Connected ldentifying Codes for
Sensor Network Monitoring

Niloofar Fazlollahi, David Starobinski and Ari Trachtembe
Dept. of Electrical and Computer Engineering
Boston University, Boston, MA 02215
Email: {nfazl,staro,trachteéri@bu.edu

Abstract

Identifying codes have been proposed as an abstractiomfplementing monitoring tasks such as indoor
localization using wireless sensor networks. In this apping sensors’ radio coverage overlaps in unique ways over
each identifiable region, according to the codewords of antif/ing code. While connectivity of the underlying
identifying code is necessary for routing data to a sinkstaxy algorithms that produce identifying codes do
not guarantee such a property. As such, we propose a nowah@uolal-time algorithm calle@onnectID that
transformsany identifying code into a connected version that is also amtiiegng code and is provably at most
twice the size of the original. We evaluate the performant€amnectID on various random graphs, and our
simulations show that the connected codes generated arallpcat most25% larger than their non-connected
counterparts.

Index Terms

Localization, graph theory, approximation algorithms.

A version of this paper appeared in
N. Fazlollahi, D. Starobinski and A. Trachtenbe@onnected Identifying Codes for Sensor
Network Monitoring, IEEE WCNC 2011, Cancun, Mexico.

Fig. 1. An example building floor plan and connectivity gragtsensors located at positions marked by circles. The fdledes represent
codewords of an identifying code for the sensor network eativity graph. The dashed lines show the boundaries ahdisishable regions
based on the radio range of the active sensors.

. INTRODUCTION

Sensor networks are widely used to monitor the environmBmis, sensors gather ambient data and
forward it to a sink for processing. Examples of importantiitaring applications using sensor networks
include identification of contamination source in water gsp[1], location detection [2—4], structural
monitoring of buildings, bridges and air-crafts [5], patienonitoring [6] and tracking and monitoring of
endangered animal species [7].

Identifying codes were introduced in [8] and later proposed for sensor netwookitoring and partic-
ularly for location detection in indoor environments [2, 8 the method proposed in [2], sensors in a
building are mapped to graph vertices. A pair of verticesoisnected by an edge if the two corresponding
physical sensors are within each other's communicatiogaga®nly a fraction of all sensors are kept
active while the rest can be put in energy-saving mode. Theeasensors correspond ¢odewords of an
identifying code in the graph. A target is located by the ueigpattern of sensors within its radio range.

An example of indoor floor plan and the graph correspondingettsor placement and sensor connec-
tivity is depicted in Figure 1. Circles show positions of ansers. Sensors that are within each other’s
radio communication range, likeandb, are connected by a graph edge (we assume connectivity &etwe
sensors is symmetrical). Filled circlesc, d, f, g andh represent codewords of an identifying code for
the sensor connectivity graph. Only the mentioned sensairgely monitor their surrounding for location
detection. When a target is placed at any of the regions rdabye dashed lines, one can uniquely
determine its location based on the identifying code. Fetaince, the sefa, ¢} uniquely identifies the
region surrounding positioh.

In order to route data over a sensor network and sink sensartoa processor for location detection
processing, we needannected network of active sensors. This important requirement lesbgnored
in previous work on identifying codes. Yet, if we only act@aensors that correspond to codewords of an
identifying code and deactivate the rest, there is no gti@eathat we achieve a connected network of active
sensors. Therefore, although there exist various algogtin the literature to create an identifying code
for an arbitrary graph [2, 3, 9], none of them guarantees ttiafproduced identifying code is connected.

In this work, we consider the problem of generating a coretkitentifying code for an arbitrary graph.
This approach provides a framework for location detectiorsensor networks with guaranteed routing
connectivity between the sensors. In particular, we focudulding a connected identifying code out of
an identifying code produced by one of the existing algomngh Our goal is to add a minimum number
of codewords so as to keep as many sensors as possible iry-a@iggs mode. Our contributions are
the following:

« We propose a new polynomial-time algorithm call&thnectID that creates a connected identifying
code from any identifying code for a general graph.

« We prove thatonnectID produces a connected identifying code with cardinality esntwice larger
than that of the original identifying code. We further shdvattthe bound is tight.

« Using the best known polynomial-time approximation altion for building an identifying code [3],
we obtain an approximation ratio oin |V'| with respect to the minimum connected identifying code,
wherec > 0 is a constant andl/| is the number of vertices in the graph.

« We evaluate the performance ObnnectID in terms of the achieved identifying code cardinality
through simulations on various random graphs. The sinaratshow that the size of the resulting
code exceeds the size of the original code by a multipliedictor of 1.25 or less (i.e., significantly
smaller than 2).

This paper is organized as follows. In Section I, we formalescribe identifying codes and review
the related work. In Section IlI-A we introduce our model awime of our notations. In Section IlI-B
we present our proposed algorith@ennectID. In Section IlI-C we provide performance analysis of
ConnectID and its computation complexity. We provide our numericalits in Section IV and conclude
the paper in Section V.

I[I. BACKGROUND AND RELATED WORK

Assume we have a gragh with a set of vertice3” and a set of edgeE. Every vertex inV is either a
codeword or anon-codeword. We denotel the set of vertices iV’ that are codewords. Ardentifying set
for vertexv € V is the set of all codewords that are within distance one froftinis includes node itself
and all of its neighbors). If the identifying set for everyrtex is unique, then we call an identifying
code. Every super-set of is an identifying code [2]. We require that no identifying & empty.

One can verify that for the graph and codewords shown in Eiduithe identifying set for every vertex
of the graph is unique, i.e., the identifying set for verteis {a}, for vertexd is {a, ¢} and so on. Location
of a target can be identified at every region using a look-bfetthat maps identifying sets to vertex IDs.

Ref. [2] suggests application of identifying code theory fiodoor location detection. They present
a greedy heuristic that creates ameducible identifying code (i.e., no codeword is redundant) for an
arbitrary graph. Ref. [3] introduces a more efficient altfori for generating identifying codes based on a
reduction to theset covering problem [10]. Accordingly, they prove an approximationigatith respect
to the minimum size identifying code that increases loparitally with the number of vertices in the
graph. They also suggest additional applications of ifgnt codes for node labeling and routing in
the underlying sensor network. Both references implicatgume that the sensor network can route data
toward a sink, an assumption that may not hold in practicepndides the motivation for this work.

In [11,12], the problem of computing a minimum identifyingdes is proved to be NP-complete.
Authors in [13] provide probabilistic existence thresholidr identifying codes in random graphs and
upper and lower bounds on the minimum cardinality of idgimd codes in a random graph. Ref. [14]
considers identifying codes that are robust to failure obartled number of their codewords over various
graph topologies. They also considmnamic identifying codes. A dynamic identifying code is a walk in
a graph whose vertices form an identifying code.

Other related graph abstractions inclwtieninating sets and connected dominating sets. A dominating
set is a subset of graph vertices such that every vertexasaalj to at least one member of the dominating
set. In [15] authors present and compare several heurfstiagenerating a connected dominating set for
an arbitrary graph and provide a competitive performanaendoReference [16] surveys the literature on
connected dominating sets and reviews existing algorithms

The results on connected dominating sets do not apply toemed identifying codes. Although every
identifying code is a dominating set, not every dominatiegis an identifying code. Thus, the optimal
identifying code generally has larger cardinality thant thiathe optimal dominating set.

[Il. ALGORITHM ConnectID
A. Mode and notations

We assume an undirected connected gr@pW, £) (or G in short) wherel is the set of nodes and
is the set of edges between the nodes. Assilirel” is the set of codewords of an identifying code in
G and a super-sel. of [is the set of codewords of a connected identifying codé& inThe redundancy
ratio of I. vs. I is defined to be the ratio of the cardinality &f to that of 7, i.e. R = |I.|/|/| where
R > 1 denotes the redundancy ratio. It is desirable to h&was close as possible to one.

We define acomponent of connectivity (or a component in short)’ of I in graphG to be a subset
of codewords in/ such that the sub-graph «f induced by this subset is connected, i.e., the graph
G'(C,En (C x ()) is connected wher€&' x C' denotes all pairs of vertices i@. In addition, no
codewords can be added € while maintaining the connectivity of the induced graph Back to the
example of Figure 1, we have= {a,c,d, f,g,h}. The components of connectivity fdrare C; = {a},

Cy = {C}, Cy = {d} andC4 = {f,g,h}

A plain path between components; and C, is an ordered subset of vertices ihthat forms a path
in G’ connecting a vertex; belonging toC; to a vertexz, belonging toC,. A plain path consists of
non-codeword vertices except fof andx,. The termpath throughout this paper is more general than
plain path and is not restricted to non-codewords. As an el@nin Figure 1,{a,b,e, f} and{a,j, f}
are the only plain paths between componetitsand C;. Note that patha, j, f, e, d} is not a plain path
betweenC,; and C5; becausef is a codeword.

The distance between a given pair of components, Gaynd Cs, is denoteddist(Cy,C) and is
defined to be the length in number of hops of the shortest path betweer(C; and Cs. If there is no
plain path betweerd; and C,, thendist(C}, Cy) = co. As an example, in Figure Hist(Cy,Cs) = 2,
diSt(Cl, Cg) =3 and diSt(Cl, 04) = 2.

B. Algorithm description

We present algorithn@onnectID in the format of a function which receives the set of codewantl
an identifying codel for a given graphG and returns the set of codewords of a connected identifying
code .. First, we present algorithronnectID informally:

In the initialization phase, functioGonnectID(G, I) partitions the identifying cod€ into a set of
N distinct components of connectivityCy, Cs, ...,Cy} wherel < N < |I|. Note that every pair of
components is connected by some patltzilecause of the connectivity of.

We defineC' to be a set that stores the growing connected identifying ctids initialized to the set of
codewords in one of the components, 3y We defineC' to be a set that stores all components whose
codewords are not yet included (. ThereforeC' is initialized to{Cs, ..., Cx}. R

At every iteration, we first update the distantist(C, C;) betweenC' and every componertt; in C.
Then, we extract fronC' the componentC* with minimum dist(C, C*) (breaking ties arbitrarily). We
assign as codewords all vertices on the shortest plain mathectingC' and C* denotedpath*(C, C*).
Then, we unite the codewords @ and C* andpath*(C, C*) to form a single larger component, again
calledC'. After this step, we examine if there are any other compangnt’ which become connected to
C' via the newly selected codewords path*(C, C*). We definel’ C C' to be the set of such components.
If T" is non-empty, we unit€’ with the components il and extract them frond’. In Section III-C, we
briefly explain how to efficiently computeisiz((], C;) andpath*(C, C};) for every component’; in C.
We repeat the iteration explained above unatibecomes empty. At termination, we retufn= C. Note
that I C I. and therefore/. is an identifying code.

Below, is a formal presentation of algorithGennectID(G,I):

Algorithm ConnectID(G, I):
Initialization:
1) Partition/ into a unique set of components of connectifty,, Cs, ..., Cx} wherel < N <|I|.

Fig. 2. Progress ofonnectID(G, I). The filled circles represent codewords of an identifyingleed for the illustrated graphG' (a)
mmally I'is partitioned to componentS; = {a}, C2> = {c}, C5 = {d} andCy = {f, g, h}. We setC = {a} andC = {Ca, Cs, Cy} (b)
= {a,b,c} andC = {C5,C4} (¢) C = {a,b,c,de, f,g,h} andC = {}.

2) SetC — {Cy,...,Cy}.
3) Set(C « Cl.
Iteration:
7) While C is not empty,
8) Updatedist(C,C;) andpath(C, C;) for every
C; e C and setC* «— argming . dist(C, C)).
9) Extract component™ from C.
10) SetC « C U C*Upath*(C,C*).
11) Find the sel’ C C of components that are connected

to C.
12) If " is not empty,
13) For every componert; € I,
14) ExtractC; from C.
15) SetC — CUC;.

16) Returnl. — C.

Example. Figure 2 shows the progress 6énnectID(G,) for the same graph and the same input
identifying code as shown in Figure 1. The vertices in black@dewords. The figure shows the progress
of ConnectID(G, I) after every iteration. Assume at initialization we ha@g:= {a}, Cy = {c}, C3 = {d}
andCy = {f, g, h}.Infigure 2(a) we sef’ = C} andC {Cs, C5, Cy}. At first iteration, after we calculate
the distance betweefi and all components i’ at line 8, we havedist(C, Cy) = 2, dist(C, C3) = 3,
dist(C,Cy) = 2. At line 9, we extract one component with minimuibst from 6 which may beC; or
Cy. Assume that we selec¢t,. Then, we unite” and C2 and vertexb at line 10. Hence(' = {a,b,c} as
illustrated in figure 2(b). There are no component@ulhat are connected t0 at this stage, i.el’ = {},
and we return back to line 7. We update distances and patiis dagat(C, Cs) = 2 anddist(C, Cy) = 2.

We extract the component with minimuaist, which may beC; or C,. Assume that we extract; at
line 9. Hence, we unit€’ andC; and vertexe and obtainC' = {a,b,c,d,e}. Then, we examine the only
component remaining in’ which is C, to see if it is now connected 0. We getl’ = C; and we unite
C and C; at line 15. Finally, in figure 2(c) we hav€' = {a,b,c,d, e, f,g,h} which is the connected
identifying codel, output by the algorithm.

C. Performance analysis

In this section, we first prove two properties of any identifycode/. These properties are invariably
true at every iteration dfonnectID. Based on this, we prove our main result, that is, algorittommectID
produces a connected identifying code whose size is tigialynded with respect to the original identifying
code. Finally, we briefly discuss the running timeGahnectID.

Lemma 3.1: Consider any identifying codethat is partitioned into a set of components of connectivity
P ={Cy,...,Cp} over graphG. If |P| > 1, then every componertt; in P is at most three hops away
from another component; in P wherej # i.

Proof: By the definition presented in section Il for an identifyingde, every non-codeword vertex in
G is adjacent to at least one codeword/inSince the graph is connected, every pair of components in
P should be connected by at least one path. Consider the shpeth connecting componefif in P to
componentC;, in P wherek # i. The second node on this path (the node at the first hop) ioblyi

not a codeword because otherwise it would be included;inThe third node on this path (the node at
the second hop) is either a codeword belonging to a compafient P or is a non-codeword adjacent
to some componen®;. ComponeniC; should be different fronC; because otherwise the selected path
from C; to C}, will not be the shortest. [|

Lemma 3.2: Every vertex in graplz that is adjacent to a componeft with cardinality one inP, is
adjacent to at least one other compon€ftin P wherej # i.

Proof: This property follows from the uniqueness of the identifysets. The identifying set of the single
codeword belonging to componeft is itself. If any non-codeword that is adjacent@p is not adjacent
to at least one other componefif wherej # 4, then it will have the same identifying set as the single
codeword inC; which contradicts the definition of an identifying code. [|

Corollary 3.3: Consider any identifying codé that is partitioned into a set of components of connec-
tivity P = {C1,...,C|p } over graphG. If |P| > 1, then every componertt; in P with cardinality one is
at most two hops away from another compon€ntin P wherej # 1.

Lemma 3.1 and 3.2 hold for every identifying cofl®ver graphG. Therefore, they are true right after
the initialization of algorithmConnectID. Since at every iteration, we add one or more codewords and
do not remove any codeword, the set of verticeg'iand in every component @ forms an identifying
code. Hence, Lemmas 3.1 and 3.2 invariably hold after eweration.

Theorem 3.4: Assuming/ is an identifying code for grapty and /. is the identifying code created by
algorithm ConnectID(G, I), we have:

i) I.is a connected identifying code.

i) The total number of codewords generated by algoritbemnectID(G, /) is at most2|/| — 1.

Furthermore, this bound is tight.
Proof:

i) Clearly, C' is a component of connectivity at initialization and it réngconnected after every
iteration of functionConnectID. The while loop starting at line 7 terminates whénis empty. Since
every component extracted froti unites withC' at line 10 or line 15, at termination of the while loop
I C C. This impliesI. = C is an identifying code. We prove by contradiction that thelevioop must
terminate. Assumé’ is not empty at some iteration of the while loop. Thenwill be at distance of at
most three hops from at least one component,Sgyin C' because Lemma 3.1 holds at every iteration.
As a resultConnectID will assignC; a finitedist(C, C;) and extract it fromC' for union with C'. Hence,

C eventually becomes empty.

7

i) At every iteration ofConnectID, we uniteC' with at least one component denotéd in C and add
at most two codewords according to Lemma 3.1. If the newlygeercomponent™ has cardinality one,
then eitherC™* is two hops away front”' or according to Lemma 3.2, the non-codewordpanh*(C', C*)
that is adjacent to a codeword {*, is also adjacent to at least one other comporignin C. In the
latter case, after the union at line 10, becomes connected @ and unites withC' at line 15. Thus,
we are adding at most two codewords with*(C, C*) per at least two componen€s* and C;. Overall,
we assign at most one new vertex as codeword for every codewdr\ C;. Thus, the cardinality of the
resulting identifying code!/,.| is at most2|/| — 1 codewords whe@onnectID(G, I) terminates.

This bound is tight. Consider a ring topology wizk nodes § being a positive integer). The optimal
identifying code (i.e. that with minimum cardinality) casis of k& interleaved vertices and the minimum
cardinality of a connected identifying code for this grapidahe mentioned input identifying code is
|I.| =2k — 1. [

Corollary 3.5: The redundancy rati®? = |I.|/|/| of the connected identifying cod& achieved by
ConnectID(G, I) is at most two for any given grapfi.

Corollary 3.6: If the input identifying codel to ConnectID((G,) is an identifying code achieved by
the algorithm in [3], then the cardinality of the connectéeritifying codel. achieved byConnectID
is at mostc |I}|In|V| wherec > 0 is a constant/* is the connected identifying code with minimum
cardinality in graphG and |V'| is the number of vertices in grapgh.

Next, we briefly analyze the running time ObnnectID. In order to partition the input identifying
code, we remove non-codeword vertices and the edges in@deihem and use a connected components
algorithm on the remaining graph, for example the algorithynHopcroft and Tarjan based on the Breadth
First Search (BFS) or Depth First Search (DFS) [17,18]. Wéntam the components of connectivity
using adisjoint-set data structure [18]. We calculate the distanéest and the shortest plain pathath®
betweenC' and the components i using a shortest path calculation algorithm based on a neddifi
two-stage BFS which visits the codewordsdGhprior to other vertices and assigns them distance zero.
Using the above data structure, the overall computatiooaipdexity of ConnectID is O(N|E|) where
N < |V] is the total number of components after the initialization.

IV. NUMERICAL RESULTS

We evaluate the performance 6énnectID on various instances of Erdos-Renyi random graphs. In
order to generate an identifying code for a given graph m#awe use two existing algorithms [2, 3].
Throughout this section, we denote by-CODE our implementation of the algorithm presented in [2] and
denote byrID our implementation of the algorithm in [3]. As we will seeetllentifying codes generated
by rID and ID-CODE are often disconnected.

We first use graphs witi00 vertices and change the average degree of the vertices Fréonl5.
We generatel00 instances of graph per every value of average degree. Foy gvaph instance, we
measure the following metrics: the cardinality of the idigmg code generated by algorith@D-CODE
and algorithmrID, the number of components of connectivity for each of thentifigng codes, the
cardinality of the connected identifying code generatedCbynectID for each of the two identifying
codes and the corresponding redundancy ratio. Our measuaterare averaged ovéf0 instances. We
present the empirical mean in Figures 3, 4 and 5. The errar $faow95% confidence intervals.

Figure 3 shows the average number of components of the figiegticodes produced byD-CODE and
by rID. We expect lower redundancy when we have fewer componeéntise Inumber of components
is 1, the identifying code is connected. We observe that algoritID produces fewer components of
connectivity than algorithmiD-CODE on average. We also observe that the average number of cemigon
decreases as the average node degree increases and rdamlitesva when the average node degree
equalsl5. This is reasonable since the connectivity between vertjaad codewords) increases with the
average node degree.

Figure 4 shows the average redundancy ratiCainectID with input identifying codes generated
by ID-CODE and byrID. As can be expected based on the results from Figure 3, weéncodtamaller

=
o]

—— ID-CODE 2]
—&—1ID [3]

=
(2]
T

N
o N D
T : .

average number of components
o]

2 4 6 8 10 12 14 16
average node degree

Fig. 3. Average number of components of connectivity for ithentifying codes produced byD-CODE [2] and by rID [3] over 100-node
random graphs and varying average node degree.

1.35

—+—ID-CODE [2]
—&—1ID [3]

=
w
T

= =

= N N

o [a1
i) i

average redundancy ratio
[
N

1.05¢

2 4 6 8 10 12 14 16
average node degree

Fig. 4. Average redundancy ratio of the connected idemifydodes generated l@pnnectID for input identifying codes fronID-CODE [2]
and fromrID [3] over 100-node random graphs and varying average node degree.

redundancy ratio using algorithaiID and the average redundancy ratio decreases as the averdge no

degree increases. Note that the redundancy ratio is closedat average node degree16f for both

algorithms and is abouit.25 for ID-CODE at its highest value when average node degree equals to
Figure 5 compares the cardinality of the connected identifgode generated b§onnectID with the

~
o

[o2]
o
T

ConnectID-ID-CODE

u
o
T

ID-CODE [2]

w
o
T

11D [3]

N
o

ConnectID-rID

average identifying code size (codewords)
oy
o

o
N

4 6 8 10 12 14 16
average node degree

Fig. 5. Average cardinality of the input identifying codesrfi ID-CODE [2] and fromrID [3] and average cardinality of the connected
identifying codes generated pnnectID in both cases foi00-node random graphs and varying average node degree.

1.35

—+—ID-CODE [2]
1.3t —A—1ID [3]

1.25¢

1.2r

1.15f

11

average redundancy ratio

1.05f

0 20 40 60 80 100 120 140 160
graph size (number of nodes)

Fig. 6. Average redundancy ratio of the connected idemiifyéodes generated onnectID for random graphs of increasing size and
the input identifying codes froniD-CODE [2] and fromzID [3]. The average degree of the graphs is kept fixed to four.

cardinality of identifying codes generated by-CODE and byrID. As also shown in Figure 4, we observe
that the cardinality of the connected identifying code issiaaller than twice that of the input identifying
code. We also observe that the cardinality of all four idgintg codes decreases with the average node
degree. AlgorithmrID not only generates a smaller identifying code compareIDtO0DE to begin with,

but also its resulting connected identifying code is sigaiiily smaller for all examined average node
degrees.

Figure 6 depicts the average redundancy ratio for ErdogiRandom graphs with fixed average node
degree of four and number of vertices ranging frathto 150. Samples are averaged ovei0 graph
instances as before. According to the figure, with the irswea size of the graph while keeping the
average node degree fixed, the redundancy ratio increagbfiyslHowever, it remains almost fixed for
graphs with90 or more vertices. As before, the redundancy ratio is lowerfi® compared talD-CODE.

V. CONCLUSION AND FUTURE WORK

In this work, we addressed the problem of guaranteeing timmexdivity of identifying codes when
applied to location detection and routing in sensor netaokWe introduced algorithr@onnectID that
produces a connected identifying code by adding codewordsy given identifying code for an arbitrary
graph. The cardinality of the resulting connected idemtdycode is upper bounded ®/| — 1 where
|1| is the cardinality of the input identifying code. We have \y@d that the mentioned bound is tight and
that ConnectID runs in polynomial time, i.e., at most the product of the nembf graph edges and the
number of graph vertices

We numerically evaluated the redundancy ratioCefinectID. Redundancy ratio is the ratio of car-
dinality of the resulting connected identifying code @&ynnectID to that of the input identifying code.
Our simulation results showed that the resulting connededtifying code byConnectID achieves a
redundancy ratio of at mogt25 for all examined cases. This is far below the theoreticalnidoof two.
We used two different algorithms to generate the input ifigng code. As one can expect, the achieved
redundancy ratio decreases with the average node degie®.as one fixes the average node degrees and
increases the graph size, the redundancy ratio remainsseaknchanged. The analysis of this behavior
remains an interesting area for future work.

ACKNOWLEDGMENT

This work was supported in part by the US National SciencenBation under grants under grants
CCF-0729158, CCF-0916892, and CNS-1012910.

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]

(18]

10

REFERENCES

T. Berger-Wolf, W. Hart and J. Saia, “Discrete sensorcplaent problems in distribution networksylathematical and Computer
Modelling, vol. 42, no. 13, pp. 1385-1396, December 2005.

S. Ray, D. Starobhinski, A. Trachtenberg and R. Ungrantobust location detection with sensor networEEE JSAC (secial Issue
on fundamental performance limits of wireless sensor networks), vol. 22, no. 6, pp. 1016-1025, August 2004.

M. Laifenfeld, A. Trachtenberg, R. Cohen and D. Starskin“Joint monitoring and routing in wireless sensor netgousing robust
identifying codes,"Springer Journal on Mobile Networks and Applications (MONET), vol. 14, no. 4, pp. 415-432, August 2009.
K. Chakrabarty, S. S. lyengar, H. Qi and E. Cho, “Grid aage for surveillance and target location in distributedsse networks,”
IEEE Transactions on computers, vol. 51, no. 12, pp. 1448-1453, December 2002.

N. Xu, S. Ranfwala, K. Chintalapudi, D. Ganesan, A. BroBd Govindan and D. Estrin, “A wireless sensor network fouctral
monitoring,” in Proc. the ACM Conference on Embedded Networked Sensor Systems (Sensys04), Baltimore, MD, November 2004.
C. R. Baker, et. al., “Wireless sensor networks for horaalth care,” inProc. the 21st International Conference on Advanced Information
Networking and Applications Workshops (AINAW), Ontario, Canada, May 2007, pp. 832—-837.

E. Biagioni and K. Bridges, “The application of remotenser technology to assist the recovery of rare and endathggrecies,”
International Journal of High Performance Computing Applications, vol. 16, p. 315324, August 2002.

M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, “A newass of codes for identification of vertices in grapH&EE Transactions
on Information Theory, vol. 44, no. 2, pp. 599-611, March 1998.

M. Laifenfeld and A. Trachtenberg, “Identifying codeadacovering problems,JEEE Transactions on Information Theory, vol. 54,
no. 9, pp. 3929-3950, September 2008.

U. Feige, “A threshold of In n for approximating set coVelournal of the ACM, vol. 45, no. 4, pp. 634-652, 1998.

I. Charon, O. Hudry and A. Lobstein, “Identifying andclting-dominating codes: NP-completeness results fectid graphs,TEEE
Transactions on Information Theory, vol. 48, no. 8, pp. 2192-2200, August 2002.

——, “Minimizing the size of an identifying or locatingeminating code in a graph is NP-hardiheoretical Computer Science,
vol. 290, no. 3, pp. 2109-2120, 2003.

A. Frieze, R. Martin, J. Moncel, M. Ruszink and C. SmytfCodes identifying sets of vertices in random networkiSjscrete
Mathematics, vol. 307, no. 9-10, pp. 1094-1107, May 2007.

I. Honkala, M. Karpovsky and L. Levitin, “On robust angrthmic identifying codes,|IEEE Transactions on Information Theory,
vol. 52, no. 2, pp. 599-612, February 2006.

S. Guha and S. Khuller, “Approximation algorithms fanmected dominating sets&lgorithmica, vol. 20, no. 4, pp. 374-387, April
1998.

J. Blum, M. Ding, A. Thaeler and X. Chen@pnnected dominating set in sensor networks and MANETs. Kluwer Academic Publishers,
in: Du D-Z, Pardalos P (eds) Handbook of combinatorial ojztation.

J. Hopcroft and R. Tarjan, “Efficient algorithms for gramanipulation,"Communications of the ACM, vol. 16, no. 6, pp. 372 — 378,
June 1973.

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Sténtroduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

