
Towards Global Synchronization1

Ari Trachtenberg David Starobinski
(617) 358-1581 (617) 353-0202

trachten@bu.edu staro@bu.edu
Department of Electrical and Computer Engineering

Boston University, Boston, MA

Abstract

We present novel perspectives for global synchronization mechanisms in very large, hetero-
geneous networks. Today’s state-of-the-art techniques for performing synchronization are
not scalable, often requiring full data exchange between each pair of nodes in the network.
We argue that future large-scale networks will not tolerate such quadratic growth in band-
width requirements. In fact, recent information-theoretic research results suggest that the
amount of communication needed for two hosts to synchronize depends only on the number
of differences between the host databases, irrespective of the actual database sizes. The
potential thus exists for networks of arbitrary scale to remain fully synchronized.

1 Synchronization Trends

Much of the popularity of mobile computing and handheld devices can be attributed to their ability to
deliver information to users on a seamless basis. In particular, a key feature of this new computing paradigm
is the ability to use applications and information on a mobile device and then to synchronize any updates
back at the office or on a network. This feature plays an essential role in the vision of pervasive computing,
where any mobile device will ultimately be able to access and synchronize with any networked data.

Thus, one could envision a user adding the address of a potential business contact to his PDA, which has
been seamlessly and continuously synchronizing with any of a number of nearby available networked hosts as
the user walks down a busy street. Each host, in turn, would be maintaining a dynamic synchronized body
of contacts to the user’s various business offices, home telephone directory, and automated car assistant.
In the current state of affairs, such continuous peer-to-peer synchronization would be inordinately wasteful
of both power and computational resources, but the successful extrapolation of recent advances can make
such connections essentially effortless.

Nowadays, synchronization protocols are simply implemented. With a few exceptions, they generally
employ a wholesale data transfer. Thus, when synchronizing two data sets A and B, these protocols
typically exchange |A|+ |B| entries, whereas the number of differing entries, |A−B|, can be much smaller.
Indeed, the typical case is where exactly two hosts regularly synchronize with one another, so that few
changes are made between any two synchronizations.

We argue that future research should focus on the development and implementation of much more efficient
synchronization schemes. Specifically, we envision a radical shift to sophisticated synchronization protocols
based on techniques from computational mathematics. A first step in this direction has recently been
achieved with the development of new synchronization protocols based on fast algorithms for rational
function interpolation and Reed-Solomon decoding. Roughly speaking, given two hosts with data sets A
and B, these new protocols can perform a synchronization using a message of length |A−B|, independently

1This manuscript was generated using LATEX. Graphics were generated using the xfig program.

1


~~~~~
~~~~~
~~~~~
~~~~~
~~~~~

~~~~~
~~~~~
~~~~~
~~~~~
~~~~~

~~~~~
~~~~~
~~~~~
~~~~~
~~~~~

~~~~~
~~~~~
~~~~~
~~~~~
~~~~~

bbbbb
ccccc

DatabaseDatabase

bbbbb
ccccc

Database
aaaaa

Database

"slow sync"

"fast sync"

aaaaa

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

Figure 1: The two modes of the Palm HotSync protocol. In the “slow sync” all the data is transferred. In
the “fast sync” only differing entries are transferred between the two databases.

of the size of the data sets A and B. Thus, two data sets could each have millions of entries, but if they differ
in only ten of them, then a single message whose size is about ten entries will be sufficient to synchronize
the hosts. Although, these algorithms are mathematically more involved than current synchronization
techniques, we feel that their potential benefit to the growth and scalability of mobile computing platforms
is tremendous.

2 Scalability Issues in Data Synchronization: A Case Study

In this section, we present some of the scalability issues that current synchronization protocols do not
address. Large-scale synchronization depends on our ability to solve these fundamental issues. In order
to clearly and concretely explain the types of scalability problem that are considered here, we describe
next how synchronization is implemented in the Palm OS architecture, one of the leading state-of-the-art
mobile computing platforms.

The Palm synchronization protocol, known as HotSync, relies on metadata that is maintained on both
the handheld device and the desktop. The metadata consist of databases (Palm DBs) which contain
information on the data records. A Palm DB is separately implemented for each application: there is one
Palm DB for “Date Book” data records, another for “To Do” data records, and so forth.

The Palm HotSync protocol operates in one of two modes: fast sync or slow sync. If the PDA device
synchronizes with the same desktop as it did last, then the fast sync mode is selected. In such a case, the
device needs to upload to the desktop only those records whose Palm DB modification flags have been set.
The desktop then uses its synchronization logic to reconcile the device’s changes with its own.

If the fast sync conditions are not met, then a slow sync is performed. This happens when the handheld
device synchronized last with a different desktop, as might happen if one alternates synchronization with
one computer at home and another at work. In this case, the modification flags in the device are not useful
and, instead, the device needs to upload all of its data records to the desktop. Using a backup copy, the
desktop determines which data records have been added, changed or deleted. The remainder of the slow
sync is identical to fast sync. An illustration of the fast sync and slow sync operation modes is given in

2

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
0

1

2

3

4

5

6

7
x 10

5

Number of records stored on the device

A
m

ou
nt

 o
f b

yt
es

 tr
an

sf
er

re
d

slow sync
fast sync

(a)

0 500 1000 1500 2000 2500 3000
0

25

50

75

100

125

150

Number of records stored on the device

S
yn

ch
ro

ni
za

tio
n

T
im

e
(S

ec
on

ds
)

slow sync
fast sync

(b)

Figure 2: Comparison between (a) the communication complexities and (b) the time complexities of slow
sync and fast sync.

Figure 2.

It turns out that slow syncs are significantly less efficient than fast syncs, especially with respect to
latency and bandwidth usage. In particular, the communication cost of slow syncs increases with the
number of records stored in the device, independently of the number of record modifications. Figures 2(a)
and 2(b) illustrate this phenomenon on a Palm III PDA. Specifically, these figures depict the number
of bytes transferred during slow sync and fast sync events as well as the duration of these events. The
measurements are repeated with an increasing number of records on the device, but with a fixed number
of differences (i.e. ten) between the two devices. In Figure 2(a) we see that the number of bytes transfered
during slow syncs grows linearly with the number of records stored in the device, while for fast sync it
remains almost constant. A similar trend can be observed in Figure 2(b), where the durations of slow syncs
and fast syncs are depicted. For the case of 3000 records, the duration of slow syncs exceeds 2 minutes,
about 15 times longer than fast syncs. In fact, slow sync can require as long as 20 minutes for large, but
practical, database sizes.

Figure 2 clearly show that slow syncs do not scale well with the amount of information stored on a device,
even when only two devices are being synchronized. New synchronization protocols have recently been
proposed to address this issue [1], but their scope and methodology are inherently limited to very specific
types of applications, e.g., a single centralized database shared by multiple users. In Section 3, we present
promising theoretical approaches, based on recent research results, that provide a much broader perspective
for tackling this issue.

In summary, the Palm synchronization model works well in simple settings where users possess a single
handheld device that synchronizes most of the time with the same desktop. However, we believe that a
paradigm shift is needed to allow deployment of future pervasive computing platforms, where thousands
of mobile and wired devices will intercommunicate and share large databases of knowledge. In such
environments, scalability concerns will require that any type of synchronizations be performed quickly and
without much communication or computation.

3

3 A Look at Possible Future Synchronization Protocols

The example in the previous section shows that efficient synchronization is essential for the viability of
applications that distribute common data among multiple hosts. In this section, we give a high-level
description of the mathematical basis for advanced synchronization methods that may form the core of a
large-scale synchronized protocol ten to twenty years from now.

We formalize the problem of synchronizing two hosts’ data as follows: given a pair of hosts A and B,
each with a set of b-bit integers (i.e. encodings of some arbitrary data), how can each host determine
the union of the two sets with a minimal amount of communication—both with respect to the number
of exchanges between the two hosts and with respect to the number of bits of information exchanged.
Within this context, only the contents of the sets is important, but not their actual organization. In [2]
this formalization is called the set reconciliation problem.

The simplest solution to the set reconciliation problem, and one that is often implemented in practice [3],
is for both hosts to exchange hashes of their integers and then to individually request integers for the
hashes they are missing. If hosts A and B have sets SA and SB respectively, then this scheme requires the
communication of |SA| + |SB| hashes, which is clearly not scalable.

Another plausible solution is to use timestamps or version control to aid in discovering what data elements
a given host is missing. When sets SA and SB bear a strict subset relationship, as happens if only
insertions (and not deletions) into host A’s set are permitted, then timestamps can work very effectively.
In order to reconcile, host B needs only request all items added to SA since the last synchronization. The
communication complexity is dependent only on the number of items differing between A and B and a
modest memory overhead of one timestamp per integer is used. Unfortunately, this scheme cannot be
directly applied to the case where both SA and SB are changing over time or where data is both inserted
and deleted from SA.

Two recent solutions to the set reconciliation problem, one based on Reed-Solomon decoding and one
based on rational function interpolation [2], show promise for significant performance improvement in
synchronization schemes. Both of them approach an information-theoretic lower bound of bm − m log m
bits of communication needed to reconcile two sets whose contents differ in m b-bit integers. In the next
subsections we give a high-level description of these two solutions.

Reed-Solomon Decoding Reed-Solomon codes are very powerful, well-known, algebraic codes that are
used to correct errors in a variety of systems, including storage devices, mobile and satellite communication
systems, digital television, and high-speed modems. It turns out that the decoding algorithm for Reed-
Solomon codes can also be used for set reconciliation.

Specifically, suppose host A’s set contains the integers x1, x2, x3, . . . , xa (represented as elements of an
appropriate finite field) and host B’s set contains the integers y1, y2, y3, . . . , yb and that the two host sets
differ in up to m integers. Then host A can send to B the following 2m sums of powers:

Xk =

a∑

i=1

xk
i , 1 ≤ k ≤ 2m

Host B then subtracts these sums from its own power sums to get Xi − Yi, in which all integers common

4

to both hosts cancel, giving following system of equations for the differing integers δi:

Xk − Yk =

2m∑

i=1

eiδ
k
i , 1 ≤ k ≤ 2m

The values ei are either +1 or −1 corresponding to whether the missing value δi (i.e. either xi or yi) is
missing from host B or from host A respectively.

Since there are at most 2m unknowns (m differing integers, and m magnitudes ei) and 2m equations, this
system can be solved using well-studied classical Reed-Solomon decoding techniques. Thus, using a single
message of 2m integers, hosts A and B can efficiently reconcile up to m differing integers. Though this
result is very close to the information-theoretic lower bound, it turns out we can do even better by making
use of techniques from rational function interpolation.

Interpolation-based synchronization The key to the set synchronization algorithm in [2] is a trans-
lation of sets into polynomials that can be handled more easily through a communication medium. Specif-
ically, [2] makes use of a characteristic polynomial χ

S(Z) of a set S = {x1, x2, . . . , xn}, defined to be:

χ
S(Z) = (Z − x1)(Z − x2)(Z − x3) · · · (Z − xn)

= Zn − σ1(S)Zn−1 + · · · + (−1)nσn(S).
(1)

The coefficients σi(S) of the characteristic polynomial are known as the elementary symmetric polynomials

of S.

If we define the sets of missing integers ∆A = SA−SB and symmetrically ∆B = SB−SA, then the following
equality holds

χ
SA

(Z)
χ

SB
(Z)

=
χ∆A

(Z)
χ∆B

(Z)

because all common factors cancel out. Although the degrees of χ
SA

(Z) and χ
SB

(Z) may be very large,
the degrees of the numerator and denominator of the (reduced) rational function are much smaller and
lend themselves to quick interpolation.

The approach in [2] may thus be reduced conceptually to three fundamental steps:

1. Hosts A and B evaluate χ
SA

(Z) and χ
SB

(Z) respectively at the same m sample points.

2. The sampled values are combined to compute the value of χ
SA

(Z)/χSB
(Z) at each of the sample

points. These values are interpolated to recover the coefficients of the reduced rational function
χ∆A

(Z)/χ∆B
(Z).

3. The zeroes of χ∆A
(Z) and χ∆B

(Z) are determined; they are precisely the elements of ∆A and ∆B

respectively.

A simple implementation of this algorithm requires expected computational time cubic in the size of the
sets SA and SB. The algorithm communicates m computed samples in order to reconcile two sets that
differ by at most m integers. Another nice feature of this algorithm is that, as in the Reed-Solomon case,
its communication complexity is independent of the sizes of the sets SA and SB. Thus, for example, hosts
A and B could each have one million integers, but if their mutual difference of their sets was at most 10
then at most ten samples would have to be transmitted for both hosts to reconcile, rather than the one
million integers that would be transmitted in a trivial set transfer.

5

4 Conclusion and Future Challenges

Though the synchronization algorithms mentioned in Section 3 are well understood, their efficient im-
plementation in practical systems is far from obvious. This is mostly because their prima facie cubic
computation time.

One example of implementation issues occurs with mobile systems such as PDAs and laptops that generally
have limited computational abilities due to constraints on processor speed and battery life; these systems
are typically synchronized with desktop machines that are not similarly constrained. Thus, though syn-
chronizing 360 64-bit integers requires less than thirty seconds on a typical Pentium desktop [2], it can take
up to 20 minutes on the 16-megahertz Palm III. This indicates that the synchronization scheme employed
for mobile systems should be heavily asymmetric in its computational requirements.

We have reason to believe that efficient and practical implementation of these synchronization protocols
is realizable in a large heterogenous network. The clear evidence comes from the proliferation of Reed-
Solomon decoders into modern appliances, such as CD decoders and digital television. With the proper
hardware advances, these decoders, whose complexity is similar to the described synchronization protocols,
have become practical for small systems. One can thus envisage a “smart” gossip protocol that invisibly
spreads synchronization information throughout a vast network of PDAs, laptops, and laptops using mass-
produced hardware decoders.

In fact, attention to sophisticated synchronization techniques is necessary to sustain the explosive growth
in network connections expected in the next ten to twenty years; the current paradigm of accounting for
individual modifications will demand simply too much bandwidth and local storage to sustain such growth.
Finally, the reward potential is also great, since the ubiquitous, seamless synchronization will encourage the
proliferation and distribution of data, affecting both day-to-day personal interactions and global, multi-site
business dealings.

References

[1] Matthew Denny and Chris Wells, “EDISON: Enhanced data interchange services over networks,” May
2000, class project, UC Berkeley.

[2] Yaron Minsky, Ari Trachtenberg, and Richard Zippel, “Set reconciliation with nearly optimal commu-
nication complexity,” IEEE Trans. Inf. Theory, 2000, submitted.

[3] R.A. Golding, Weak-Consistency Group Communication and Membership, Ph.D. thesis, UC Santa
Cruz, December 1992, Published as technical report UCSC-CRL-92-52.

6

