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Abstract— Modern Personal Digital Assistant (PDA) ar-
chitectures often use a wholesale data transfer protocol
known as “slow sync” for synchronizing PDAs with Personal
Computers (PCs). This approach is markedly inefficient, in
terms of bandwidth usage and latency, since the PDA and
PC typically share many common records. We propose, an-
alyze, and implement a novel PDA synchronization scheme
(CPIsync) based on recent information-theoretic research.
The salient property of this scheme is that its communica-
tion complexity depends only on the number of differences
between the PDA and PC, rather than the overall sizes of
their databases. Moreover, our implementation shows that
the computational complexity of CPIsync is practical, and
that the overall latency is typically much smaller than that of
slow sync. Thus, CPIsync has potential for significantly im-
proving synchronization protocols for PDAs and, more gen-
erally, for heterogeneous networks of many machines.
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I. INTRODUCTION
number of differences is often much smaller than the to-

Much of the popularity of mobile computing deViC?Fal number of records stored on the PDA. Indeed, the typ-

and PDAs can be attributed to their ability to deliver in._, ..<o is where handheld devices and desktops regu-

formation to users on a seamless basis. In partlcularl ﬁy synchronize with each other with small changes to

key feature of this new computing paradigm is the abg‘atabases between synchronizations.

ity to access and modify data on a mobile device and then

. . We propose to apply a near-optimal synchronization
to synchronizeany updates back at the office or througrtr11 prop PPl P Y .
. : . lethodology based on recent research advances in fast set
a network. This feature plays an essential role in the vi

. ) . . . : . feconciliation [2, 3], in order to minimize the waste of net-
sion of pervasive computing, in which any mobile device : :

o : __Work resources. Broadly speaking, given a PDA and a PC
will ultimately be able to access and synchronize with a

V\Xth data setsd and B, this new scheme can synchronize
networked data. ) . o
. o the hosts using one message in each direction of length
Although simple, current PDA synchronization arch

o A — B| + |B — A| (i.e. independent of the size of the
tectures are also often inefficient. They generally empl ¥ia setsd and B). Thus, two data sets could each have
a protocol known aslow sync[l], except for a simple ’

: o millions of entries, but if they differ in only ten of them,
special case where the last synchronization took place ttﬁ%'n each set can be synchronized with the other using one

tween the same PDA and PC. The slow sync prOtOCOIJﬁéssage whose size is about that of ten entries.

quires a wholesale transfer of all PDA data to a PC in order. o . .
. e . The key of the proposed synchronization algorithm is a

to determine the differing records between their databases. | .. : ) :
. . ranslation of data into a certain type of polynomial known
This approach turns out to be particularly wasteful, In - -
terms of bandwidth usage and latency, since the act%,S Ithecharactensnc polynomialSimply put, each recon-
g Y. uﬁng host {.e. the PDA and the PC) maintains its own

A shorter version of this paper will appear in INFOCOM 2002.  characteristic polynomial. When synchronizing, the PDA



sends sampled values of its characteristic polynomial to
the PC; the number of samples must be not less than the

number of differences between the databases of the two “Slow Sync”
hosts. The PC then discovers the values of the differing Database
entries byinterpolatinga corresponding rational function ;23?2?3 buyditgod »
from the received samples. The procedure completes with no change register| ——%
the PC sending updates to the Palm, if needed. The wo no Chanae ML AOY > -
case computation complexity of the scheme is roughly ¢ poa
bic in the number of differences. A schematic of our in Database
plementation, which we call CPIsync for Characterist.c metadata  data
Polynomial Interpolation-based Synchronization, is pre- B s >
sented in Figure 1. no change PIN 2002

We have implemented CPIsync on a Palm Pilot llixe, a no change .-
popular and representative PDA. Our experimental results “Fast Sync”

show that CPlsync performs significantly better (some-

times, by order of magnitudes) than slow sync in terms

of latency and bandwidth usage. On the other hand, &% 2= The two modes of the Palm HotSync protocol. In

h b £ diff betw host datab . the “slow sync” all the data is transferred. In the “fast
enum ero. irerences _e eenhostadata aseS|nf:re§S%ynC,, only modified entries are transferred between the two

the computational complexity of CPIsync becomes signif- yatapases.

icant; thus, if two databases differ significantly, wholesale

data transfer becomes the faster method of synchroniz lish the foundai ¢ CPI hich based h
tion. We present a simple numerical method for determi>'ISh the foundations o sync, which are based on the

ing the threshold at which it becomes better to use Whoﬁ@goretical resuljts' O,f [2]. Section_ IV provides technical de-
sale data transfer than CPIsync. Thus, if the goal is to mﬁﬂ'—ls of our specific |mp|ementat|on_of CPlsync on a Palm
imize the time needed to perform synchronization, tthOt llixe. We_also present experimental res'ults for thg
CPIsync should be used when the number of difference$3S°© wher_e a tight bo_und on the ”“mber of differences is
below the threshold. Otherwise, slow sync should be usgrat_)wna priori. In Sectlon_y, yve desc_rlbe and gvaluate the
Note that the value of the threshold is typically quite Iarg%?rformance of a probabilistic technique that i used when

making CPIsync the protocol of choice for many synchrg—t'ght_b(wndhon tg_e numbelr ofddlffer(ljr'lcess 'S 'not\l;lnowdn
nization applications. a priori. We then discuss related work in Section VI an

Another complication of CPIsync is that it requires %onclusmns in Section VII.

gooda priori bound on the number of differences between )
- . . [l. BACKGROUND: THE PALM SYNCHRONIZATION
two synchronizing sets. We describe two practical ap-
. ) PrRoTOCOL

proaches for determining such a bound. In the first case,
we propose a simple method that performs well for theln order to clearly and concretely explain the types of
synchronization of a small number of hosts (e.g. a Pp&rformance issues addressed in this paper, we describe
with two different PCs, one at work and one at homea)ext how data synchronization is implemented in the Palm
In the second case, we make use of a probabilistic te€s architecture, one of the leading and state-of-the-art mo-
nique from [2] for testing the correctness of a guessed lyile computing platforms.
per bound. If one guess turns out to be incorrect, themrhe Palm synchronization protocol, known as HotSync,
it can be modified in a second attempted synchronizatigslies on metadata that is maintained on both the handheld
and so forth. The error of this probabilistic technique calevice and a desktop. The metadata consist of databases
be made arbitrarily small. We also show that the comm@@Palm DBs) which contain information on the data records.
nication and time used by this scheme can be maintaire@alm DB is separately implemented for each applica-
within a small multiplicative constant of the communicaion: there is one Palm DB for “Date Book” data records,
tion and time needed for the optimal case where the nugnother for “To Do” data records, and so forth. For each
ber of differences between two host databases is knownlata record, the Palm DB maintains: a unique record iden-

This paper is organized as follows. In the next sectitifier, a pointer to the record’s memory location, and status
we begin with a review of the synchronization techniquélags. The status flags remain clear only if the data record
currently used in the Palm OS computing platform and ihas not been modified since the last synchronization event.
dicate their limitations. Thereafter, in Section Il we e$therwise the status flags indicate the new status of the
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Fig. 3. A comparison of the communication complexities ofig. 4. A comparison of the time complexities of slow sync and
slow sync and fast sync. fast sync.

record {.e. modified, deleted, etc.). stored in the device, independently of the number of record

The Palm HotSync protocol operates in either one miodifications. Figures 3 and 4 illustrates this phenomenon
the following two modesfast syncor slow sync If the on a Palm llixe PDA, as measured by a demo version of
PDA device synchronizes with the same desktop as it i@ Frontline Test Equipment software [4]. Specifically,
last, then the fast sync mode is selected. In this case, tigse figures show the number of bytes transferred and the
device uploads to the desktop only those records whageount of time expended during similar slow sync and fast
Palm DB status flags have been set. The desktop then @y#s events. Our measurements are repeated with an in-
its synchronization logic to reconcile the device’s changgasing number of records on the device, but a fixed num-
with its own. The synchronization logic may differ fronber of differencesi(e. ten); the records are all of the same
one application to another and is implemented by so-cal&ze. In Figure 4 we see that the time needed to complete a
conduits The synchronization process concludes by resgibw sync grows linearly with the number of records stored
ting all the status flags on both the device and the desktoghe device, whereas for fast sync it remains almost con-
A copy of the local database is also saved as a backupstant.
case the next synchronization will be performed in slowFor the case of 3000 records, the duration of slow syncs
sync mode. exceeds 2 minutes, about 15 times longer than fast syncs.

If the fast sync conditions are not met, then a slow syhtfact, slow sync can require as long as 20 minutes for
is performed. Thus, a slow sync is performed whenever thege, but practical, database sizes.
handheld device synchronized last with a different desk+igures 3 and 4 clearly shows that slow syncs do not
top, as might happen if one alternates synchronization wgdale well with the amount of information stored on a
one computer at home and another at work. In such casiesjice. Thus, the Palm synchronization model generally
the status flags do not reliably convey the differences besrks well only in simple settings where users possess a
tween the synchronizing systems and, instead, the hasidgle handheld device that synchronizes most of the time
held device sendall of its data records to the desktopwith the same desktop. However, this model fails in the in-
Using its backup copy, the desktop determines which dateasingly common scenario where large amounts of data
records have been added, changed or deleted and cam@-synchronized among multiple PDAs and desktops. An
pletes the synchronization as in the fast sync case. Arintportant issue in this context is to devise a new family
lustration of the fast sync and slow sync operation modsfssynchronization protocols whose communication com-
is given in Figure 2. plexity will depend only on the number of differences be-

It turns out that slow syncs are significantly less efficietwween the synchronizing systems, even when the condi-
than fast syncs, especially with respect to latency and tisas for a fast sync do not hold. In the next section, we
of bandwidth. In particular, the communication cost anmfesent one solution based on characteristic polynomial in-
time of slow syncs increase with the number of recorterpolation.



I1l. CHARACTERISTIC POLYNOMIAL Protocol 1 Set reconciliation with a known upper bound
INTERPOLATION-BASED SYNCHRONIZATION m on the number of differences. [3]
d. HostsA and B evaluatexg, () and xg,(z) respec-
tively at the saman sample pointg;, 1 < i < m.
fy.HostB sends to hos# its evaluations(g, (z;), 1 <

We formalize the problem of synchronizing two host
data as follows: given a pair of hostisand B, each with a
set ofb-bit integers, how can each host determine the sy
metric difference of the two set&é. those integers held" < m. _ _
by A but notB, or held byB but notA) using a minimal 3. The evaluation are combined at halsto compute the
amount of communication. Within this context, only thyalue ofXg, (zi)/Xsp (2:) = f(zi) at each of the sample
contents of the sets is important, but not their actual §2NtS- The_ points(z;, f(z;)) are interpolated bY solv-
ganization. Note also that the synchronized integers a3y a generalized Van(jermonde systgm of equgnons [2] to
generically encode all types of data. In [2] this formalizhgconstruct the coefficients of the rational function
tion is called theset reconciliatiorproblem. Natural exam-
ples of set reconciliation includ?synchronization of bibli- (2) = Xa,(2)/Xas(2)-

ographic data [5], resource availability [6, 7], data withif The zeroes ofka ,(z) and X, (z) are determined;

gossip protocols [8, 9], or memos and address books. l@@y are precisely the elements/sf andA 5 respectively.
the other hand, synchronization of edited text is not an ex-

ample of set reconciliation because the structure of data in

a file encodes information; for example, a file containingtional functionw are much smaller. Thus, a rel-
the string “a b ¢” is not the same as a file containing th? Ap2) :

string “c b a". afively small number of sample points;, f(z;)) com-

N L . 8Ietely determine the rational functigiiz).
The set reconciliation problem is intimately linked t .
design questions in coding theory and graph theory [lO]The approach in [2] may thus be reduced conceptually
fo'three fundamental steps, described in Protocol 1. This

from which several solutions exist. The following solu-r tocol assumes that an upper boamon the number of
tion, which we have implemented on a PDA as describgﬁ? PP

. : . - o erencesn between two hosts is knovanpriori by both

in Section IV, requires a nearly minimal communication . . . S
complexity and operates with a reasonable computatiorr]l%] ts_. Section I1I-B descnbgs an eff|C|_ent, probabilistic,
complexity. solution for the case when a tight bourdis not known.

A simple implementation of this algorithm requires ex-
pected computational time cubic in the size of the bound
m and linear in the size of the sef§ andSg. However,

The key to the set reconciliation algorithm of Minskyn practice an efficient implementation can amortize much
Trachtenberg, and Zippel [2, 3] is a translation of data sgtsthe computational complexity. For example, hosts
into polynomials designed specifically for efficient recormng B can easily maintain their characteristic polynomial

ciliation. To this end, [2] makes use of a characteris§ga|uations incrementally as data is added or deleted from
polynomialxs(Z) of a setS = {1, 2, ...,z,}, defined their sets.
to be:

A. Deterministic scheme with a known upper bound

Overall, the algorithm in [2] communicatescomputed
Xs(Z) = (Z — 11)(Z — 22)(Z — x3) -+ (Z — ) sgmples from hosf to B in order to reconcile at most _
2 0y (8) 2" 4+ (—1) 0 (S) (1) differences between the two sets; to complete the reconcil-
A iation, hostB then sends back the computed differences

The coefficients; (S) of the characteristic polynomial ard® 4 9Ving a total communication dfii integers.
known as thelementary symmetric polynomiaiss [11]. This means that the commgnlcatlon complexity of Pro-
If we define the sets of missing integeks = 54 — Sp tocol 1 is independent of the sizes of s_ﬁ/;san_dSB. Thus, '
and symmetricallyAz = Sp — S, then the following hostsA andB co_uld each have one million integers, but if
equality holds the symmetric difference of their sets was at most ten then
at most ten samples would have to be transmitted in each
Xg,(2)  Xa,(2) direction to perform reconciliation, rather than the one mil-
T Xg,(2)  Xa,(2) lion integers that would be transmitted in a trivial set trans-
fer. Furthermore, this protocol does not require interac-
because all common factors cancel out. Although the digity, meaning, for example, that host could make his
grees ofxg,(z) andXg,(z) may be very large, the de-computed sample points available on the web; anyone else
grees of the numerator and denominator of the (reducedi then determind’s set simply by downloading these

f(2)




Example 1 A simple example of the interpolation-basefixample 2 An example of reconciliation when no bound
synchronization protocol. m is known on the number of differences between two sets.
Consider the setssy = {1,2,4,16,21} and Sz = Consider using and incorrect bourid= 1 in Example 1.
{1,2,6,21} stored ass-bit integers at hostsl and B re- In this case, hosB receives the evaluationg, (—1) =
spectively. We treat the members $f and Sz as mem- 69 from host A, and compares it to its own evaluation
bers of an arbitrary finite fiel&f;, so as to constrain theXs (—1) = 1 to interpolate the polynomial

size of characteristic polynomial evaluations [2]. Assume

z+ 70

an upper bound ofn = 4 on the size of the symmetric f(z) = 1 3)
difference betwees4, andSp.
The characteristic polynomials fot and B are: as a guess of the differences between the two hosts.

To check the validity of (3), hosB then requests evalua-
X5,(2) = (2 =1)-(2=2)- (2 =4) - (2 = 16) - (2 = 21), {ions of A’s polynomial at two random pointsy = 38
Xsp(2)=(2—1)-(2=2)-(z—6) (= —21). andr; = 51. Host A sends the corresponding values
(ro) = 23 andX,, (51) = 53, which B divides to
wn evaluation¥(g,, (ro) = 38 andXg, (r1) = 36 to
the two verification pointg(ry) = 66 andg(r,) = 35.
Since the guessed functigi{z) in (3) does not agree at

. X
The following table shows the values at the evaluatlﬂgg‘:J
points of the characteristic polynomials and the value é)ét
their ratio. All calculations are done ovEf, .

> — 11 —21-37-a2 these two verification points, host knows that the initial
Xg, (2) 69 1 12 1 60 | 61 bound must have been incorrect. Héstay thus updates
XSA () 117 160! 45 its bound tom = 3 and repeats the process of verification.
B
Xs,(2)/Xsz(2) | 69 | 22 | 1 | 55

_ ) _ bound and subsequently verify if the guess is correct. If
Host B send its evaluations to hot who can now inter- 4, guessed value fal turns out to be wrong, then it can

polate the following rational function from the evaluategs improved iteratively until a correct value is reached.

sample points: Thus, in this case, we may use the following scheme to
synchronize: First, hostd andB guess an upper boumd

and perform Protocol 1 with this bound, resulting in host
A computing a rational functiolfi(z). If the functionf(z)

The zeros of the numerator and denominator{arel 6} corresponds to the differences between the two host sets,
and {6} respectively, which are exactly equal f9; and thatis if

Ag. f(z) = XSA(Z), )

XSB (Z)

, - . then computing the zeroes will determine precisel
computed values, without requiring any computation froqq puiing $iz) P y

A. Example 1 demonstrates the protocol on two speci ie mutual difference between the two sets.
't xamp P WO SPECMCry check whether Equation (2) holds, hdstchooses
S€ts. . _ . k random sample pointg;, and sends their evaluations
Protocol 1 provides an efficient solution to the set rec-

o . ;) to hostA, who uses these values to compute eval-
onciliation problem when the number of differences bégﬁ(()ﬁg P
tween two hostsife. m) is known or tightly bounded. In X5 (T3)

many practical applications, however, a good bound is not g(ri) = Xsp (i)’

k_n_ovx_/na prio'ri. The foIIovying §ection describes a probaéy comparingf (r;) andg(r;), hostA can assess whether
bilistic technique for dealing with such cases. Equation (2) has been satisfied. If the equation is not sat-

B. Probabilistic scheme with an unknown upper bound iSfied, then the procedure can be repeated with a different
] ] ) ] _ boundm. Example 2 demonstrates this procedure.
An mfprrpa‘ugn theoretic ana]ygs [10] sh.ows that if nei- | - general, the two hosts keep gusssintil the resulting
ther a distribution nor a non-trivial bourd is known on polynomials agree in alt random sample points. A pre-

the differences between two host sets, then no determiy, o ropanilistic analysis in [2] shows that such an agree-
istic scheme can do better thalow sync However, with -+ corresponds to a probability of error

arbitrarily high probability, a probabilistic scheme can do
much better. 1S4| + S5 - 11"
Specifically, the scheme in [2] suggests guessing such a 2b ’

22 4+ 512+ 64

£(2) = X5, (2) /Xy (2) = S

egm[ 4)



Manipulating equation 4 and using the trivial upper boud Experimental environment

m < |Sa| + |SB|, we see that we need an agreement of ,
Platform:  Our experiments were performed on a Palm

c Pilot Ilixe with a 16-bit Motorola Dragonball processor

k= [logp (Wﬂ (5) and8MB of RAM. The Palm was connected via a serial

link to a Pentium IIl class machine with 512 MB of RAM.

¢ Model:  Our specific implementation of CPIsync em-
ry_lates a memo pad application. As data is entered on
the Palm, evaluations of the characteristic polynomial (de-
ity ¢ = 10~2° would require agreement &f = 2 random scr_ibed in Section Ill) are updated_at Qesignated sample
samples. points. Upon arequest for synchronization, the Palm sends
m of these evaluations to the desktop, corresponding to the

As shown in Section V-A, this verification protocol re- . )
quires the transmission of at most + & samples and presumed maximum number of differences between the

. data on the two machines. The desktop compares these
one random number seed (for generating random sameo e . . . . .
) . . . . valuations to its own evaluations and determines the dif-
points) to reconcile two sets; the valiés determined by . . .
. . . . ferences between the two machines, as described in Proto-
the desired probability of erraraccording to Equation 5. .
col 1. We compare CPIsync to an emulation of slow sync,

Thus, though the verification protocol will require MO hich upon synchronization, sends all the Palm data to the

roundg O_f commumcaﬂ_on fpr synchromzatlon thgn _the q esktop, and uses this information to determine the differ-
terministic Protocol 1, it will not require transmission o nces

significantly more bits of communication. We shall see In . . -
g y We do not address issues about which specific data

Section IV that the computational overhead of this proba- o
bilistic protocol is also not large. to keep at the end of the synchronization cycle, but

several techniques from the database literature may be
adapted [12]. We also avoid issues of hashing by re-
stricting entries to 15-bit integers. Finite field arithmetic
To demonstrate the practicality and effectiveness wés performed with Victor Shoup’s Number Theory Li-
our synchronization approach, we have implemented thary [13] and data was transferred in the Palm Database
CPIsync algorithm that was introduced in the previous sédle format. This data was converted to data readable by
tions on a real handheld device, that is, a Palm Pilot llig&ir Palm program using [14].
Personal Digital Assistant. Metrics and Measurements: The two major metrics
Our program emulates the operation of a memo pased for comparing CPIsync to slow sync acenmunica-
and provides a convenient testbed for evaluating the rigan andtime. Communication represents the number of
synchronization protocol. Moreover, the successful ifytes sent by each protocol over the link. For this metric,
plementation of this protocol on the computationally am experiment is needed as it is known analytically that
communicationally limited Palm device suggests that tRéIsync will upload onlym entries from the PDA, while
same can be done for more complicated, heterogeneslow sync will require the transfer of all the Palm entries.
networks of many machines. On the down link from the PC to the PDA, both protocols
In this section, we describe our implementation and piill transmit the same updates.
vide some experimental results for the specific case wherdhe time required for a synchronization to complete. (
the number of the differences,, between the PDA and PCthe latency) is probably the most important metric from a
databases is either known or tightly boundedibg priori. user’s point of view. For slow sync, the dominant compo-
Though one can determine such a bound in many practizaht of the latency is the data transfer time, whereas for
situations, as we show in Section IV-B, it is difficult ta&CPIsync the computation time generally dominates. Our
guarantee the tightness of this bound, thereby leaving éx@eriments compare the latencies of CPIsync and slow
scalability of the resulting synchronization in question. sync in various scenarios. The synchronization latency is
When a bound is not known, it is generally muchmeasured from the time at which the Palm begins to send
more efficient to employ the probabilistic scheme intrés data to the PC until the time at which the PC determines
duced in Section IlI-B. In the next section we provide &l the differences between the databases. The results pre-
practical implementation of this probabilistic scheme. B€nted in the next section represent averageslvieien-
fact, we show that the performance of this scheme is cldig@l experiments.
to the performance of a protocol that knowsa priori. Results:  Figure 5 depicts the superior scalability of

samples (where = %) to get a probability o

error e for the whole protocol. Thus, for example, reco
ciling host sets o010, 64-bit integers with error probabil-

IV. PDA IMPLEMENTATION
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Fig. 5. A comparison of CPIsync and slow sync demonstratirigjg. 6. A comparison of CPIsync and slow sync for sets having
the superiority of CPIsync for growing sets of data with a 10,000 elements. The synchronization time is plotted as a
fixed number of differences.é. 101) between them. function of the number of differences between the two sets.

CPlIsync over slow sync. In this figure, we have plotted tMéth such analytical models, we can determine a threshold
time used by each synchronization scheme as a functioffgfany given set size and number of differences between
data set size for a fixed number of differences between da@ats, as illustrated by Figure 7.
sets. Note that in a Palm PDA application like an address
It is clear from the resulting graphs that slow sync 0k or memo, the number of changes between synchro-
markedly non scalable: the time taken by slow sync iRization involves typically only a small number of records.
creases linearly with the size of the data sets. CPIsyhBus, CPIsync will usually be much faster than slow sync.
on the other hand, is almost independent of the data set o
sizes. Comparing Figure 4 to Figure 5 we observe that fire P€t€rmining an upper bound
qualitative behavior of CPIsync is similar to that of fast The implementation of CPIsync described in the previ-
sync. The remarkable property of CPIsync is that it calis sections requires knowledge of a tight upper boand,
be employed in any synchronization scenario, regardlessthe number of differing entries. One simple method for
of the context, whereas fast sync is employed only whebtaining such a bound involves having both hdsand
the previous synchronization took place between the samstB count the number of modifications to their data sets
PC and the same PDA. since their last common synchronization. The next time
In Figure 6, we compare the performance of CPlsytitat hostA and hostB synchronize, hosi sends to host
to slow sync for data sets with fixed sizes but increasifya message containing its number of modifications, de-
number of differences. As expected, CPIsync performstedm . Host B computes its corresponding valde;
significantly better than slow sync when the two reconcfle as to form the upper boumd = 4 + g on the to-
ing sets do not differ by much. However, as the numbi number of differences between both hosts. Clearly, this
of differences between the two sets grows, the compubaundrm will be tight if the two hosts have performed mu-
tional complexity of CPIsync becomes significant. Thusjally exclusive modificationsHowever, it may be com-
there exists a threshold where wholesale data traniséer pletely off if the hosts have performed exactly the same
slow sync) becomes a faster method of synchronizatiomdifications to their respective databases. This may hap-
this threshold is a function of the data set sizes as wellge if, prior to their own synchronization, both hosts
the number of differences between the two data sets. BodB synchronized with a third host. Another problem
1,000 records, this threshold corresponds to alddtdif- with this method is that it requires maintaining separate
ferences. information for each host with which synchronization is
By preparing graphs like Figure 6 for various differperformed; this may not be reasonable for larger networks.
ent set sizes, we were able to produce a regression Wittus, the simple method just described will be rather inef-
a coefficient of determination [15] almost 1 that analytiicient for some applications.
cally models the performance of slow sync and CPIsync,In the next section, we describe a probabilistic scheme
producing a table of threshold values listed in Tablethat can determine a much tighter value@or This result
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The probabilistic method, introduced in 11I-B, can be 0 o

implemented in various ways depending on the metric of

interest. In this section, we propose two implementation§- /- A 9raph comparing siow sync and CPIsync for databases
based on the optimization of two different metrics with varying numbers of records and with varying numbers
P : of differences between databases. The patterned line depicts

A. Communication optimization the threshold curve at_ which slow sync and CPIsync require
) the same amount of time to complete.
In one case, we may consider optimizing our imple-
mentation of the probabilistic method with respect to trée Latency optimization
amount ofcommunicationneeded for reconciliation. It~ yop
turns out that we can synchronize a PDA and a PC thatn a second case, we may consider optimizing our im-
differ in m entries by sending at most + k character- plementation for the purposes of minimizifegency that
istic polynomial evaluations, whereis a small constantbeing the overall time needed for synchronization. We
(see Section IlI-B). thus propose a general probabilistic scheme whose com-
Such a scheme can be implemented as follows: Fips¢tion time is at worst a constanttimes larger than the
the PDA sends to the PC evaluations of its own chardigne needed to synchronize two hosts when the number of
teristic polynomial at a small number of pre-determinetifferences between them is knowenpriori. This prob-
sample points and &t additional random sample pointsabilistic scheme retains one of the essential properties of
The former points are used to interpolate a rational furits deterministic counterpart: the synchronization latency
tion, corresponding to a guess of the differences betwekepends only on the number of differences and not on the
the two machines, and the latter points are used to vetifjal size of the host data sets. We prove that 4 is an
the correctness of this guess. If the verification succeegstimal bound for this scheme and show how to achieve it.
then the synchronization is complete. On the other handQur approach to this optimization relies in part on the
if the verification fails, then the PC collects all the samptiata graphed in Figure 6 and reproduced in Figure 8. In
points seen so far into a guess of the differences betw#sn latter figure, we fit our data to a polynomial regres-
the two machines while at the same time requestitagl- sion that interpolates the latency of CPIsync as a function
ditional random evaluations from the PDA to confirm thisf the number of differences between two hosts. Since
new guess. This procedure is iterated until verification s exact value forn is not known at the start, the PDA
ceeds, at which point synchronization is complete. Sinmed PC start with an initial gue3s; for an upper bound
m evaluations will necessarily be enough to completedyn m. In Figure 8, this initial guess corresponds to the
determine up ton differences, verification will necessarvaluem; = 11, which corresponds to a verification time
ily succeed after at most + &k transmissions. of t1 = 3.65 seconds. If verification fails for this guess,
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Fig. 8. A model of the approach used to optimize the latency &g. 9. A comparison of the probabilistic scheme with no known
synchronization when no bound is known on the number of boundm to the deterministic scheme with a given value of
differences between data sets. m.

then we update our bound to the vatagthat corresponds By examining the derivative af(§) with respect taj, one

to a verification time that ig times larger than fomy dif-  finds that this function attains a minimum valuedat 2,
ferencesi(e. to = dt1). In the case of Figure 8, = 2 |eading to an optimal ratio af = 4. Thus, the best policy
givingmy = 151 andty ~ 7.29 seconds. At each iter-for this scheme is to double the verification time at each
ation we guess the bourd; that corresponds to a veri-iteration.

fication timet; = d¢;,_;. We continue until verification  Figure 9 illustrates the performance of this probabilis-
succeeds for some guessed boumgdrequiring verifica- tic scheme compared to that of the deterministic scheme.
tion timet,, = 6"~ '4;. Note that the probabilistic results remain within the guar-

_ . . anteed facto# of the corresponding deterministic results.
Claim 1 The latency-optimizing probabilistic scheme

takes at most(§) = 62/(5 — 1) times longer than a deter- VI. RELATED WORK
ministic scheme with aa priori knowledge of the actual

number of differences. The general problem of synchronization has been stud-

ied from different perspectives in the literature.

Proof: Denote byT*(m) the synchronization latency From a database perspective, the concept of discon-
whenm is knowna priori, and byT'(m) the synchroniza- nected operation, in which hosts can independently op-
tion latency required by this probabilistic scheme. Furtherate and subsequently synchronize, was established by
more, denote by; the time needed for theth verification the CODA file system [16]. The general model proposed
round in whichm; differences are guessed between the[16] is similar to the models used by several current mo-
two hosts. bile computing systems, including some PDAs.

Suppose that a correct upper boumg, > m, is ob- The management of replicated, distributed, databases
tained first at thea-th iteration, forn > 1. The total syn- requires the development of sophisticated algorithms for
chronization time required for the probabilistic schemegsiaranteeing data consistency and for resolving conflict-
then simply the sum of a geometric progression ing updates. Several architectures, such as BAYOU [17],
§m— 1 ROAM [18], and DENO [19] have been proposed to ad-
51 t1. dress these important problems. We consider CPIsync to

be complementary to these architectures. The CPlsync
Note thatT™*(m) > t,_; = d" ?t;, sincem,, is assumed methodology permits the efficient determination of the dif-
to be thefirst correct upper boungh. We thus obtain ferences between databases, while the mentioned architec-
T n tures can be used to resolve which data to keep or to update
(m) " —1 :
To(m) = (0= 1)on 2’ foralln > 1. (6) once the dlffe_rences are known.. '
The analysis of PDA synchronization protocols from the
It is easy to check that the right hand side of (6) is maxierspective of scalability of communications, as consid-
mized whem — oo, meaning that’/7* > §2/(§ — 1). § ered in this paper, is a relatively new area of research. The

T(m) = t1+.. .4ty =t 4+t +. . .+6" 1t =
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most closely related work we have found in the literature VII. CONCLUSION

is the EDISON architecture proposed in [20]. This archi- .
. . . ) n this paper, we showed that the current performance
tecture relies on a centralized, shared server with which al o
of PDA synchronization schemes can be tremendously

hosts synchronize. The server maintains an incrementa e :
improved through the use of sophisticated computational
log of updates so that the hosts can always use fast sync In- . .
. . . ” Tethods [2, 3]. We have described, analyzed, and imple-
stead of slow sync. Unlike CPIsync, this architecture is not .
. ) ented a novel algorithm, termed CPlsync, for fast and ef-
designed for the general case where a device may synchro- o . )
. . . . icient PDA synchronization. Our implementation demon-
nize with any other device on a peer-to-peer basis. In gen- e . . :
o . Strated that it is possible to synchronize remote systems in
eral, a distributed architecture based on peer-to-peer syn- . o
o . scalable manner, from the perspective of communication
chronization provides much better network performan%% dwidth
in terms of robustness and scalability, than a centralize .. .
pecifically, we showed that two hosts can reconcile

architecture [17-19]. : : ) . -
: . . . their data in a real environment with a communication
From an information-theoretic perspective, synchro- . . .
o . complexity depending only on the number of differences
nization can also be modeled as a traditional err rétween the them. provided that thev have aood bound on
correction problem. In this case, haBtcan be thought ' P y g

to have a corrupted copy of a database held by h%hé? number of differences. We demonstrated the use of a

: : . probabilistic scheme for the cases where such a bound is
A. When the corruptions areon-destructive meaning . . e
: not available. The accuracy of this probabilistic method
that the corruptions only change data rather than addin . . .
. can be made as good as desired, and its communication
new data or deleting old data, the problem of synchro- S, " :
. : : . complexity is within an additive constant of the determin-
nizing the two databases is precisely the classical proh- . . . .
. istic scheme that is supplied with the exact number of dif-
lem of error-correction [21]. Many sources [22—-26] haye

L . ¥&rences between both host sets.
addressed synchronization of such non-destructively cor-

rupted databases. A more recent work [27] makes a direc&JSIng analytical modeling, we also showed that the la-

link to coding theory by using a well-known class of goot(‘fncy of this probabilistic scheme can be designed to be

codes known as Reed-Solomon codes to affect such <uthin a factor of4 of the latency for the deterministic

o glcrh_eme. Thus, even without a knowing the number of dif-
chronizations.

L . . ferences between them, two hosts can reconcile with both a
However, the applications that we address in this wor(?<

. i A ommunication and latency that depends only on this num-
do not conform to this simplified synchronization mod T y b y

. : er of differences. We presented experimental evidence of
It is generally not the case that database differences jor ) .
| . tnis phenomenon, demonstrating that, in most reasonable
mobile systems can be modeled as non-destructive cor- _ . . ,
. cenarios, CPIsync is substantially faster than the current
ruptions. Instead, we need to allow for data to be adde o .
reconciliation scheme implemented on the Palm PDA.

or deleted from anywhere within a database, as happe he CPIsync algorithm described in the paper is suitable

ractically. Several sources [28, 29] have studied extende o .
P Y. S8 . [ . ] . no(EI only for the specific application to PDAs, but also to
synchronization models in which the permitted corrup- . .
: : : . ) e y general class of problems where the difference in the
tions include insertions, deletions, and modifications

database entries. Recently, Cormode, PatersdninSalp, gata sets being reconciled is relatively small compared to

and Vishkin [30] provided a probabilistic solution for SUCth}he overall size of the data sets themselves. We believe that

- .. this scalable architecture will be essential in maintaining
synchronization when a bound on the number of differ-~ ~ i
. . consistency in large networks.
ences is known. However, all these algorithms assumé-a
fundamental ordering of the host data. Thus, they syn-
chronize not only the database contents, but also the order
of the entries within each database. For example, a synWe are grateful to Yaron Minsky for stimulating discus-
chronization of the set§1,3,5 with {3,5,1} would result sions and Felicia Trachtenberg for statistical advice.
in {1,3,5,1 because order is considered significant.
In fact, many applications [5, 7-9, 31, 32] do not require REFERENCES
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