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Abstract— Modern Personal Digital Assistant (PDA) ar-
chitectures often use a wholesale data transfer protocol
known as “slow sync” for synchronizing PDAs with Personal
Computers (PCs). This approach is markedly inefficient, in
terms of bandwidth usage and latency, since the PDA and
PC typically share many common records. We propose, an-
alyze, and implement a novel PDA synchronization scheme
(CPIsync) based on recent information-theoretic research.
The salient property of this scheme is that its communica-
tion complexity depends only on the number of differences
between the PDA and PC, rather than the overall sizes of
their databases. Moreover, our implementation shows that
the computational complexity of CPIsync is practical, and
that the overall latency is typically much smaller than that of
slow sync. Thus, CPIsync has potential for significantly im-
proving synchronization protocols for PDAs and, more gen-
erally, for heterogeneous networks of many machines.

Keywords—Personal Digital Assistant, mobile computing,
data synchronization

I. I NTRODUCTION

Much of the popularity of mobile computing devices
and PDAs can be attributed to their ability to deliver in-
formation to users on a seamless basis. In particular, a
key feature of this new computing paradigm is the abil-
ity to access and modify data on a mobile device and then
to synchronizeany updates back at the office or through
a network. This feature plays an essential role in the vi-
sion of pervasive computing, in which any mobile device
will ultimately be able to access and synchronize with any
networked data.

Although simple, current PDA synchronization archi-
tectures are also often inefficient. They generally employ
a protocol known asslow sync[1], except for a simple
special case where the last synchronization took place be-
tween the same PDA and PC. The slow sync protocol re-
quires a wholesale transfer of all PDA data to a PC in order
to determine the differing records between their databases.
This approach turns out to be particularly wasteful, in
terms of bandwidth usage and latency, since the actual
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Fig. 1. The overall scheme of the experiments done with the
CPIsync algorithm.

number of differences is often much smaller than the to-
tal number of records stored on the PDA. Indeed, the typ-
ical case is where handheld devices and desktops regu-
larly synchronize with each other with small changes to
databases between synchronizations.

We propose to apply a near-optimal synchronization
methodology based on recent research advances in fast set
reconciliation [2, 3], in order to minimize the waste of net-
work resources. Broadly speaking, given a PDA and a PC
with data setsA andB, this new scheme can synchronize
the hosts using one message in each direction of length
jA � Bj + jB � Aj (i.e. independent of the size of the
data setsA andB). Thus, two data sets could each have
millions of entries, but if they differ in only ten of them,
then each set can be synchronized with the other using one
message whose size is about that of ten entries.

The key of the proposed synchronization algorithm is a
translation of data into a certain type of polynomial known
as thecharacteristic polynomial. Simply put, each recon-
ciling host (i.e. the PDA and the PC) maintains its own
characteristic polynomial. When synchronizing, the PDA
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sends sampled values of its characteristic polynomial to
the PC; the number of samples must be not less than the
number of differences between the databases of the two
hosts. The PC then discovers the values of the differing
entries byinterpolatinga corresponding rational function
from the received samples. The procedure completes with
the PC sending updates to the Palm, if needed. The worst-
case computation complexity of the scheme is roughly cu-
bic in the number of differences. A schematic of our im-
plementation, which we call CPIsync for Characteristic
Polynomial Interpolation-based Synchronization, is pre-
sented in Figure 1.

We have implemented CPIsync on a Palm Pilot IIIxe, a
popular and representative PDA. Our experimental results
show that CPIsync performs significantly better (some-
times, by order of magnitudes) than slow sync in terms
of latency and bandwidth usage. On the other hand, as
the number of differences between host databases increase,
the computational complexity of CPIsync becomes signif-
icant; thus, if two databases differ significantly, wholesale
data transfer becomes the faster method of synchroniza-
tion. We present a simple numerical method for determin-
ing the threshold at which it becomes better to use whole-
sale data transfer than CPIsync. Thus, if the goal is to min-
imize the time needed to perform synchronization, then
CPIsync should be used when the number of differences is
below the threshold. Otherwise, slow sync should be used.
Note that the value of the threshold is typically quite large,
making CPIsync the protocol of choice for many synchro-
nization applications.

Another complication of CPIsync is that it requires a
gooda priori bound on the number of differences between
two synchronizing sets. We describe two practical ap-
proaches for determining such a bound. In the first case,
we propose a simple method that performs well for the
synchronization of a small number of hosts (e.g. a PDA
with two different PCs, one at work and one at home).
In the second case, we make use of a probabilistic tech-
nique from [2] for testing the correctness of a guessed up-
per bound. If one guess turns out to be incorrect, then
it can be modified in a second attempted synchronization,
and so forth. The error of this probabilistic technique can
be made arbitrarily small. We also show that the commu-
nication and time used by this scheme can be maintained
within a small multiplicative constant of the communica-
tion and time needed for the optimal case where the num-
ber of differences between two host databases is known.

This paper is organized as follows. In the next section
we begin with a review of the synchronization techniques
currently used in the Palm OS computing platform and in-
dicate their limitations. Thereafter, in Section III we es-
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Fig. 2. The two modes of the Palm HotSync protocol. In
the “slow sync” all the data is transferred. In the “fast
sync” only modified entries are transferred between the two
databases.

tablish the foundations of CPIsync, which are based on the
theoretical results of [2]. Section IV provides technical de-
tails of our specific implementation of CPIsync on a Palm
Pilot IIIxe. We also present experimental results for the
case where a tight bound on the number of differences is
knowna priori. In Section V, we describe and evaluate the
performance of a probabilistic technique that is used when
a tight bound on the number of differences is not known
a priori. We then discuss related work in Section VI and
conclusions in Section VII.

II. BACKGROUND: THE PALM SYNCHRONIZATION

PROTOCOL

In order to clearly and concretely explain the types of
performance issues addressed in this paper, we describe
next how data synchronization is implemented in the Palm
OS architecture, one of the leading and state-of-the-art mo-
bile computing platforms.

The Palm synchronization protocol, known as HotSync,
relies on metadata that is maintained on both the handheld
device and a desktop. The metadata consist of databases
(Palm DBs) which contain information on the data records.
A Palm DB is separately implemented for each applica-
tion: there is one Palm DB for “Date Book” data records,
another for “To Do” data records, and so forth. For each
data record, the Palm DB maintains: a unique record iden-
tifier, a pointer to the record’s memory location, and status
flags. The status flags remain clear only if the data record
has not been modified since the last synchronization event.
Otherwise the status flags indicate the new status of the
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Fig. 3. A comparison of the communication complexities of
slow sync and fast sync.

record (i.e. modified, deleted, etc.).
The Palm HotSync protocol operates in either one of

the following two modes:fast syncor slow sync. If the
PDA device synchronizes with the same desktop as it did
last, then the fast sync mode is selected. In this case, the
device uploads to the desktop only those records whose
Palm DB status flags have been set. The desktop then uses
its synchronization logic to reconcile the device’s changes
with its own. The synchronization logic may differ from
one application to another and is implemented by so-called
conduits. The synchronization process concludes by reset-
ting all the status flags on both the device and the desktop.
A copy of the local database is also saved as a backup, in
case the next synchronization will be performed in slow
sync mode.

If the fast sync conditions are not met, then a slow sync
is performed. Thus, a slow sync is performed whenever the
handheld device synchronized last with a different desk-
top, as might happen if one alternates synchronization with
one computer at home and another at work. In such cases,
the status flags do not reliably convey the differences be-
tween the synchronizing systems and, instead, the hand-
held device sendsall of its data records to the desktop.
Using its backup copy, the desktop determines which data
records have been added, changed or deleted and com-
pletes the synchronization as in the fast sync case. An il-
lustration of the fast sync and slow sync operation modes
is given in Figure 2.

It turns out that slow syncs are significantly less efficient
than fast syncs, especially with respect to latency and use
of bandwidth. In particular, the communication cost and
time of slow syncs increase with the number of records
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Fig. 4. A comparison of the time complexities of slow sync and
fast sync.

stored in the device, independently of the number of record
modifications. Figures 3 and 4 illustrates this phenomenon
on a Palm IIIxe PDA, as measured by a demo version of
the Frontline Test Equipment software [4]. Specifically,
these figures show the number of bytes transferred and the
amount of time expended during similar slow sync and fast
sync events. Our measurements are repeated with an in-
creasing number of records on the device, but a fixed num-
ber of differences (i.e. ten); the records are all of the same
size. In Figure 4 we see that the time needed to complete a
slow sync grows linearly with the number of records stored
in the device, whereas for fast sync it remains almost con-
stant.

For the case of 3000 records, the duration of slow syncs
exceeds 2 minutes, about 15 times longer than fast syncs.
In fact, slow sync can require as long as 20 minutes for
large, but practical, database sizes.

Figures 3 and 4 clearly shows that slow syncs do not
scale well with the amount of information stored on a
device. Thus, the Palm synchronization model generally
works well only in simple settings where users possess a
single handheld device that synchronizes most of the time
with the same desktop. However, this model fails in the in-
creasingly common scenario where large amounts of data
are synchronized among multiple PDAs and desktops. An
important issue in this context is to devise a new family
of synchronization protocols whose communication com-
plexity will depend only on the number of differences be-
tween the synchronizing systems, even when the condi-
tions for a fast sync do not hold. In the next section, we
present one solution based on characteristic polynomial in-
terpolation.
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III. C HARACTERISTIC POLYNOMIAL

INTERPOLATION-BASED SYNCHRONIZATION

We formalize the problem of synchronizing two hosts’
data as follows: given a pair of hostsA andB, each with a
set ofb-bit integers, how can each host determine the sym-
metric difference of the two sets (i.e. those integers held
by A but notB, or held byB but notA) using a minimal
amount of communication. Within this context, only the
contents of the sets is important, but not their actual or-
ganization. Note also that the synchronized integers can
generically encode all types of data. In [2] this formaliza-
tion is called theset reconciliationproblem. Natural exam-
ples of set reconciliation include synchronization of bibli-
ographic data [5], resource availability [6, 7], data within
gossip protocols [8, 9], or memos and address books. On
the other hand, synchronization of edited text is not an ex-
ample of set reconciliation because the structure of data in
a file encodes information; for example, a file containing
the string “a b c” is not the same as a file containing the
string “c b a”.

The set reconciliation problem is intimately linked to
design questions in coding theory and graph theory [10]
from which several solutions exist. The following solu-
tion, which we have implemented on a PDA as described
in Section IV, requires a nearly minimal communication
complexity and operates with a reasonable computational
complexity.

A. Deterministic scheme with a known upper bound

The key to the set reconciliation algorithm of Minsky,
Trachtenberg, and Zippel [2, 3] is a translation of data sets
into polynomials designed specifically for efficient recon-
ciliation. To this end, [2] makes use of a characteristic
polynomial�S(Z) of a setS = fx1; x2; : : : ; xng, defined
to be:

�
S(Z) = (Z � x1)(Z � x2)(Z � x3) � � � (Z � xn)

= Zn � �1(S)Z
n�1 + � � �+ (�1)n�n(S):

(1)

The coefficients�i(S) of the characteristic polynomial are
known as theelementary symmetric polynomialsof S [11].

If we define the sets of missing integers�A = SA�SB
and symmetrically�B = SB � SA, then the following
equality holds

f(z) =
�
SA

(z)
�
SB

(z)
=

�
�A

(z)
�
�B

(z)

because all common factors cancel out. Although the de-
grees of�SA(z) and�SB (z) may be very large, the de-
grees of the numerator and denominator of the (reduced)

Protocol 1 Set reconciliation with a known upper bound
m on the number of differencesm. [3]
1. HostsA andB evaluate�SA(z) and�SB (z) respec-
tively at the samem sample pointszi, 1 � i � m.
2. HostB sends to hostA its evaluations�SB (zi), 1 �
i � m.
3. The evaluation are combined at hostA to compute the
value of�SA(zi)=�SB(zi) = f(zi) at each of the sample
pointszi. The points(zi; f(zi)) are interpolated by solv-
ing a generalized Vandermonde system of equations [2] to
reconstruct the coefficients of the rational function

f(z) = �
�A

(z)=��B
(z):

4. The zeroes of��A
(z) and �

�B
(z) are determined;

they are precisely the elements of�A and�B respectively.

rational function
�
�A

(z)

�
�B

(z)
are much smaller. Thus, a rel-

atively small number of sample points(zi; f(zi)) com-
pletely determine the rational functionf(z).

The approach in [2] may thus be reduced conceptually
to three fundamental steps, described in Protocol 1. This
protocol assumes that an upper boundm on the number of
differencesm between two hosts is knowna priori by both
hosts. Section III-B describes an efficient, probabilistic,
solution for the case when a tight boundm is not known.

A simple implementation of this algorithm requires ex-
pected computational time cubic in the size of the bound
m and linear in the size of the setsSA andSB . However,
in practice an efficient implementation can amortize much
of the computational complexity. For example, hostsA
andB can easily maintain their characteristic polynomial
evaluations incrementally as data is added or deleted from
their sets.

Overall, the algorithm in [2] communicatesm computed
samples from hostA to B in order to reconcile at mostm
differences between the two sets; to complete the reconcil-
iation, hostB then sends back them computed differences
toA giving a total communication of2m integers.

This means that the communication complexity of Pro-
tocol 1 is independent of the sizes of setsSA andSB. Thus,
hostsA andB could each have one million integers, but if
the symmetric difference of their sets was at most ten then
at most ten samples would have to be transmitted in each
direction to perform reconciliation, rather than the one mil-
lion integers that would be transmitted in a trivial set trans-
fer. Furthermore, this protocol does not require interac-
tivity, meaning, for example, that hostA could make his
computed sample points available on the web; anyone else
can then determineA’s set simply by downloading these
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Example 1 A simple example of the interpolation-based
synchronization protocol.
Consider the setsSA = f1; 2; 4; 16; 21g and SB =

f1; 2; 6; 21g stored as5-bit integers at hostsA andB re-
spectively. We treat the members ofSA andSB as mem-
bers of an arbitrary finite fieldF71 so as to constrain the
size of characteristic polynomial evaluations [2]. Assume
an upper bound ofm = 4 on the size of the symmetric
difference betweenSA andSB .
The characteristic polynomials forA andB are:

�
SA

(z) = (z � 1) � (z � 2) � (z � 4) � (z � 16) � (z � 21);

�
SB

(z) = (z � 1) � (z � 2) � (z � 6) � (z � 21):

The following table shows the values at the evaluation
points of the characteristic polynomials and the value of
their ratio. All calculations are done overF71.

z = �1 �2 �3 �4
�
SA

(z) 69 12 60 61
�
SB

(z) 1 7 60 45
�
SA

(z)=�SB(z) 69 22 1 55

HostB send its evaluations to hostA, who can now inter-
polate the following rational function from the evaluated
sample points:

f(z) = �
SA

(z)=�SB(z) =
z2 + 51z + 64

z + 65

The zeros of the numerator and denominator aref4; 16g
andf6g respectively, which are exactly equal to�A and
�B .

computed values, without requiring any computation from
A. Example 1 demonstrates the protocol on two specific
sets.

Protocol 1 provides an efficient solution to the set rec-
onciliation problem when the number of differences be-
tween two hosts (i.e. m) is known or tightly bounded. In
many practical applications, however, a good bound is not
knowna priori. The following section describes a proba-
bilistic technique for dealing with such cases.

B. Probabilistic scheme with an unknown upper bound

An information theoretic analysis [10] shows that if nei-
ther a distribution nor a non-trivial boundm is known on
the differences between two host sets, then no determin-
istic scheme can do better thanslow sync. However, with
arbitrarily high probability, a probabilistic scheme can do
much better.

Specifically, the scheme in [2] suggests guessing such a

Example 2 An example of reconciliation when no bound
m is known on the number of differences between two sets.
Consider using and incorrect boundm = 1 in Example 1.
In this case, hostB receives the evaluation�SA(�1) =

69 from hostA, and compares it to its own evaluation
�
SB

(�1) = 1 to interpolate the polynomial

f(z) =
z + 70

1
(3)

as a guess of the differences between the two hosts.
To check the validity of (3), hostB then requests evalua-
tions ofA’s polynomial at two random points,r0 = 38
and r1 = 51. Host A sends the corresponding values
�
SA

(r0) = 23 and�r1(51) = 53, which B divides to
its own evaluations�SB (r0) = 38 and�SB (r1) = 36 to
get the two verification pointsg(r0) = 66 andg(r1) = 35.
Since the guessed functionf(z) in (3) does not agree at
these two verification points, hostB knows that the initial
bound must have been incorrect. HostB may thus updates
its bound tom = 3 and repeats the process of verification.

bound and subsequently verify if the guess is correct. If
the guessed value form turns out to be wrong, then it can
be improved iteratively until a correct value is reached.

Thus, in this case, we may use the following scheme to
synchronize: First, hostsA andB guess an upper boundm
and perform Protocol 1 with this bound, resulting in host
A computing a rational functionf(z). If the functionf(z)
corresponds to the differences between the two host sets,
that is if

f(z) =
�SA(z)

�SB (z)
; (2)

then computing the zeroes off(z) will determine precisely
the mutual difference between the two sets.

To check whether Equation (2) holds, hostB chooses
k random sample pointsri, and sends their evaluations
�SB (ri) to hostA, who uses these values to compute eval-
uations

g(ri) =
�SA(ri)

�SB (ri)
:

By comparingf(ri) andg(ri), hostA can assess whether
Equation (2) has been satisfied. If the equation is not sat-
isfied, then the procedure can be repeated with a different
boundm. Example 2 demonstrates this procedure.

In general, the two hosts keep guessm until the resulting
polynomials agree in allk random sample points. A pre-
cise probabilistic analysis in [2] shows that such an agree-
ment corresponds to a probability of error

� � m

�
jSAj+ jSB j � 1

2b

�k
: (4)
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Manipulating equation 4 and using the trivial upper bound
m � jSAj+ jSBj, we see that we need an agreement of

k =

�
log�

�
�

jSAj+ jSBj

��
(5)

samples (where� =
jSAj+jSB j�1

2b
) to get a probability of

error � for the whole protocol. Thus, for example, recon-
ciling host sets of106, 64-bit integers with error probabil-
ity � = 10�20 would require agreement ofk = 2 random
samples.

As shown in Section V-A, this verification protocol re-
quires the transmission of at mostm + k samples and
one random number seed (for generating random sample
points) to reconcile two sets; the valuek is determined by
the desired probability of error� according to Equation 5.

Thus, though the verification protocol will require more
rounds of communication for synchronization than the de-
terministic Protocol 1, it will not require transmission of
significantly more bits of communication. We shall see in
Section IV that the computational overhead of this proba-
bilistic protocol is also not large.

IV. PDA I MPLEMENTATION

To demonstrate the practicality and effectiveness of
our synchronization approach, we have implemented the
CPIsync algorithm that was introduced in the previous sec-
tions on a real handheld device, that is, a Palm Pilot IIIxe
Personal Digital Assistant.

Our program emulates the operation of a memo pad
and provides a convenient testbed for evaluating the new
synchronization protocol. Moreover, the successful im-
plementation of this protocol on the computationally and
communicationally limited Palm device suggests that the
same can be done for more complicated, heterogeneous
networks of many machines.

In this section, we describe our implementation and pro-
vide some experimental results for the specific case where
the number of the differences,m, between the PDA and PC
databases is either known or tightly bounded bym a priori.
Though one can determine such a bound in many practical
situations, as we show in Section IV-B, it is difficult to
guarantee the tightness of this bound, thereby leaving the
scalability of the resulting synchronization in question.

When a boundm is not known, it is generally much
more efficient to employ the probabilistic scheme intro-
duced in Section III-B. In the next section we provide a
practical implementation of this probabilistic scheme. In
fact, we show that the performance of this scheme is close
to the performance of a protocol that knowsm a priori.

A. Experimental environment

Platform: Our experiments were performed on a Palm
Pilot IIIxe with a 16-bit Motorola Dragonball processor
and8MB of RAM. The Palm was connected via a serial
link to a Pentium III class machine with 512 MB of RAM.

Model: Our specific implementation of CPIsync em-
ulates a memo pad application. As data is entered on
the Palm, evaluations of the characteristic polynomial (de-
scribed in Section III) are updated at designated sample
points. Upon a request for synchronization, the Palm sends
m of these evaluations to the desktop, corresponding to the
presumed maximum number of differences between the
data on the two machines. The desktop compares these
evaluations to its own evaluations and determines the dif-
ferences between the two machines, as described in Proto-
col 1. We compare CPIsync to an emulation of slow sync,
which upon synchronization, sends all the Palm data to the
desktop, and uses this information to determine the differ-
ences.

We do not address issues about which specific data
to keep at the end of the synchronization cycle, but
several techniques from the database literature may be
adapted [12]. We also avoid issues of hashing by re-
stricting entries to 15-bit integers. Finite field arithmetic
was performed with Victor Shoup’s Number Theory Li-
brary [13] and data was transferred in the Palm Database
File format. This data was converted to data readable by
our Palm program using [14].

Metrics and Measurements: The two major metrics
used for comparing CPIsync to slow sync arecommunica-
tion and time. Communication represents the number of
bytes sent by each protocol over the link. For this metric,
no experiment is needed as it is known analytically that
CPIsync will upload onlym entries from the PDA, while
slow sync will require the transfer of all the Palm entries.
On the down link from the PC to the PDA, both protocols
will transmit the same updates.

The time required for a synchronization to complete (i.e.
the latency) is probably the most important metric from a
user’s point of view. For slow sync, the dominant compo-
nent of the latency is the data transfer time, whereas for
CPIsync the computation time generally dominates. Our
experiments compare the latencies of CPIsync and slow
sync in various scenarios. The synchronization latency is
measured from the time at which the Palm begins to send
its data to the PC until the time at which the PC determines
all the differences between the databases. The results pre-
sented in the next section represent averages over10 iden-
tical experiments.

Results: Figure 5 depicts the superior scalability of
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CPIsync over slow sync. In this figure, we have plotted the
time used by each synchronization scheme as a function of
data set size for a fixed number of differences between data
sets.

It is clear from the resulting graphs that slow sync is
markedly non scalable: the time taken by slow sync in-
creases linearly with the size of the data sets. CPIsync,
on the other hand, is almost independent of the data set
sizes. Comparing Figure 4 to Figure 5 we observe that the
qualitative behavior of CPIsync is similar to that of fast
sync. The remarkable property of CPIsync is that it can
be employed in any synchronization scenario, regardless
of the context, whereas fast sync is employed only when
the previous synchronization took place between the same
PC and the same PDA.

In Figure 6, we compare the performance of CPIsync
to slow sync for data sets with fixed sizes but increasing
number of differences. As expected, CPIsync performs
significantly better than slow sync when the two reconcil-
ing sets do not differ by much. However, as the number
of differences between the two sets grows, the computa-
tional complexity of CPIsync becomes significant. Thus,
there exists a threshold where wholesale data transfer (i.e.
slow sync) becomes a faster method of synchronization;
this threshold is a function of the data set sizes as well as
the number of differences between the two data sets. For
1; 000 records, this threshold corresponds to about400 dif-
ferences.

By preparing graphs like Figure 6 for various differ-
ent set sizes, we were able to produce a regression with
a coefficient of determination [15] almost 1 that analyti-
cally models the performance of slow sync and CPIsync,
producing a table of threshold values listed in Table I.
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Fig. 6. A comparison of CPIsync and slow sync for sets having
10; 000 elements. The synchronization time is plotted as a
function of the number of differences between the two sets.

With such analytical models, we can determine a threshold
for any given set size and number of differences between
hosts, as illustrated by Figure 7.

Note that in a Palm PDA application like an address
book or memo, the number of changes between synchro-
nization involves typically only a small number of records.
Thus, CPIsync will usually be much faster than slow sync.

B. Determining an upper bound

The implementation of CPIsync described in the previ-
ous sections requires knowledge of a tight upper bound,m,
on the number of differing entries. One simple method for
obtaining such a bound involves having both hostA and
hostB count the number of modifications to their data sets
since their last common synchronization. The next time
that hostA and hostB synchronize, hostA sends to host
B a message containing its number of modifications, de-
notedmA. HostB computes its corresponding valuemB

so as to form the upper boundm = mA +mB on the to-
tal number of differences between both hosts. Clearly, this
boundm will be tight if the two hosts have performed mu-
tually exclusive modifications.However, it may be com-
pletely off if the hosts have performed exactly the same
modifications to their respective databases. This may hap-
pen if, prior to their own synchronization, both hostsA
andB synchronized with a third hostC. Another problem
with this method is that it requires maintaining separate
information for each host with which synchronization is
performed; this may not be reasonable for larger networks.
Thus, the simple method just described will be rather inef-
ficient for some applications.

In the next section, we describe a probabilistic scheme
that can determine a much tighter value form. This result
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Data set Size Differences
250 175
500 253
1000 431
2500 620
3000 727
5000 899
10000 1177

TABLE I
THRESHOLD VALUES AT WHICH CPISYNC TAKES THE SAME

TIME AS SLOW SYNC.

is of fundamental importance as it means that, in a general
setting, both the communication and computational com-
plexities of CPIsync depend mostly onm.

V. PRACTICAL EVALUATION OF THE PROBABILISTIC

METHOD

The probabilistic method, introduced in III-B, can be
implemented in various ways depending on the metric of
interest. In this section, we propose two implementations
based on the optimization of two different metrics.

A. Communication optimization

In one case, we may consider optimizing our imple-
mentation of the probabilistic method with respect to the
amount ofcommunicationneeded for reconciliation. It
turns out that we can synchronize a PDA and a PC that
differ in m entries by sending at mostm + k character-
istic polynomial evaluations, wherek is a small constant
(see Section III-B).

Such a scheme can be implemented as follows: First
the PDA sends to the PC evaluations of its own charac-
teristic polynomial at a small number of pre-determined
sample points and atk additional random sample points.
The former points are used to interpolate a rational func-
tion, corresponding to a guess of the differences between
the two machines, and the latter points are used to verify
the correctness of this guess. If the verification succeeds,
then the synchronization is complete. On the other hand,
if the verification fails, then the PC collects all the sample
points seen so far into a guess of the differences between
the two machines while at the same time requestingk ad-
ditional random evaluations from the PDA to confirm this
new guess. This procedure is iterated until verification suc-
ceeds, at which point synchronization is complete. Since
m evaluations will necessarily be enough to completely
determine up tom differences, verification will necessar-
ily succeed after at mostm+ k transmissions.
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Fig. 7. A graph comparing slow sync and CPIsync for databases
with varying numbers of records and with varying numbers
of differences between databases. The patterned line depicts
the threshold curve at which slow sync and CPIsync require
the same amount of time to complete.

B. Latency optimization

In a second case, we may consider optimizing our im-
plementation for the purposes of minimizinglatency, that
being the overall time needed for synchronization. We
thus propose a general probabilistic scheme whose com-
pletion time is at worst a constant� times larger than the
time needed to synchronize two hosts when the number of
differences between them is knowna priori. This prob-
abilistic scheme retains one of the essential properties of
its deterministic counterpart: the synchronization latency
depends only on the number of differences and not on the
total size of the host data sets. We prove that� = 4 is an
optimal bound for this scheme and show how to achieve it.

Our approach to this optimization relies in part on the
data graphed in Figure 6 and reproduced in Figure 8. In
the latter figure, we fit our data to a polynomial regres-
sion that interpolates the latency of CPIsync as a function
of the number of differencesm between two hosts. Since
an exact value form is not known at the start, the PDA
and PC start with an initial guessm1 for an upper bound
on m. In Figure 8, this initial guess corresponds to the
valuem1 = 11, which corresponds to a verification time
of t1 = 3:65 seconds. If verification fails for this guess,
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Fig. 8. A model of the approach used to optimize the latency of
synchronization when no bound is known on the number of
differences between data sets.

then we update our bound to the valuem2 that corresponds
to a verification time that isÆ times larger than form1 dif-
ferences (i.e. t2 = Æt1). In the case of Figure 8,Æ = 2

giving m2 = 151 and t2 � 7:29 seconds. At each iter-
ation we guess the boundmi that corresponds to a veri-
fication timeti = Æti�1. We continue until verification
succeeds for some guessed boundmn requiring verifica-
tion timetn = Æn�1t1.

Claim 1 The latency-optimizing probabilistic scheme
takes at most�(Æ) = Æ2=(Æ�1) times longer than a deter-
ministic scheme with ana priori knowledge of the actual
number of differences.

Proof: Denote byT�(m) the synchronization latency
whenm is knowna priori, and byT (m) the synchroniza-
tion latency required by this probabilistic scheme. Further-
more, denote byti the time needed for thei-th verification
round in whichmi differences are guessed between the
two hosts.

Suppose that a correct upper bound,mn � m, is ob-
tained first at then-th iteration, forn > 1. The total syn-
chronization time required for the probabilistic scheme is
then simply the sum of a geometric progression

T (m) = t1+: : :+tn = t1+Æt1+: : :+Æ
n�1t1 =

Æn � 1

Æ � 1
t1:

Note thatT �(m) � tn�1 = Æn�2t1, sincemn is assumed
to be thefirst correct upper boundm. We thus obtain

T (m)

T �(m)
�

Æn � 1

(Æ � 1)Æn�2
; for all n > 1: (6)

It is easy to check that the right hand side of (6) is maxi-
mized whenn!1, meaning thatT=T� � Æ2=(Æ � 1).
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Fig. 9. A comparison of the probabilistic scheme with no known
boundm to the deterministic scheme with a given value of
m.

By examining the derivative of�(Æ) with respect toÆ, one
finds that this function attains a minimum value atÆ = 2,
leading to an optimal ratio of� = 4. Thus, the best policy
for this scheme is to double the verification time at each
iteration.

Figure 9 illustrates the performance of this probabilis-
tic scheme compared to that of the deterministic scheme.
Note that the probabilistic results remain within the guar-
anteed factor4 of the corresponding deterministic results.

VI. RELATED WORK

The general problem of synchronization has been stud-
ied from different perspectives in the literature.

From a database perspective, the concept of discon-
nected operation, in which hosts can independently op-
erate and subsequently synchronize, was established by
the CODA file system [16]. The general model proposed
in [16] is similar to the models used by several current mo-
bile computing systems, including some PDAs.

The management of replicated, distributed, databases
requires the development of sophisticated algorithms for
guaranteeing data consistency and for resolving conflict-
ing updates. Several architectures, such as BAYOU [17],
ROAM [18], and DENO [19] have been proposed to ad-
dress these important problems. We consider CPIsync to
be complementary to these architectures. The CPIsync
methodology permits the efficient determination of the dif-
ferences between databases, while the mentioned architec-
tures can be used to resolve which data to keep or to update
once the differences are known.

The analysis of PDA synchronization protocols from the
perspective of scalability of communications, as consid-
ered in this paper, is a relatively new area of research. The
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most closely related work we have found in the literature
is the EDISON architecture proposed in [20]. This archi-
tecture relies on a centralized, shared server with which all
hosts synchronize. The server maintains an incremental
log of updates so that the hosts can always use fast sync in-
stead of slow sync. Unlike CPIsync, this architecture is not
designed for the general case where a device may synchro-
nize with any other device on a peer-to-peer basis. In gen-
eral, a distributed architecture based on peer-to-peer syn-
chronization provides much better network performance,
in terms of robustness and scalability, than a centralized
architecture [17–19].

From an information-theoretic perspective, synchro-
nization can also be modeled as a traditional error-
correction problem. In this case, hostB can be thought
to have a corrupted copy of a database held by host
A. When the corruptions arenon-destructive, meaning
that the corruptions only change data rather than adding
new data or deleting old data, the problem of synchro-
nizing the two databases is precisely the classical prob-
lem of error-correction [21]. Many sources [22–26] have
addressed synchronization of such non-destructively cor-
rupted databases. A more recent work [27] makes a direct
link to coding theory by using a well-known class of good
codes known as Reed-Solomon codes to affect such syn-
chronizations.

However, the applications that we address in this work
do not conform to this simplified synchronization model.
It is generally not the case that database differences for
mobile systems can be modeled as non-destructive cor-
ruptions. Instead, we need to allow for data to be added
or deleted from anywhere within a database, as happens
practically. Several sources [28, 29] have studied extended
synchronization models in which the permitted corrup-
tions include insertions, deletions, and modifications of
database entries. Recently, Cormode, Paterson, S.ahinhalp,
and Vishkin [30] provided a probabilistic solution for such
synchronization when a bound on the number of differ-
ences is known. However, all these algorithms assume a
fundamental ordering of the host data. Thus, they syn-
chronize not only the database contents, but also the order
of the entries within each database. For example, a syn-
chronization of the setsf1,3,5g with f3,5,1g would result
in f1,3,5,1g because order is considered significant.

In fact, many applications [5, 7–9, 31, 32] do not require
both the synchronization of order and the synchronization
of content, and the proposed synchronization technique
takes advantage of this fact. For example, when synchro-
nizing two address books, only the contact information for
each entry needs to be communicated and not the location
of the entry in the address book.

VII. C ONCLUSION

In this paper, we showed that the current performance
of PDA synchronization schemes can be tremendously
improved through the use of sophisticated computational
methods [2, 3]. We have described, analyzed, and imple-
mented a novel algorithm, termed CPIsync, for fast and ef-
ficient PDA synchronization. Our implementation demon-
strated that it is possible to synchronize remote systems in
a scalable manner, from the perspective of communication
bandwidth.

Specifically, we showed that two hosts can reconcile
their data in a real environment with a communication
complexity depending only on the number of differences
between the them, provided that they have good bound on
this number of differences. We demonstrated the use of a
probabilistic scheme for the cases where such a bound is
not available. The accuracy of this probabilistic method
can be made as good as desired, and its communication
complexity is within an additive constant of the determin-
istic scheme that is supplied with the exact number of dif-
ferences between both host sets.

Using analytical modeling, we also showed that the la-
tency of this probabilistic scheme can be designed to be
within a factor of4 of the latency for the deterministic
scheme. Thus, even without a knowing the number of dif-
ferences between them, two hosts can reconcile with both a
communication and latency that depends only on this num-
ber of differences. We presented experimental evidence of
this phenomenon, demonstrating that, in most reasonable
scenarios, CPIsync is substantially faster than the current
reconciliation scheme implemented on the Palm PDA.

The CPIsync algorithm described in the paper is suitable
not only for the specific application to PDAs, but also to
any general class of problems where the difference in the
data sets being reconciled is relatively small compared to
the overall size of the data sets themselves. We believe that
this scalable architecture will be essential in maintaining
consistency in large networks.
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