we have:
min {wt(a | 1), wt (@ | 5,(1))}
< min {wt(a) + pm_1, wt(@) + pm_1}
< [A/2] + pm-s
{maz.isata = 01*/21114/2]}
From Theorem 3.2 we know that each coset leader I" of L,, has weight not greater

than |A/2] + ppm-1 = [HT’“_IJ + Pm-1 = Vﬂ;im‘lj and the lemma is proved.

|

Clearly Lemma 3.3.1 implies that p,, < d since py = 0, so that £,, cannot be
trivially improved with the addition of another codeword at distance d, a fact that
we also saw in Theorem 3.1.

Now that we have a simple upper bound on p,,, we also develop a lower bound on
pm by considering the worst possible permutation between coset leaders and buddies.

We use the notation n,, to denote the length of the m’th lexicode.
Theorem 3.3 For m > 3,

e |55+ 2=



31

In the case of m = 1, £, consists only of the basis vector (1), so that

pr = [d/2] (3-4)

In the case of m = 2, L,, consists of the basis vectors (14, (1/¢/2 | 0ld/2] | 114/2])),

By careful inspection, we can see that p, = p; + Hﬂ / ZJ, which is attained by a

vector that is of distance p; from £, in its first d bits,® and of distance H%W / 2J from
the remaining [g] bits. Thus,

d/2
o= lay2) + | 121 35)
Since the parameters of a lexicode are determined by the covering radius of the

preceding codes in the lexicographic construction, we may combine equations 3.4

and 3.5 to give a closed form for the parameters of lexicodes of dimensions 1, 2, and
3:

Dimension Parameters
1 (d,1,d)
2 (d+[d/2],2,d)
3 (d+2{d/21—‘%‘,3,d)

Figure 3.2 plots the length of the dimension 3 lexicodes versus their minimum dis-
tance. All the lengths plotted seem to be those of optimal linear codes.
Before we continue with the proof, we introduce a convenient combinatorial

lemma.

Lemma 3.3.2 Ifa > 3b > 0 then
b—1
a a
(b> 33 () (3.6)

30ne such vector would be 000...0111...101, but any similar type of permutation will do, as
long as it does not complement the less significant bits of the second generator of L.




32

160+

140+

120+

100+

80

a0t

20+

0% 20 40 60 g0 160

Figure 3.2: The length of the dimension 3 lexicodes plotted versus their minimum distance d. The
slope of the line tends towards 7 = 1.75.

Proof It is well known (s.fr. [7, p. 122]) for binomial distributions that, for

0<b<ap:
b—1

ay i — _b(L—p)(a) , —b
1—-p)* ' < —= 1—p)° 3.7
> (§)pa-mr <R ()Pa-w (3.7
Setting p = 1/2 in equation (3.7) gives us the following relation:

()>G-9%(;)

Since we assumed a > 3b, we have that § —2 > 1 and the lemma is proved.

We now have the necessary tools for the proof of the theorem.



33

Proof of Theorem 3.3: Since we always have py = 0 and p; = [gj (from equa-

tion (3.4)), with corresponding ng = 0, ny = d, nog = d + (%1 = (—d], it is sufficient

2
for us to consider only those cases where n,, > ny = [%1, where the theorem is not

trivial.

Now, from basic coding theory, we know that each vector in Fo™"' of weight <

nm—l)

t=|%| must be a unique coset leader for L,_;. Furthermore, there are ("~

vectors of weight ¢, and Zf;(l, (""’.‘1) vectors of weight < ¢t in L,,_1.

1

We now apply Lemma 3.3.2 under the substitutions a — n,, ; and b — ¢

()2 ()

Thus, by the pigeon-hole principle applied to Lemma 3.2.1, there must be at least

to get:

one coset leader [ € L,,_; with weight ¢, whose buddy, 3(I) also has weight at least
t. For this pair, we may pick a = 0l2/2114/2] (where, in this case, A = d — p,,_1), to

get:
pm > min{wt(a | 1), wt (@ | B,(1))}
d— pm-1
_ {TPJ +t

|l

|

Inequality (3.3) is a bit unwieldy, so it is helpful to prove some corollaries that better
explain its usefulness.

The following corollary is an obvious simplification of inequality (3.3):

Corollary 3.3.1

d—1 d Pm-1
> || +=— — .
pm_{ 5 J+2 5 1 (3.8)
> d— ”"’2‘1 —2 (3.9)

We may also use Theorem 3.3 to attain a bound on the lengths of lexicodes.

Corollary 3.3.2
4



34

Proof: Consider summing inequality (3.9) over allm =1...k:

k k
3z 3 (015 -2)
m=1 m=1

k-1

> h(d=2) = 5 3 pm

m=0

Noting that py = 0 and p;, > 0, we may bring the right-hand summation over to the
left hand side to get:

k—1

3
5 2 Pm 2 k(d—2) = po+ px (3.11)
m=1

Furthermore, according to the lexicographic construction,
k

k
i=0 i=1
so that we may now conclude the proof:

k
ng < kd — sz’
=1

2
< kd — g1<:(d—2)
k
< g(d+4)

|

Note that, in the case that d is odd, L%J = ‘12;1 so that we can attain a trivial

improvement:
k
Nk S g(d + 1)
Also, we may rewrite Corollary 3.3.2 in terms of the dimension:
E> 3n
—d+1
and see that this bound is asymptotically better than that of Theorem 3.5 in [6]:

)
n—2—|logy(n—1)| ifd=4,

(3.13)

in—d_12 ifd=0 d4),d+#4,8,
k2< [ 2d—4 J 1 (HlO ) ?é (314)
2], ifd=8, n>18,

\ | tn=d=14 | ifd=2 (mod 4).

2d—4



35

Bound on Dimensionsvs. Length for d=10 Bound on Dimensionsvs. Length for d=16

1207 / g

e 60 -~
80} L
f_r"
601 40
— _,_rF'Jf
-~
407 _,-r"f
20 e
207 / -~
0 100 200 . 300 400 500 0 100 200 n 300 400 500

Figure 3.3: Lower bounds on lexicode dimension. The higher line depicts the bound in Corol-
lary 3.3.2 and the lower line depicts the bound 3.14 for the representative distances d = 10 and
d = 16. Clearly the bound in Corollary 3.3.2 is better.

Bound (3.10) asymptotically binds & > 3% whereas Bound (3.14) binds k¥ > 2%. In
fact, a close analysis of the two inequalities shows that Bound (3.10) is, overall, better
than Bound 3.14, and this improvement can be seen graphically in Figure 3.3.
Thus, we have attained both upper and lower bounds for the parameters of lexi-
cographic codes based on the analysis of the permutation dictated by Lemma 3.2.1.
In fact, it should not be hard to generalize this bound to non-binary lexicographic
codes. Also it should not be difficult to improve the bound with a more careful
analysis that takes into consideration the structure of the permutation imposed by

adding a new vector to the code.



36

Chapter 4

Generalized Lexicographic Construction

In Chapter 3 we showed that the lexicographic construction can be used to generate
the lexicodes. However, many of the theorems and lemmas we proved in association
with the lexicographic construction (especially Theorem 3.2) are not limited to the
lexicodes and can be incorporated as part of a Generalized Lexicographic Construc-
tion (GLC'), which we rigorously define and explain in Section 4.1 along with several
other important definitions. In fact, it has come to our attention since the completion
of this work that the GLC codes seem to produce the B-greedy codes described in
[6].

In Section 4.2 we analyze how to compute three families of codes that result from
various restrictions of the GLC': standard lexicodes, trellis-oriented GLC codes, and
locally optimal GLC codes. The trellis-oriented GLC' codes are of particular interest
because they are (locally) optimized to reduce decoding complexity.

In Section 4.3 we develop a relatively fast algorithm that runs in time and space
O(2" **1) (where n and k are the length and dimension of the code respectively),
which computes subsequent codes in the GLC' for the families of codes described in
Section 4.2. In the specific case of d = 4, based on the work in [6], this algorithm
actually runs in linear time. Again, we have discovered that this algorithm bares an
uncanny resemblance to the parity-check matrix generator found in [6, p.16].

In Section 4.4 we show how the algorithm in Section 4.3 can be easily modified
to compute GLC codes with a bounded trellis state complexity, which are important
for real implementations with physical constraints.

In Section 4.5 we compile some results of computations carried out using the
algorithms developed in this chapter. We extend the table of constructed lexicodes
found in [9], demonstrate the improvements of trellis-oriented GLC' codes, and con-
struct codes with various trellis-state complexity bounds. In addition, we show how

trellis-oriented GLC' codes can also improve on the greedy algorithm of [24].



37

4.1 Terminology

We begin with a definition of the Generalized Lexicographic Construction.

Definition 4.1 Given:
e an (n,k,d) code C;
e 7(-) mapping each code to an integer between 0 and the code’s covering radius;

e w(-) mapping each code C' to a vector of Hamming distance r(C') from the

code.

The Generalized Lexicographic Construction over r and w is the family of codes
{GLC' (r,w,C) : i € Z}
where GLC' (r,w,C) (or, GLC? in context) is a function that returns a linear code

as follows:
e GLC? trivially returns the code C;

e GLC® returns the code obtained by adding the generator
v = (1n—r(GLci*1) | w(GLCi—l))
to the code GLC*!.

We may think of 7(-) as the effective covering radius of the code, and w(-) is a vector
that is as far as possible from the code within the effective covering radius. In context,
we may omit any of the parameters of GLC? (r,w, C) for sake of clarity.

The GLC' is quite general, and, in order to make it more understandable, we

present, the following examples.

Example 6 Consider the following functions r; and wy:

7(C) = the covering radius of C (4.1)
w;(C) = the lexicographically earliest vector of (4.2)
distance r(C) from C (4.3)

)

One can readily recognize, for the seed code S = {0%1¢}, that GLC' (r;,w;,S
is precisely the lexicographic construction which generates the lexicodes, so that

GLO (Tl, wy, S) = L;j



38

A simpler example is:

Example 7 Consider the following inputs:

re(C) =0
we(C) = 1" where n is the length of C
S = 000,111

Then GLC® (ry, we,S) will construct the family of codes generated by generator ma-

trices with the following form:

111 000 000 ... 111 000 000
111 111 000 ... 000 111 000
111 111 111 ...| ~ |000 000 111

In addition to the GLC', we will also make use of the following definitions in this
chapter.

We now define three similar ideas:

Definition 4.2 The location of a bit b in a bit sequence is the number of bits in a

sequence that are to the right of b, including the bit b.

The least significant location (also denoted Isl) of a bit sequence is the location of

the least significant bit in the sequence, which is the rightmost 1-bit.

The most significant location (msl) is the leftmost 1-bit in the sequence.
Thus, 1s1(11011100) = 3 whereas msl(11011100) = 8.
Definition 4.3 ([33], p. 28) The span of x, denoted Span(x), is the set:
{Isl(z),Isl(z) + 1,1sl(z) + 2,... ,msl(z)}
Thus, Span(11011100) = 3,4,5,6,7, 8.
Definition 4.4 ([33], p. 31) The Minimum Span Generator Matrix of a code (hereby

denoted MSGM ) is a generator matriz of the code in which no two generators have

either a least significant location or a most significant location in common.



39

For example, the generator matrix in Table 3.1 is not in MSGM form because
all the vectors share the same least significant location. However, [33] describes a
method that computes an MSGM from any given generator matrix and, when applied
to Table 3.1, the following MSGM for the same code results:

1111
111100
1011010
11110000

Table 4.1: MSGM for the (8,4,4) code in Table 3.1.

4.2 Choosing Subsequent Vectors

In this section we analyze the effect of using the r; function of equation 4.1 on the
GLC. In such a case, the main bottleneck becomes the computation of the w function
used in the GLC, which will have to compute vectors at the maximum distance from
a code (i.e. the covering radius). We develop algorithms that efficiently compute
GLC" (r;,w,C) for three different functions w that generate three families of codes
with particularly useful properties.

Method 4.2.1 in Subsection 4.2.1 puts forth the basic algorithm for computing
wy; that is to say, it describes the computation of the lexicographically earliest vector
of maximal distance from the code. Method 4.2.2 in Subsection 4.2.2, calculates a
function w; so as to generate a family of codes whose generator matrices have locally
minimal trellis complexity; we would like to thank G.D. Forney for directing us to
this particular avenue of research. We analyze Methods 4.2.1 and 4.2.2 with a few
corollaries in Subsection 4.2.3. Finally, Method 4.2.3 in Subsection 4.2.4 computes a

function w, that generates a family of codes that has locally optimal parameters.

4.2.1 Standard Lexicographic Construction

We showed in Example 6 that for the seed code S = {0%, 1%}, GLC? (r;, w;, S) generates
the lexicodes, but we never showed how to calculate either of the component functions
r; or w;. We now state a method for calculating w; for an arbitrary code C with
parameters (n, k,d) and MSGM G, that depends on being given a set of vectors V C

F7 of distance p from C. Determining this set V is the bottleneck in computational



40

implementation of the GLC, and it is addressed in Section 4.3 together with the

calculation of 7.

Method 4.2.1 Given a set of vectors V C F7 of distance p from C, which is gen-
erated by an MSGM G, the following method returns the lexicographically earliest
vector among the cosets represented in V. In the case that )V contains all the vectors

of distance p from C, the result of this method is precisely w;(C).

for v €V do

while the msl of some row G; of G equals the location of any 1-bit of v
do v v+ Gj; {step *}
store the modified v;

among all stored v, return the lexicographically earliest

It is important to note that this method is different from computing the matrix

multiplication v * G because of its iterative nature.

Proof of the method: We will prove that, for each v € V, the while loop computes
the lexicographically earliest vector in the same coset as v. Thus, the lexicographically
earliest vector among all the cosets represented by V must be among the stored
vectors, so that the among line in the method will return the lexicographically
earliest vector among all the cosets represented.

To see that the while iteration does as we claim, we must first note that it
actually stops at some point (implying that the method halts). This is true because,
the msl of the modified v (after execution of step *) must be to the right of the msl
of the pre-modified v (before execution of step *); we are adding two vectors with
the same msl in step * so their sum must have its msl at a lower location. Since
each bit sequence has a finite number of bits n, the while iteration may not iterate
more than n times.

Now we progress with the meat of the proof, where we assume the method has
chosen some v € V and intend to show that the while loop computes the lexico-

graphically earliest vector in the same coset as v. From [33, Thm 6.11 and Lemma



41

6.7] we know that the rows of G have the predictable support property, meaning that:

Span (Z Gj) = U Span(G,) (4.4)
jed jeJ

for every subset J C {1,2,3,...,n}. Now suppose vpeg is the lexicographically earliest

vector in the same coset as v, but that v’ is the vector stored by the method upon

exit from the while loop. Let us denote the difference between these two vectors,

which we wish to be 0, as follows:

Vaiff = (Vbest — V') (4.5)
One should note that v, vpes, and v’ are necessarily in the same coset of C because
v and wvhey are defined so, and v’ is derived from v only by adding code vectors
(specifically, the generators of GG) keeping it in the same coset as v. Moreover, since
v and v’ are in the same coset, vg;g must be a code word of C.

Since vgir € C, we can express vqir as the sum over some subset Jgig C {1,2,3,...,n}

of the rows of G-

Vaif = Z Gj (46)

J€Jais
Then, by the predictable span property of G,
Span(vqir) = U Span(G)) (4.7)
J€Jainr

We are now in a position to show that vgg cannot have any significant bits,
implying that it must be 0. This, in turn, would imply that vpe = v' which proves
the theorem.

Assume (for sake of contradiction) that the most significant location of vg is
k. By equation (4.5), there are only two ways of getting a 1 in this location of vgg:
either vpe has a 0 and v’ a 1 in the £’th location or vice versa. The latter case
is clearly impossible under these conditions because it would imply that v’ comes
lexicographically before vhes;!, a contradiction of the definition of vpe;. Hence, it
must be that vyt has a 0 and v’ a 1 in the £’th location.

Using equation (4.7) we also see that there must be some generator vector G;

whose most significant location is the same the most significant location of vg,

Since k is the most significant location of vg;f, locations k and higher of vg;x must be 0 implying
that vpesy and v’ coincide at those locations. Thus, the bit at location k would determine the
lexicographic order of v' and vpegs-



42

which is at location k. However, by the previous conclusion we know that v’ also
has a 1 at location &, which is a contradiction of the terminating condition of the
method.

Thus, our assumption above must have been wrong, and the most significant
location of vgs could not possibly be at location k, for any k, so that vgg must be
0. Therefore, we have shown that the while iteration returns the lexicographically
earliest vector in the same coset as v so that, by the discussion at the beginning of

this proof, the method acts as claimed.

4.2.2 Trellis-Oriented

The Viterbi algorithm was invented for the purpose of fast decoding of convolutional
codes and also linear block codes [2]. Forney [16] introduced trellises to simplify
the Viterbi algorithm. In addition, as we can see in [33], the number of edges and
vertices in a trellis determine the decoding complexity of the Viterbi algorithm, and
the BCJR trellis [2] minimizes this decoding complexity.

We can modify Method 4.2.1 to construct a family of codes whose generator
matrices have locally minimal trellis complexity. In order to understand what it
means for a generator matrix to have locally minimal trellis complexity, we make
use of the following relation between the numbers of vertices and edges in the BCJR
trellis on the one hand, and the form of the code’s MSGM on the other hand. This

theorem is slightly modified from its original to suit the purposes of this paper.

Theorem 4.1 ([33]: Thm’s 4.7, 6.1) Consider using the BCIR trellis to repre-
sent a code of dimension k and Minimum Span Generator Matriz G. Then, for this
trellis, the number of vertices at depth i, |V;|, and the number of edges linking depths

i and i+ 1, |E;;11], are given by the following formulae:
Vi| = ok—pi—fi
|Eji1| = 287 Pimfitt
where,
pi = [{j : sl(G;) < i}
fi= i :msl(G;) =i+ 1}



43

Thus, given a code C to which we would like to add a codeword c¢ using the
GLC(r;), we note that msl(c) is fixed by the covering radius of C. Thus, in order to
minimize decoding complexity on a local scale, we must pick ¢ to have the smallest
possible span, which in this case means that Isl(c) will be as high as possible. If
we pick c as the lexicographically latest vector, we are assured that it will minimize
trellis complexity, though not necessarily uniquely. Note also that we actually have
to pick the lexicographically latest wvector, and not just the coset leader in which
it resides or the lexicographically latest coset leader, in order to get the minimum
span desired. Thus, GLC* (r;, w;, C) has locally minimal decoding complexity if w; is
defined as follows:

wy = the lexicographically latest vector of distance r;(C) from C (4.8)
In fact, Method 4.2.1 can be easily modified to compute w;.

Method 4.2.2 Given a set of vectors V C F¥ of distance p from a code C which is
generated by an MSGM G, the following method returns the lexicographically latest

vector among the cosets represented in V.

for v €V do

while the Isl of some row G; of G equals the location of any 1-bit of v

do v« v+ Gy;
store the modified v;

among all stored v, return the lexicographically earliest

Notice that the only difference between this method and Method 4.2.1 is that
we are using least significant locations rather than most significant locations in the

while condition.

Proof of the method: The proof of this method is very closely linked to the proof
of Method 4.2.1. Let us modify the definition of the location of a bit as so:

Definition 4.5 The reverse location a bit b in a bit sequence is the number of bits

in a sequence that are to the left of b, including the bit b.

Now, we can just replace “location” in the proof of method 4.2.1 with “reverse loca-

tion” and method 4.2.2 is proved.



44

4.2.3 Corollaries
We now analyze Methods 4.2.1 and 4.2.2 by means of a few corollaries that relate

their effectiveness.

Corollary 4.2.1 If the codeword c returned by method 4.2.2 is added to the MSGM

G, the new generator matrix formed is also in an MSGM.

That no two codewords share a most significant location is evident from their
construction method. That no two codewords share a least significant location derives
from the fact that while loop in method 4.2.2 is actually just a specific version of the
greedy method described in [33, p. 32] for finding a minimal span generator matrix.

It is also of some interest to note that both method 4.2.1 and method 4.2.2 run

in relatively small time and space.

Corollary 4.2.2 For an input set V of cardinality |V| containing codewords drawn
from a k-dimensional code, methods 4.2.1 and 4.2.2 require time O(k|V|) and space
o(|V]).

The space bound is clear because exactly one lexicographically earliest vector is
stored for each vector v € V, and determination of the lexicographically earliest vector
can be done in place. The time bound derives from the remark at the beginning of
the proof of method 4.2.1. Specifically, the while iteration in these methods takes,
at most, time k£ (one iteration for each row of G) if done in left-to-right order. The
for iteration iterates the while clause |V| times. Finally, the among line is merely
a search for minimality, which naively requires time O(|V|). Thus, the overall time
is O(k) = |[V]|+O(|V]) C O(k|V]).

The Methods 4.2.1 and 4.2.2 will be applied, in Section 4.3, to the set of coset
leaders that are of distance p from the code C. In this way, they will determine
how to extend a code both by the standard and by the trellis-oriented version of the
lexicographic construction.

4.2.4 Locally Optimal Codes
Given a code C, Theorem 3.2 describes all the coset leaders of the subsequent code in

the Generalized Lexicographic Construction, GLC?! (r;,w, C). This, in turn, enables



45

us to pick C in such a manner as to maximize the covering radius of GLC!, so that
GLC? would have the best possible parameters achievable among all functions w used
in the GLC. In other words, GLC? will be locally optimal over r;. This idea can be
extended to any size of locality (i.e. to make GLC™ optimal), and the respective

method follows.

Method 4.2.3 Given any set V C F% of all vectors of distance p from C together
with the coset leaders of C, the following method returns the vector v such that
there exists some function w,, with w,(C) = v that produces the optimal length,
dimension, and covering radius for GLC™(w,). Applied iteratively, this method will,

indeed, determine the value of this function w, on all subsequent codes in the GLC.

Temporary Code <— L,,;
if i > 1 then

for each v € V do

add v to the Temporary Code and decrement i.

compute all the coset leaders in Temporary Code by using Theorem 3.2,

and determine those coset leaders of distance p from the code;

recursively run method 4.2.3 on Temporary Code and store the re-
turned covering radius if it s bigger than any previously returned

covering radius;

delete v from Temporary Code and increment i.

return the stored covering radius;

else for each v € V do

add v to the Temporary Code.

compute all the coset leaders of Temporary Code using the Theorem 3.2

and store a leader of greatest weight

return the leader of greatest weight and its corresponding weight (which

is the covering radius of the generated code)



46

Proof: This method is really just an exhaustive search over all maximum-distance
coset leaders by means of Theorem 3.2. Though Theorem 3.2 greatly simplifies the
method over a straight-forward brute force approach, method 4.2.3 is, nevertheless,

unwieldy for large 7 or d.

4.3 The Algorithm

We may now combine the results of Section 4.2 and Section 3.2 in Chapter 3 to
describe an algorithm for computing all aspects of the GLC for the standard lex-
icographic construction (i.e. GLC? (r;, w;, C)), the trellis-oriented GLC codes (i.e.
GLC" (1, wy, €)), and the locally optimal GLC codes (i.e. GLC" (r;, w,, C)).

Algorithm 4.1 One may generate GLC' (r;, w, C) for w being w;, w;, or w, by using
the following algorithm. We assume that C has minimum distance d and that its coset

leaders and their respective syndromes are given.

1. GLCY is trivially the code C; we store its cosets and their syndromes, as is given

in the input to the algorithm, in the array COSETS;
2. Set v to some maximum weight coset leader in COSETS
3. for i going from 1 to m — 1 do

(a) for each coset [ € COSETS do

compute [ + v and scan all syndromes stored in COSETS to determine
the coset leader of the coset containing [ 4+ v. This is the buddy £(1);

store both [ and (3(l) are in a temporary array BUDDIES;

(b) {Now, we have each coset and its buddy stored in the array BUDDIES, so
we proceed to generate the set of cosets for the i + 1°th code}

(c) delete the contents of the array COSETS;
(d) for each coset [ € COSETS do

for each length-A {= (d — p)} bit-sequence a whose complement, @ has

not yet been iterated do
if wt(a|l) <wtla|B,(l)] then



47

add [a | [] to the array COSETS;
else

add [a | B,(1)] to the array COSETS;
endif

(e) {Now we have the set of new coset leaders for the i + 1°th code}
(f) set p «— the maximum weight of coset leaders in the array COSETS;

(g) search through COSETS and record each coset leader of with p in an array
RHOS

(h) run method 4.2.1 or method 4.2.2 or method 4.2.3 to determine which

coset leader in ¢ € RHOS to add to the code constructed so far

(i) Add v <— (c[1%7*) (unless d — p < 0, in which case v <— ¢) to the
previously generated GLC’ to create GLCt!;

4. Return GLC™

Proof of the algorithm: Step 3a merely computes the buddy of each coset as it
is defined in Definition 3.1. Then, step 3d merely creates the set S’ as per Theo-
rem 3.2. Finally, steps 3f, 3g, and 3h pick a vector to add to the code consistent with
either the standard lexicographic construction of method 4.2.1 or the trellis-oriented

construction of method 4.2.2 or the locally optimal construction of method 4.2.3.

O

As promised, we can also bound the time and space complexity of Algorithm 4.1.

Corollary 4.1.1 Algorithm 4.1 runs in time O(2"~™) and space O(2"~™), if
method 4.2.1 or 4.2.2 is chosen in step 3h.

Proof: To understand the space bound, we note that there are two arrays stored:
COSETS, BUDDIES. In the j’th iteration of step 3, each of these contains O(# of cosets
in the code L,,) = O(2"% 7). Since they are rewritten at each iteration, the overall
space bound is O(2("»~™)). The time bound is slightly more complicated. During any
iteration j of step 3, we have the following breakup of time (note that d is constant

for any particular run of the algorithm):



48

Step 3a: O(# of cosets in L;)= O(2"i77).
Step 3d: O(# of cosets in L;) x27° = O(2"77 x 2%) = O(2" 7).
Steps 3f,3g, and 3h: O(# of cosets in L;)*3 = O(2"77).

The bound for step 3h is based on corollaries 4.2.1 and 4.2.2. Thus, all together, the
algorithm requires time O(2"% — j) for each iteration. Thus, summing for j = 2...m,

we see a total time O(2"=~™*1) for the algorithm.

This bound is particularly good for GLC! (1, w;, C) with d = 4.

Corollary 4.1.2 For d = 4, Algorithm 4.1 over r; and w; requires linear time and

space.

Proof: [6, Theorem 3.5] derives the following bound for the binary lexicodes with

minimum distance d = 4:

k=mn—2—|logy(n—1)] (4.9)
Under this bound, n — k = O(log(n)) so that Algorithm 4.1 requires time and space
O(2"*1) = O(n).

O

This algorithm has computed lexicodes well beyond those in the tables of [9], for
small d. It’s main weakness is that, as d gets large, the number of cosets in the code
grows very fast, thereby requiring a lot of memory and time for algorithmic compu-
tations. The computations of this algorithm can be found in the appendices, along
with the trellis complexities of the resultant codes, both using the standard construc-
tion and the trellis-oriented construction. In the examples present, the standard and
trellis-oriented construction yielded mostly the same code parameters, which is quite
a mystery. Nevertheless, the trellis-oriented construction does seem to provide codes

with a significantly better trellis complexity than their standard counterparts.



49

4.4 State Bounded Codes

There is a modification of Algorithm 4.1 that is of practical significance. Namely,
it is sometimes useful to bound the state complexity of the codes generated so that
they can be handled by a real system with real complexity constraints. In fact, we
can modify steps 3f, 3g, and 3h of algorithm 4.1 as follows in order to generate codes

with state complexity bound g:

Modification 4.1.1 for each r from p down to 1 do

run method 4.2.2 on each coset leader ¢ of distance r from C (found in COSETS),
computing the resulting state complexity of the linear code determined

by CU {1 "|c} directly from the generator matriz formed (as per The-
orem 4.1)

pick the first ¢ with resultant state complexity s < [3;

set p to the effective covering radius wt(c);
Modification 4.1.1 thus generates GLC! (rp, w,, C) where:

r5(C) = the maximum distance from v to C over all v such that the
linear code determined by C U {17 °:© |y} has maximum state
complexity (8

wp(C) = the lexicographically latest vector v of distance r(C) from
C with the property that the linear code determined by C U

{1790 |y} has maximum state complexity 3

By making wy(-) the lexicographically latest vector, we ensure that the added
generator will have minimum span, so that by the discussion in Subsection 4.2.2, the
returned code will have locally optimal decoding complexity. It is also of value to
note that r, < r; so it is very likely that the codes constructed will have different pa-
rameters from the standard lexicodes. Nevertheless, it is clear that Modification 4.1.1
is an exhaustive search for the highest weight coset leader (which will, in turn, form
the lowest length constructed code) that maintains the state complexity bound f.
One of the side-effects of this modification is that it requires a search through each of

the coset leaders in COSETS and slows down the overall running time of algorithm 4.1;



a0

however, a careful analysis will show that this slowdown does not affect the order of

the running time of the algorithm by more than a factor of the length of the code.

4.5 Computations
4.5.1 Data

We have computed several parameters of the specific classes of the GLC studied.
First, we have computed the lengths and dimensions of the GLC' codes constructed
using Methods 4.2.1 and 4.2.2. We have also computed two characteristics of the
BCJR trellis attained from these constructed codes: the decoding complexity of
the trellis and the maximum number of states in any of its levels. The decoding
complexity is a measure of the number of steps needed for decoding with the Viterbi
algorithm, and hence is a good characteristic of trellis complexity as shown in [33, 44].
As mentioned before, [33] demonstrates that, for any trellis with edges E and states
V', the decoding complexity is 2|E| — |V| + 1. The maximum number of states in the
trellis is an important measure of complexity because it strongly affects the decoding
complexity of the trellis; the more states a trellis has, the more places there are for
bifurcations, and, in general, the higher the decoding time.

In all cases, the decoding complexity and the maximum number of states in the
corresponding trellis is computed using Theorem 4.1. For the trellis-oriented GLC
codes this is particularly easy because Corollary 4.2.1 tells us that the computed
generator matrix will be in MSGM form. As an example, the (64,50,6) trellis-
oriented lexicode is shown in Figure A.1; it contains as subcodes all the trellis-oriented
lexicodes of dimension less than 50, where the ¢’th trellis-oriented lexicode can be
deduced by restriction to the first ¢ generators. The p;’s and f;’s of Theorem 4.1 can
be read from from the generator matrix.

We have also implemented Modification 4.1.1 to Algorithm 4.1 to compute trellis-
oriented GLC codes with bounds on the state complexity of the decoding trellis.
Tables B.4, B.5 and B.6 show that the state complexity bound has a substantive
effect on the quality of the codes achieved. Furthermore, these tables show that,
in some cases, this GLC-based construction is better than the state-bounded codes

computed in [48] using a different technique.



ol

4.5.2 Analysis

Actual parameters of some lexicographic codes can be seen in Tables B.1 to C.4. For
the minimum distance d = 4, the standard lexicodes have exactly the same param-
eters as the trellis-oriented GLC codes (for all the codes that we have calculated).
Since Algorithm 4.1 runs in linear time and space for d = 4 (by Corollary 4.1.2),
Table B.1 represents a very small part of the table that can actually be computed.
One should be able to compute codes up to dimensions 2'® = 65536 with even a home
computer.

The minimum distance d = 6 codes become more interesting, because they present
a visible differences in trellis complexity between the standard lexicode construction
and the greedy, trellis-oriented construction. Table B.2 shows the computed parame-
ters of these codes. The difference between their trellis structures can be most visibly
seen in Figure C.1 which relates the decoding complexity for the two construction
methods. There is a “bouncing” relationship where at some points the trellis-oriented
construction produces much better trellis complexities than the standard lexicodes,
yet, at other points, it produces the same (or slightly worse) trellis complexities. It
is conceivable that this relationship continues as length increases.

The minimum distance d = 8 codes show similar characteristics to the d =
6 codes. Their parameters are shown in Table B.3 with the corresponding fig-
ures C.2 and C.4 depicting the decoding complexities and maximum trellis states
respectively.

Figure 4.1 shows that the (32,16, 8) trellis-oriented GLC' code achieves a better
state complexity than the (32,16, 8) extended BCH code heuristically minimized in
[24] as is predicted in that paper. This is also true of the (31,16,7) trellis-oriented
lexicode as compared to the (31,16,7) BCH code, as seen in Figure 4.2.

Trelli: 0-1-2-3-4-5-6-7-6-7-8-9-8-9-8-7-6-7-7-7-6-6-5-4-3-4-4-4-3-3-2-1-0
ext BCH: | 0-1-2-3-4-5-6-7-6-7-8-9-8-9-8-7-6-7-8-9-8-9-8-7-6-7-6-5-4-3-2-1-0

Figure 4.1: State-complexity comparison of a trellis-oriented code and extended BCH code. Specif-
ically, we compare the (32,16, 8) trellis-oriented GLC code (Trelli) to the (32,16, 8) extended BCH
code (ext BCH).

In all, the trellis-oriented GLC codes produce quite good BCJR trellises, some
of which are better than those produced by other heuristics. Moreover, the trellis-

oriented codes enjoy the advantage of being close to the good code parameters that



92

Trelli: | 0-1-2-3-4-5-6-6-7-8-9-8-9-8-7-6-7-6-6-6-5-5-4-3-4-4-4-3-3-2-1-0
BCH: | 0-1-2-3-4-5-6-6-7-8-9-8-9-8-7-6-7-8-9-8-9-8-7-6-7-6-5-4-3-2-1-0

Figure 4.2: State-complexity comparison of trellis-oriented code and regular BCH code. Specifically,
we compare the (31,16, 7)trellis-oriented lexicode (Trelli) and the (31,16,7) BCH code (BCH).

are produced by the lexicographic construction. Finally, the Algorithm 4.1 provides a
method for generating the code parameters of the lexicodes well beyond the length 44

lexicodes that were computed in [9], as can be seen in Appendix 3.2.



23

Chapter 5

Conclusion

5.1 Summary

We have studied several important areas in algebraic coding theory from a computa-
tional perspective, offering efficient algorithms and computed results where possible.
Our two major areas of research concerned the optimization of non-linear codes, and
the improvement of a specific class of good linear codes.

Our particular method of non-linear code optimization involved relaxation of
traditional minimum distance constraints. We developed an expression for the prob-
ability of decoding error of a code, which served as a better measure of a code’s
performance than the minimum distance of the code. In addition, we have demon-
strated the optimality of the Perfect Codes using this performance measure. We have
also developed and implemented algorithms for optimizing and augmenting codes for
better performance in error-correction over a channel. Finally, we have developed
and implemented an interactive visualization program for manually improving code
performance.

The basis of our work in the study of linear codes was presented in Theorem 3.2,
which supplied us with a fundamental understanding of the coset structure of codes
created by the Generalized Lexicographic Construction. With this understanding we
have improved upon the bounds of [6] on the very good code parameters of lexicodes.
We have also developed a relatively fast algorithm for generating the Generalized
Lexicographic Construction, which we have later discovered to be very similar to
the algorithm in [6, p.16]. We have studied how this algorithm can be directed to
produce standard lexicodes and locally-optimal codes. In addition, we have adapted
this algorithm to design trellis-oriented codes and codes with bounded trellis-state
dimensions for use in fast decoding.

Our implementation of this algorithm was used both to extend the list of known

lexicodes first published in [9], and to show how our greedy heuristic involved in mak-



o4

ing trellis-oriented codes can significantly effect the trellis-complexity of the resulting
code, even improving on the greedy algorithm in [24] as predicted in that paper.
Moreover, our computations of trellis-state bounded codes show some improvement

over the similarly designed codes in [48].

5.2 Future Directions

Many possibilities for improvements remain, and many questions remain unanswered.

The code optimization algorithms in Chapter 2 can probably be improved by
real genetic algorithms and their implementation speeded up by making use of their
inherent locality for massive parallelization. These algorithms can also be guided
heuristically by the probability of error expression we developed, which naturally
bounds which codes can and cannot be easily improved. Finally, the implementation
of the visualization in the same chapter becomes too cumbersome and slow for codes
of greater than 15 dimensions, so that improvements are needed.

As concerns Chapter 3, we would like to see the lexicographic construction (and
the GLC) generalized to non-binary fields, with Theorem 3.2 updated accordingly;
we do not believe that this would be too difficult a task, and, in fact, it seems that [6]
has already researched this idea. Finally, based on empirical data and the generality
of our analysis, we strongly suspect that the bounds of Section 3.3 can be greatly
improved by taking into account the specific structure of the cosets of a lexicode, or
by a more sophisticated count of the worst case coset-buddy pairings, and we have
initiated work in this direction.

Chapter 4 poses the most interesting questions of this paper. First of all, there
is a peculiar resemblance between the code parameters of the standard lexicodes and
the trellis-oriented GLC codes; in the case of d = 4 it seems that these two families
of codes are exactly the same. However, for higher distances, the parameters only
seem to differ for a small set of codes. It is also of interest to see if Algorithm 4.1
can be modified to prevent the exponential memory usage which is the bottleneck
of current implementations. Of special consideration would be to determine if there
are any coset leaders that could never affect the covering radius (in which case they
need not be stored in memory). Finally, all the algorithms in this chapter can be
applied from an arbitrary start point, that is from any given code; as [10] points

out, lexicodes are very similar to laminated lattices, and lexicographic extension can



95

be seen as the counterpart of lamination, which produces some of the best known
lattices. It would be interesting to run these algorithms on known, optimal codes

and to see what parameters of extended codes will be achieved.



26

Appendix A

Sample Algorithm Output

The following is a sample output from our implementation of Algorithm 4.1, where

method 4.2.2 is used to construct the generator matrix of a trellis-oriented GLC code.



1

10

110

1 110

11 001
110 100
1 111 011

10
111
101
010
001
000
011
010
101

11
110
001
111
111
100
011
111
010
111
000
000

11
110
111
110
101
100
010
011
010
100
100
000
100
000

11
100
110
000
110
010
101
100
000
100
000
000
000
000
000
000
000

Figure A.1:

11
110
010
111
011
110
010
100
000
000
100
001
000
000
010
000
000
000
000
000

11
110
111
110
000
110
111
001
100
001
010
000
000
000
000
000
000
000
010
001
000
000
000

10
111
111
110
000
101
110
010
100
100
000
110
100
000
000
000
000
000
000
000
000
000
000
100
000

10
101
110
010
111
100
011
010
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

11
111
100
101
010
101
001
101
000
000
100
000
001
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

11
111
011
110
011
101
100
110
110
010
000
000
000
000
000
100
000
010
000
000
001
000
000
000
000
000
000
000
000
000
000
000
000

11
101
101
110
110
001
000
101
000
100
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

111
101
111
111
011
111
000
100
001
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

11
110
100
111
000
010
100
010
100
000
000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

11
111
101
110
101
000
111
100
100
000
100
000
000
000
000
000
000
100
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

11
110
100
000
010
110
101
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

11
110
111
110
111
101
110
000
000
101
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

111
110
101
100
011
000
010
000
000
000
000
000
000
000
000
000
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

The (64,50,6) trellis-oriented GLC code.

111
111
100
010
000
000
100
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

111
000
100
010
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

57



28

Appendix B
G LC Code Parameters

We compute constructions of the various GLC codes studied in the paper.

B.1 Lexicodes and Trellis-Oriented GLC codes

The following tables contain information about the lexicodes and the trellis-oriented
GLC codes generated by Algorithm 4.1 for distances d = 4, d = 6, and d = 8. For
all of these distances, we were able to compute lexicodes well beyond the length 44

boundary of the codes computed in [9]. For each constructed code, we computed:
e the length of the code;
e the dimension of the code;

e the maximum number of states found at any depth of the BCJR trellis repre-

senting the code;

e and the value 2|E| — |V| 4+ 1 which represents the decoding complexity of the
Viterbi algorithm when run on the BCJR trellis representing the code.

Where compared parameter values are equal between the two types of codes, we have

combined their columns into one column, with a shared value centered within it.



Table B.1: Parameters of d = 4 codes. We examine the following
parameters for lexicodes and trellis-oriented GLC codes: length,
dimension, maximum number of states and the number of steps
required for Viterbi decoding (2|E| — |V| + 1) using the BCJR

trellis.
Dim- Lexicodes | Trellis- Lexicodes | Trellis- Lezxicodes Trellis-
ension oriented oriented oriented
Length Length States States 2|1E| - |V|+1]| 2|E|-|V]+1

1 4 1 9

2 6 2 19
3 7 3 39
4 8 3 55
5 10 3 69
6 11 3 107
7 12 3 123
8 13 4 235
9 14 4 259
10 15 4 331
11 16 4 355
12 18 4 369
13 19 4 407
14 20 4 423
15 21 4 563
16 22 4 587
17 23 4 659
18 24 4 683
19 25 5 1,219
20 26 5 1,243
21 27 5 1,315
22 28 5 1,339
23 29 5 1,603
24 30 5 1,627
25 31 5 1,699
26 32 5 1,723
27 34 5 1,737
28 35 5 1,775
29 36 5 1,791
30 37 5 1,931
31 38 5 1,955
32 39 5 2,027
33 40 5 2,051
34 41 5 2,643
35 42 5 2,667
36 43 5 2,739
37 44 5 2,763
38 45 5 3,027

continued on next page...




(continued from previous page) Parameters of the d = 4 codes

Dim- Lexicodes | Trellis- Lexicodes | Trellis- Lezicodes Trellis-
ension oriented oriented oriented
Length Length States States 2[E[—[V[+1 | 2x[E[-]V][+1
39 46 5 3,051
40 47 5 3,123
41 48 5 3,147
42 49 6 5,491
43 50 6 5,515
44 51 6 5,087
45 52 6 5,611
46 53 6 5,875
47 54 6 5,899
48 55 6 5,971
49 56 6 5,995
50 57 6 7,027
51 58 6 7,051
52 59 6 7,123
53 60 6 7,147
54 61 6 7,411
55 62 6 7,435
56 63 6 7,507
57 64 6 7,531
58 66 6 7,545
59 67 6 7,583
60 68 6 7,599
61 69 6 7,739
62 70 6 7,763
63 71 6 7,835
64 72 6 7,859
65 73 6 8,451
66 74 6 8,475
67 75 6 8,547
68 76 6 8,571
69 i 6 8,835
70 78 6 8,859
71 79 6 8,931
72 80 6 8,955
73 81 6 11,411
74 82 6 11,435
75 83 6 11,507
76 84 6 11,531
77 85 6 11,795
78 86 6 11,819
79 87 6 11,891
80 88 6 11,915
81 89 6 12,947

continued on next page...




(continued from previous page) Parameters of the d = 4 codes

61

Dim- Lexicodes | Trellis- Lexicodes | Trellis- Lezicodes Trellis-
ension oriented oriented oriented
Length Length States States 2[E[—[V[+1 | 2x[E[-]V][+1
82 90 6 12,971
83 91 6 13,043
84 92 6 13,067
85 93 6 13,331
86 94 6 13,355
87 95 6 13,427
88 96 6 13,451
89 97 7 23,251
90 98 7 23,275
91 99 7 23,347
92 100 7 23,371
93 101 7 23,635
94 102 7 23,659
95 103 7 23,731
96 104 7 23,755
97 105 7 24,787
98 106 7 24,811
99 107 7 24,883
100 108 7 24,907
101 109 7 25,171
102 110 7 25,195
103 111 7 25,267
104 112 7 25,291
105 113 7 29,395
106 114 7 29,419
107 115 7 29,491
108 116 7 29,515
109 117 7 29,779
110 118 7 29,803
111 119 7 29,875
112 120 7 29,899
113 121 7 30,931
114 122 7 30,955
115 123 7 31,027
116 124 7 31,051
117 125 7 31,315
118 126 7 31,339
119 127 7 31,411
120 128 7 31,435




Table B.2: Parameters of d = 6 codes. We examine the following
parameters for lexicodes and trellis-oriented GLC codes: length,
dimension, maximum number of states and the number of steps
required for Viterbi decoding (2|E| — |V| + 1) using the BCJR

trellis.
Dim- Lexicode | Trellis- Lexicode | Trellis- Lezicode Trellis-
ension oriented oriented oriented
Length Length States States 20E|—|V]+1| 2E|-|V]+1

1 6 1 13
2 9 2 27
3 11 3 55
4 12 4 111
5 14 4 181 141
6 15 5 | 4 335 215
7 16 5 451 387
8 17 6 747
9 18 7 6 1,275 955
10 20 8 6 1,821 1,053
11 21 8 6 2,655 1,279
12 22 8 7 3,555 2,083
13 24 8 7 4,333 2,117
14 25 9 7 6,143 2,351
15 26 9 7 7,715 3,011
16 27 9 8 9,323 5,085
17 28 9 8 10,235 5,485
18 29 9 12,827 10,651
19 30 | 31 10 9 14,939 10,701
20 32 10 9 18,141 10,948
21 33 10 9 19,167 11,683
22 34 10 9 23,523 12,267
23 35 10 9 25,067 13,947
24 36 10 9 29,691 18,075
25 37 10 31,259 27,739
26 38 11 44,635 47,885
27 39 11 53,979 54,235
28 41 11 55,005 54,285
29 42 11 62,431 54,527
30 43 11 71,139 55,208
31 44 11 77,291 55,408
32 45 11 83,451 58,107
33 46 11 89,627 64,027
34 47 11 95,835 71,771
35 48 11 102,107 92,891
36 49 12 11 144,347 93,275
37 50 12 11 157,147 96,987
38 51 12 170,459 146,395

continued on next page...




(continued from previous page) Parameters of the d = 6 lexicodes

Dim- Lexicode | Trellis- Lezicode | Trellis- Lezicode Trellis-
ension oriented oriented oriented
Length Length States States 2Q[E[—[VI+1 |2+ [E[-[V][+1

39 52 53 12 178,651 146,493
40 53 54 12 190,939 146,783
41 55 12 203,229 147,555
42 56 12 215,519 150,251
43 57 12 221,667 151,085
44 58 12 240,107 151,835
45 59 12 252,411 157,275
46 60 12 253,979 172,763
47 61 12 267,867 204,763
48 62 12 277,211 206,811
49 63 12 302,043 275,951
50 64 12 308,699 277,467
51 65 12 328,155 279,003
52 66 12 336,347 299,483
53 67 12 348,635 301,019
54 68 13 541,147 488,923
55 69 13 565,723 498,139
56 70 | 71 13 571,867 498,189
57 72 13 602,589 498,431
58 73 13 639,455 499,107
59 74 13 664,035 500,843
60 75 13 688,619 505,083
61 76 13 700,923 505,883
62 77 13 704,027 516,699
63 78 13 704,859 518,363
64 79 13 707,291 526,299
65 80 13 750,555 560,603
66 81 13 787,931 564,699
67 82 13 791,003 668,123
68 83 13 819,675 671,195
69 84 13 14 834,011 913,883
70 85 13 1 930,267 916,955
71 86 13 14 954,843 938,459
72 87 13 14 979,419 956,891
73 88 14 1,487,323 1,030,619
74 89 14 1,490,395 1,055,195
75 90 91 14 1,518,043 1,055,293
76 91 92 14 1,548,763 1,055,583
Vi 92 93 14 1,659,355 1,056,355
78 93 94 14 1,683,931 1,056,459
79 95 14 1,782,237 1,058,491
80 96 14 1,806,815 1,059,483
81 97 14 1,880,547 1,066,843

continued on next page...

63



(continued from previous page) Parameters of the d = 6 lexicodes

Dim- Lexicode | Trellis- Lezicode | Trellis- Lezicode Trellis-
ension oriented oriented oriented
Length Length States States 2IE|=V|[+1 ]| 2%|E|—|V]+1
82 98 14 1,929,707 1,067,355
83 99 14 1,978,875 1,079,515
84 100 14 2,003,483 1,109,979
85 101 14 2,077,275 1,121,755
86 102 14 2,101,979 1,127,899
87 103 14 2,108,379 1,212,891
88 104 14 2,139,611 1,225,179
89 105 14 2,177,499 1,419,739
90 106 14 2,183,643 1,976,795
91 107 14 2,216,411 1,979,867
92 108 14 2,228,699 1,989,083
93 109 14 2,429,403 2,013,659
94 110 14 2,511,323 2,025,947
95 111 14 2,560,475 2,038,235
96 112 14 15 2,609,627 3,607,003
97 113 14 15 2,658,779 3,613,147
98 114 15 4,067,803 3,681,579
99 115 15 4,092,379 3,828,187
100 116 15 4,215,259 3,881,259

64



Table B.3: Parameters of d = 8 codes. We examine the following
parameters for lexicodes and trellis-oriented GLC codes: length,
dimension, max. number of states and Viterbi decoding complexity
with the BCJR trellis.

Dim- Standard | Trellis- Standard | Trellis- Standard Trellis-
ension oriented oriented oriented
Length Length States States 20E|—|V]+1 ]| 2/E|-|V]+1
1 8 1 17
2 12 2 35
3 14 3 71
4 15 4 143
5 16 4 195
6 18 5 341
7 19 6 647
8 20 6 779
9 21 7 1,547
10 22 8 2,395
11 23 9 4,219
12 24 9 1,475
13 28 9 4,529
14 30 9 4,777
15 31 9 5,463
16 32 9 5,515
17 34 9 7,645 5,693
18 35 9 12,671 6,143
19 36 9 12,803 6,275
20 37 10 9 24,267 7,691
21 38 10 9 25,115 8,539
22 39 10 9 26,939 10,363
23 40 10 9 27,195 10,619
24 42 10 31,805 17,853
25 43 11 41,791 33,087
26 44 11 41,987 33,288
27 45 12 65,227
28 46 12 67,163
29 47 12 72,571 78,203
30 48 12 72,827 78,459
31 49 50 13 12 135,611 80,317
32 50 51 13 12 169,019 87,108
33 51 52 13 12 248,123 88,643
34 52 53 13 248,507 137,547
35 53 54 14 13 427,579 138,331
36 54 55 14 13 431,419 142,208
37 55 56 14 13 442,171 142,459
38 56 57 14 442,555 274,875
39 58 14 487,997 308,283

continued on next page...




(continued from previous page) Parameters of the d = 8 lexicodes

66

Dim- Standard | Trellis- Standard | Trellis- Standard Trellis-
ension oriented oriented oriented
Length Length States States 2IE|—|V]I+1 |2« |E|—|V]+1

40 59 14 628,031 457,019
41 60 14 628,227 460,091
42 62 14 629,197 460,861
43 63 14 631,903 464,708
44 64 14 632,035 464,899
45 65 15 | 14 1,263,819 581,835
46 66 15 1,287,195 1,053,275
47 67 15 16 1,346,235 2,106,299
48 68 | 69 15 16 1,701,883 2,106,557




67

B.2 State Bounded GLC Codes

The following tables contain the code parameters for state-bounded GLC codes with
log-state bounds of 4 (i.e. 16 states maximum), 5 (i.e. 32 states maximum), and 6
(i.e. 64 states maximum) respectively. For each of these bounds, we list, in order of
code dimension, the length of the generated code for each of the minimum distances
4 through 8.



68

Dimension d=/4 d=5 | d=6 | d=7 | d=8
1 4 5 6 7 8
2 6 8 9 11 12
3 7 10 11 13 14
4 8 11 12 14 15
5 10 13 14 15 16
6 11 14 15 18 20
7 12 16 17 22 24
8 13 18 19 24 26
9 14 20 21 25 27

10 15 21 23 26 28
11 16 23 25 29 32
12 18 24 27 33 36
13 19 26 29 35

24 31
25 32
26 34
27 35
28 36
29 37
30 38
31 39
32 40
33 42
34 40
35 41
36 43
37 44
38 45
39 47
40 48
41 49
42 50
43 51
44 52
45 53
46 55
47 56
48 57
49 58
50 59

Table B.4: Codes with a trellis log-state bound of 4. Displayed are lengths of the codes generated
by Modification 4.1.1 to Algorithm 4.1 under a mazimum log-state bound of 4 (i.e. 16 states) for a
given dimension and minimum distance.



69

Dimension d=/4 d=5 | d=6 | d=7 | d=8

1 4 5 6 7 8
2 6 8 9 11 12
3 7 10 11 13 14
4 8 11 12 14 15
5 10 13 14 14 16
6 11 14 15 17 18
7 12 15 16 19 20
8 13 17 18 22 24
9 14 18 19 24 26

10 15 20 21 25 27
11 16 21 23 27 28
12 18 23 24 29 30
13 19 24 26 31 32
14 20 25 27 33 36

38 45
39 46
40 47
41 48
42 50
43 51
44 52
45 53
46 54
47 55
48 56
49 57
50 58

Table B.5: Codes with a trellis log-state bound of 5. Displayed are lengths of the codes generated
by Modification 4.1.1 to Algorithm 4.1 under a mazimum state bound of 5 (i.e. 32 states) for a
given dimension and minimum distance.



70

Dimension d=/4 d=5 | d=6 | d=7 | d=8

1 4 5 6 7 8
2 6 8 9 11 12
3 7 10 11 13 14
4 8 11 12 14 15
5 10 13 14 15 16
6 11 14 15 17 18
7 12 15 16 18 19
8 13 16 17 19 20
9 14 17 18 22 24

44 51 63
45 52 64

46 53
47 54
48 55
49 56
50 57

Table B.6: Codes with a trellis log-state bound of 6. Displayed are lengths of the codes generated
by Modification 4.1.1 to Algorithm 4.1 under a mazimum state bound of 6 (i.e. 64 states) for a
given dimension and minimum distance.



71

Appendix C

Comparisons

The following figures display comparisons of various parameters between the stan-
dard lexicodes and the trellis-oriented GLC' codes. Since comparisons are made only
between constructed codes with equal code parameters, these figures demonstrate
that, for equal code parameters, the trellis-oriented GLC codes have lower trellis

complexity than the plain lexicodes.



72

Viterbi Decoding Complexity for
Standard vs. Trellis-Oriented Lexicodes (d=6)

10000000

fffffff Equality line
2*|E|-|V|+1

1000000

100000

10000

1000

Trellis-Oriented (log)

100

10

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Standard Lexicodes (log)

Figure C.1: Decoding complexity comparison of d = 6 codes. A comparison of Viterbi decoding
complexity for the lexicodes and the trellis-oriented GLC codes with minimum distance 6.

Viterbi Decoding Complexity for
Standard vs. Trellis-Oriented Lexicodes (d=8)

10000000

fffffff Equality line
2*|E|-|V|+1

1000000

100000

10000

1000

Trellis-Oriented (log)

100

10

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Standard Lexicodes (log)

Figure C.2: Decoding complexity comparison of d = 8 codes. A comparison of Viterbi decoding
complexity for the lexicodes and the trellis-oriented GLC codes with minimum distance 8.



73

Maximum State Complexity for Trellises
of Standard vs. Trellis-Oriented Lexicodes (d=6)

16
------- Equality

14 —&— States

12
g 10
=
2
S 8 *
o
T
= 6

4

2

0

0 2 4 6 8 10 12 14 16

Standard Lexicodes

Figure C.3: Maximum state comparison of d = 6 codes. A comparison of the maximum number
of states in the BCJR trellis for the lexicodes and the trellis-oriented GLC codes with minimum
distance 6.

Maximum State Complexity for Trellises
of Standard vs. Trellis-Oriented Lexicodes (d=8)

16

fffffff Equality %
14 —e— States e
12

10

Trellis-Oriented
©

0 2 4 6 8 10 12 14 16
Standard Lexicodes

Figure C.4: Maximum state comparison of d = 8 codes. A comparison of the maximum number
of states in the BCJR trellis for the lexicodes and the trellis-oriented GLC codes with minimum
distance 8.



74

Bibliography

[1] M. Artin, Algebra, Prentice Hall 1991.

[2] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. 20, pp.
284-287, 1974.

[3] A.M.Barg, “Some new NP-complete coding problems,” Problems of Information
Transmission, vol. 30, pp. 23-28, 1994.

[4] R.E. Blahut, Theory and Practice of Data Transmission Codes 2nd edition, 1994.

[5] E.R.Berlekamp, R.J.McEliece, and H.C.A.van Tilborg, “On the inherent in-
tractability of certain coding problems,” IEEE Trans. Inform. Theory, vol. 24,
pp. 384-386, 1978.

[6] R.A. Brualdi and V.S. Pless, Greedy codes, Journal of Comb. Th. (A), Sept.,
1993.

[7] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, MIT
Press 1990.

[8] J.H. Conway, Integral lexicographic codes, Discrete Math, 83, 1990, 219-235.

[9] J.H. Conway and N.J.A. Sloane, Lexicographic codes: Error-correcting codes
from game theory, IEEE Trans. Inform. Theory, vol. IT-32, 1986, 337-348.

[10] J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, Springer-
Verlag 1993.

[11] T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley &
Somns, Inc., New York 1991.

[12] S.Dolinar, L. Ekroot, A.B.Kiely, R.J. McEliece, and W. Lin, “The permutation
trellis complexity of linear block codes,” in Proc. 32-nd Allerton Conference on

Comm., Control, and Computing,Monticello, IL., pp.60-74, September 1994.



[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

75

S. Dolinar, L. Ekroot, A.B. Kiely, R.J. McEliece, and W. Lin, “The permutation
trellis complexity of linear block codes,” Proc. 32nd Allerton Conference on

Comm., Control, and Computing, Monticello, IL., pp 60-74, September 28-30,
1994.

A A El-Gamal, L.A. Hemachandra, I. Shperling, and V.K. Wei, “Using simulated
annealing to design good codes,” IEEE Trans. Inform. Theory, vol. 33, pp. 125-
138, 1987.

J.Feigenbaum, “The use of coding theory in computational complexity,”

preprint.

G.D. Forney, Jr., “Final report on a coding system design for advanced solar
missions,” Contract NAS2-3637, NASA Ames Research Center, Moffet Field,
CA, December 1967.

G.D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol.61, pp.268-278,
1973.

G.D. Forney, Jr., “Coset codes II: Binary lattices and related codes,” IEEFE Trans.
Inform. Theory, vol. 34, pp.1152-1187, 1988.

G.D. Forney, Jr., “Dimension/length profiles and trellis complexity of linear block
codes,” IEEE Trans. Inform. Theory, vol. 40, pp. 1741-1752, 1994.

G.D.Forney, Jr. and M.D. Trott, “The dynamics of group codes: state spaces,
trellis diagrams and canonical encoders,” IEEE Trans. Inform. Theory, vol. 39,
pp. 1491-1513, 1993.

D.S. Herscovici, “Minimal Distance Lexicographic Codes Over an Infinite Al-
phabet.” IEEE Transactions on Information Theory, vol. 37, No. 5, September
1991, p. 1366-1368.

K.A.S.Immink, Coding Techniques for Digital Recorders, New York: Prentice
Hall, 1991.

G.B.Horn and F.R.Kschischang, “Another inherently intractable problem in
coding theory,” IEEE Trans. Inform. Theory, to appear.



76

[24] F.R. Kschischang and G.B. Horn, “A Heureistic for Ordering a Linear Block
Code to Minimize Trellis State Complexity,” 32nd Annual Allerton Conference
on Communications, Control and Computing, Monticello, IL., p.75-84, Septem-
ber 28-30, 1994.

[25] F.R.Kschischang and V. Sorokine, “On the trellis structure of block codes,”
IEEE Trans. Inform. Theory, to appear.

[26] A.Lafourcade and A.Vardy, “On trellis complexity of good codes,” in Proc.
28-th Annual Conference on Information Sciences and Systems, Princeton, NJ.,
March 1994.

[27] A.Lafourcade and A.Vardy, “Asymptotically good codes have infinite trellis
complexity,” IEEE Trans. Inform. Theory, vol. 41, pp.555-559, 1995.

[28] A.Lafourcade and A. Vardy, “Lower bounds on trellis complexity of block codes,”
IEEE Trans. Inform. Theory, vol. 41, No. 6, November 1995, to appear.

[29] G.R.Lang and F.M. Longstaff, “A Leech lattice modem,” IEEE J. Select. Areas
Comm., vol. 7, pp. 968-973, 1989.

[30] V.I Levenstein, A class of systematic codes, Soviet Math. Dokl., 1:1, 1960, pp.
368-371

[31] S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and Applica-
tions, Prentice-Hall, Inc., New Jersey, 1983.

(32] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,
North-Holland Publishing Company, New York, 1977.

[33] R.J. McEliece, “On the BCJR trellis for linear block codes.” Submitted to IEEE
Trans. on Inform. Theory, 1994.

[34] C.L.Liu, B.G.Ong, and G.R.Ruth, “A construction scheme for linear and non-
linear codes,” Discrete Math., vol. 4, pp.171-184, 1973.

[35] K.Y.Liu and J.J.Lee, “Recent results on the use of concatenated Reed-
Solomon/Viterbi channel coding for space communications,” IEEE Trans.
Comm., vol. 32, pp.456—471, 1984.



7

[36] F.J. MacWilliams and N.J.A.Sloane, The Theory of Error-Correcting Codes,
New York: North-Holland, 1977.

[37] J.L.Massey, “Foundation and methods of channel encoding,” Proc. Int. Conf.
Information Theory and Systems, NTG-Fachberichte, Berlin, 1978.

[38] R.J.McEliece, “On the BCJR trellis for linear block codes,” preprint.

[39] D.J.Muder, “Minimal trellises for block codes,” IEEE Trans. Inform. Theory,
vol. 34, pp. 1049-1053, 1988.

[40] W.H. Press, B.P. Flanner, S.A. Teukolsky, Numerical Recipes in FORTRAN,
Cambridge University Press, 1992.

[41] C.E.Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.,
vol. 27, pp. 379-423 and pp. 623-656, 1948.

[42] R.J.M. Vaessens, E.H.L. Aarts, and J.H. van Lint, “Genetic algorithms in coding
theory: A table of Az(n,d),” preprint.

[43] A.Vardy and Y.Be’ery, “Maximum-likelihood soft decision decoding of BCH
codes,” IEEFE Trans. Inform. Theory, vol. 40, pp. 546-554, 1994.

[44] A. Vardy and F.R. Kschischang, “Proof of a Conjecture of McEliece Regarding
the Expansion Index of the Minimal Trellis”, IEEE Trans. Inform. Theory, vol.
42, No. 6, November 1996, to appear.

[45] A.J.Viterbi, “Error bounds for convolutional codes and an asymptotically op-
timum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp. 260-269,
1967.

[46] T.J. Wagner, “A search technique for quasi-perfect codes,” Inform. and Control,
vol. 9, pp. 94-99, 1966.

[47] J.K. Wolf, “Efficient maximum-likelihood decoding of linear block codes,” IEEE
Trans. Inform. Theory, vol. 24, pp. 76-80, 1978.

[48] S. Zhang, “Design of Linear Block Codes with Fixed State Complexity”, Master’s
Thesis: University of Toronto, 1996.



