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Abstract: 

 

Synchronization is an important factor in many of today’s networking protocols. 

Synchronization plays a very important role in distributed databases, resource discovery, 

updating of dynamic data and file comparison.  

 

Synchronization allows multiple users to access, share, modify and delete records on 

distributed databases, increasing access speeds and at the same time providing up to date 

information to the users. Synchronization also helps provide consistency in the records 

stored at different locations. 

 

There are many available protocols to bring about synchronization between two 

databases on two or more networked hosts. Most of the protocols employed at present 

either generate too much data that has to be transferred over the network (Slow Sync for 

example) or require that data goes back and forth between the hosts a number of times 

before the two hosts are completely synchronized.  

 

The most commonly used protocols make use of a “time-stamp”. Each entry in the 

database is associated with a time-stamp. Whenever a modification is made to a database, 

the time is noted down and also the changes made. When syn chronizing with another 

host, all modifications since the last synchronization are transferred. However, this 

scheme requires a large amount of memory to keep track of all the changes that are being 

made and also requires that the two hosts are perfectly synchronous in time. 

 

This project explores the use of error correcting codes to achieve synchronization by 

reducing the amount of communication bits when compared to other available protocols 

and also by comparing the time taken to achieve synchronization with respect to other 

protocols, more specifically the Characteristic Polynomial Interpolation scheme. 

 

The rest of the report is organized as follows: 



A brief introduction is given to the reconciliation problem. The next section discusses 

some of the synchronization issues. The subsequent sections give an overview of Error 

Correcting Codes and the application of Error Correcting Codes for Data 

Synchronization. The BCH family of codes is then introduced, including the summary of 

the procedure for encoding and decoding messages. The application of BCH codes for 

data synchronization is then discussed in brief. The next section makes a comparison 

between the time taken to reconcile sets with members of bit size 16 bits with the 

Characteristic Polynomial Interpolation scheme and the BCH Error Correcting Code 

scheme and also shows experimental results for the behavior of the BCH scheme. The 

results obtained from the experiments are then discussed and inferences are drawn from 

the data. The next section deals with other Error Correcting Codes such as Tornado 

Codes and Low Density Parity Check Codes and explores the possibility of using them 

for Data Synchronization. 



 

Introduction to the Reconciliation problem: 

Some of the common applications where synchronization plays a vital role are Domain 

Name Servers (DNS) that constantly have to map new IP addresses to new web pages 

and also remove records of web pages that are no longer in service. Different DNS 

servers in a network have to constantly synchronize with each other to maintain 

consistent data. Another common application that employs synchronization is databases 

that maintain resources available in a network. Resources are continually added to and 

taken off from a network. At any given time, any person who has logged into the network 

needs to know all the available resources and this list should be complete and up to date.  

Yet another common area where synchronization plays a key role is in the maintaining of 

bank accounts over distributed databases across a large country. Different servers 

maintain the same records of the databases across geographically separated locations for 

faster access of records and these records need to be perfectly in synchronization. 

Nowadays PDA’s are very common.  PDA’s need to synchronize between various 

devices to update their records. Some of the common methods employed by PDA’s for 

synchronization are: 

 

Slow Sync, where the PDA and a PC or laptop can transfer data back and forth. The 

record of one device is transferred in its entirety to the other device regardless of whether 

the other device has a part of the record that is being transferred.  

 

Hot Sync, where the two devices can synchronize their data and make updates only on 

those records that have been updated since the last synchronization. The drawback here is 

that the same two devices need to be always involved with the synchronization.  

 

The overall problem of synchronization can be visualized as, a group of devices, each 

maintaining a database and each device should keep track of the changes taking place in 

each of the other devices and present the most up to date information to any application 

or user. 

 



For the sake of analysis, the problem can be formalized as follows: 

Given a pair of devices or nodes in a network, A and B, each with a set of length-b bit 

strings (denoted as Sa and Sb), and no a- priori knowledge of the other host set, each host 

has to determine the mutual differences between the two sets with a minimal amount of 

communication. Minimality is measured in terms of  

• number of bits transmitted across the link,  

• number of times each host communicates with the other, and 

• computational complexity of the entire reconciliation. 

 

This is known as the Set Reconciliation problem. 

 

The data represented in each host or device is considered as sets whose elements are 

chosen from a finite universal set U.  

 

Every set S whose elements are taken from U may be associated uniquely with a 

characteristic vector v(S) of length |U|. The components of the characteristic vector are 

either a 0 or a 1. 

 

The i-th component of the characteristic vector of set S is 1 if and only if the i-th element 

of the universal set U occurs in the set. 

 

For example, the characteristic vector of the set : 

S={3,5,9}   taken over the universal set U=Z2
4 would be: 

 

 v(S) =   

 

 

Reconciling two sets involves determining the mutual difference between two such 

characteristic vectors. 

0   0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 



 

Synchronization Issues  

Each type of networked device that must synchronize with another, usually is capable of 

only a select few methods of synchronization depending on the application running on 

each device. In some cases the bandwidth available to certain devices limits the speed 

and methods of synchronization. For devices like PDA’s the computation al power of the 

processor is minimal and cannot be expected to perform complex procedures to limit the 

amount of communication bits or the number of rounds of communication. An optimal 

synchronization protocol should be capable of synchronizing any two heterogeneous or 

homogeneous devices with minimum amount of communication bits, minimum 

computation complexity and minimum number of rounds of communication between the 

devices. 

 

 



 
Overview of Error Correcting Codes 

Error Correcting codes are commonly used to transmit data over noisy communication 

channels. The noisy channel may introduce errors like flipping of bits or deletion or 

insertion of bits. The simplest form of error correcting codes usually correct errors that 

are caused by flipping of bits.  

 

The general scheme of error correcting code is as follows: 

• The encoder converts a message into a codeword by adding a certain amount of 

redundancy to the message bits. 

• The method of determining the redundancy bits varies for different schemes of 

encoding. 

• The encoded message is sent across a noisy channel  

• At the receiver end, the decoder tries to determine the exact message that was sent 

by making use of the message bits and the redundant bits that were transmitted 

across the channel. 

• Each coding scheme has certain limitations on the error conditions that can be 

corrected.  

 

The amount of redundant data attached to each packet is pre-determined by the amount of 

noise that a channel may add to each packet.  



 

Error Correcting Codes for Data Synchronization 

The data synchronization scheme using error-correcting codes assumes that data on each 

device is in the form of sets. The elements of the sets are unindexed, meaning that only 

the content of the individual sets matter and not the relative position of the elements 

within the set. 

 

Each host determines its characteristic vector as described earlier. Each characteristic 

vector is of length equal to that of a valid code word of the code C. The length of the 

code word is the value of the maximum allowable element in the set. Each characteristic 

vector can be thought of as a received code word. These code words could be valid or 

invalid depending on the values of the data present in each set.  

 

The decoding algorithm of the coding scheme when applied to the characteristic vector 

gives an idea of the distance of the characteristic vector from a valid code word.  

 

One very popular and extensively studied coding scheme is the BCH Error Correcting 

Code. For the purpose of synchronization the BCH code was chosen because of the vast 

amount of literature available about BCH codes. An implementation of Tornado codes 

and LDPC codes were also studied to see if they could be applied to the  Set-

Reconciliation problem. 



 

Overview of BCH codes 

The BCH family of codes is an Error Correcting Code that enables a limited number of 

errors to be detected and corrected. BCH codes were discovered independently by Bose 

and Ray Choudhury in 1960 and Hocquenghem in 1959. 

 

Basic Concepts 

The concepts and theories are very much involved with number theory and advanced 

linear algebra knowledge that are quite abstract. 

 

Some definitions: 

Galois Fields GF(q) is a field with q elements, also called a finite field because there are 

a finite number (q) of elements. 

 

A Primitive Element of GF(q) is an element ‘α‘such that every field element except zero 

can be expressed as a power of α . Each Galois Field has at least one primitive element.  

 

If  q = 2m, where m is any integer, the elements of the field can be represented by 

polynomials whose co-efficients are elements of the field GF(2) i.e 0 and 1. The 

primitive element of such a field would itself be such a polynomial.  

 

The block length of the code is  

n = 2m-1  

 

The error correcting capability of the code is bounded by  

t < (2m –1)/2 

 

 

Encoding: 

The idea is to create a codeword which contains two parts : a remainder part for checking 

and the message part. To generate the complete codeword, the data part (the part that is to 



be encoded) is divided by a generator polynomial to get the remainder part, just as in  

ordinary polynomial division modulo 2. The number of bits assigned for the remainder is 

decided by first estimating the probability of error on the channel. 

  

The encoding scheme can be summarized in the following steps: 

• Choose the degree m and the corresponding primitive polynomial p(x) and 

construct Galois Field GF(2m) 

• Obtain a generator polynomial.  

• Determine remainder 

• Left shift data bits by number of bits assigned for remainder.  

• Append remainder to data to get a complete code word. 

 

To encode a source message u(X) using a BCH code with generator polynomial g(X), the 

parity check symbols are found using the formula: 

 

b(X) = Xn-ku(X)( mod g(X) ) 

 

The encoded code word is :  

 

v(X) = Xn-k u(X) + b(X) 

 

 

BCH Decoder 

Suppose a valid codeword to be : 

 

v(X) = v0 + v1X + ……+ vn-1 Xn-1  

 

and the received codeword: 

 

 r(X) = r0 + r1X + … + rn-1 X n-1 

 



The error pattern is : 

 

e(X) = r(X) –vc(X) = e0 + e1X + … + e n-1 Xn-1. 

 

 

To determine the error vector, the received code word is passed through the decoding 

algorithm that is summarized below: 

 

• First the syndrome set S ={S1, S2, …, S 2t} is computed. Each Syndrome is 

computed as : 

 

       Si=r(αι) 

 

• The error locator polynomial σ(X) is found using the Berlekamp-Massey 

algorithm described in the next section. 

• The error location numbers β1 through βnu are found by finding the inverses of the 

roots of σ(X). 

• Once the locations of the errors are known, the received code word can be 

corrected to obtain the correct code word. 



 

The Berlekamp-Massey Algorithm 

The Berlekamp-Massey algorithm computes the error location polynomial σ(X). The 

main steps involved in the algorithm are: 

 

• Initialize the following values: 

 

σ(X) = 1 

 

       l = 0 

 

      β(X) = 0 

 

• For µ =1 to 2t, do the following: 

 

Compute the discrepancy : 

 

        l 

d = ∑ σiSµ-i 
       0 
 

Where σi is the co-efficient corresponding to X i in σ(X) 

 

If   d ≠ 0, do the following: 

        

             σ ’ (X)  = σ(X) – dXβ(X) 

 

        If  2l <µ , do the following: 

 

                    β(X) = d-1σ(X) 

 



                     l = µ - l 

 

         Else (2l ≥ µ), do the following: 

               

                     β(X) = X β(X) 

              

                    σ (X) = σ’ (X) 

 

Else (d = 0), do the following: 

 

          β(X) = X β(X) 

 

• If the degree of  σ(X) ≠ l, then more than t errors have occurred and they cannot 

be corrected. 

 

 

 

BCH codes for Data Synchronization 

 

• The host that has the most up-to-date data set computes its characteristic vector 

and determines its syndrome by applying the BCH decoding algorithm.  

 

• This syndrome is then broadcast to all other hosts on the network that need to be 

synchronized. 

 

• Each host calculates their syndromes for their own characteristic vectors.  

 

• Each host now adds (modulo 2 which is equivalent to XORing) its own syndrome 

and the syndrome it received  

 



• The resultant syndrome when decoded determines the error locator polynomial, 

which indicates the location of errors in the characteristic vector formed by the 

addition (modulo 2) of the two characteristic vectors.. 

 

• The error locator polynomial when added (modulo 2 ) to the characteristic vector 

determined by the target host results in a characteristic vector that exactly 

resembles the characteristic vector of the host with the most up-to-date data set. 

 

• The extraction of the set elements from the characteristic vector is a trivial 

problem. 

 

• It has to be borne in mind however that the maximum number of differences 

between the sets is bounded by the error correcting capability of the code. 

 

Implementation 

Two approaches were taken towards implementing the BCH decoder. In the first 

approach, a look up table was created that stored all the different exponents of the 

primitive element α.  In the second approach, the required exponent values of α were 

calculated at run time. All coding was done in the ‘C’ progra mming language on 

Linux platform.  



 

Results of the two approaches: 

The graphs below show the performance of both the approaches for various 

parameters. 
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Graph1: The graph above shows the variation of the reconciliation time with respect to number of 

differences between the sets. The dotted line is a linear fitting for the values obtained with the 

implementation that used look-up tables. The axes are colored according to the respective plots they 

refer to.  



Code length vs Time 

0

10

20

30

40

50

60

6 8 10 12 14 16 18

Code Length in bits

Ti
m

e 
in

 s
ec

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ti
m

e 
in

 s
ec

Without look-up tables With look-up tables

Graph 2: The graph above shows the variation of the reconciliation time with respect to the length of 

the codewords.  



 

Comparison between performance of Characteristic Polynomial 

Interpolation scheme and Error Correcting Code (BCH Code) scheme: 

 

The table below lists the time taken in milliseconds to synchronize two sets with 16 

bit elements for various number of differences between them. 

 Time in ms for BitSize = 16  
 BCH  BCH  CPI 

Differences (with look-up tables) (without look-up tables)  
40 270 17000 50 
50 340 22000 90 
60 410 27000 110 
70 480 32000 160 
80 540 38000 220 
90 610 43000 290 

100 690 49000 340 
110 750 55000 430 
120 820 61000 520 
130 900 67000 640 
140 970 73000 770 
150 1040 79000 910 
160 1110 85000 1080 
170 1180 93000 1220 

 

The graph below shows a plot of the data from the table:  
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Graph 3: Comparison of BCH scheme and CPI scheme for 16 bit vectors.  

Note: All data collected by running the code on a PIII with 196 Mb of RAM, running Linux (Red Hat 

7.0)  



 

Conclusions drawn from the BCH Error-Correcting-Code Set-

Reconciliation scheme: 

From Graph1, it appears that the reconciliation time for the BCH scheme with and 

without look-up tables grow linearly as the number of differences increase. The 

amount of memory required by the BCH scheme when implemented with a look up 

table is, however, an exponential function of the length of the code. (Θ(2n)). As is 

evident from Graph1, there is a significant difference in the time taken by the two 

approaches, a difference of almost 69 seconds for 130 differences between the sets. 

From Graph 3, it is also clear that for small differences between the sets, CPI 

synchronization consumes less time but as the number of differences between the sets 

increases, the BCH scheme, increases almost linearly but the CPI synchronization 

scheme increases quadratically. The only drawback of the BCH scheme is that the 

constants involved in the running time are relatively large. And even between the two 

approaches to the BCH scheme, the scheme with look-up tables has a much smaller 

constant when compared to the approach without look-up tables.  

From Graph2, it is clear that the running time of the BCH scheme, in both 

approaches, is exponential in the length of the codeword. This fact affects the 

constant term involved in the running time for a given length of codeword.  

The maximum size of the look – up table is bounded by the amount of memory 

available and the maximum value that an integer variable can assume. This is because 

the array index has to be an integer.  

The large constants involved in the scheme without look -up tables makes it a non-

practical scheme for set reconciliation. Also, the amount of memory that is required 

for the scheme with look-up tables is not practical when synchronizing large 

databases whose contents may require representation with up to 512 bits.  

A simple analysis of the BCH decoding scheme reveals that the maximum amount of 

time (more than 99% of the total running time) is taken up by the final stage of the 

decoding process – the Chien Search. Each bit of the vector has to be examined to 

check if it is in error. If the data is represented by 16 bits, the length of the 

characteristic vector would be 216 and each bit of this vector has to be checked for 



error in the Chien Search. This leads to the possibility of usage of this scheme in 

scenarios where either only deletions or only insertions take place. If we knew before 

hand that a particular server is going to make only deletions in its data set, we would 

just need to examine each bit of the characteristic vector on the client that is “set” to 

see if it is in error. Again, if we know before hand that the server is going to make 

only insertions, we can model these insertions as deletions. We can check all the 

“unset” bits in  the characteristic vector on the client to see if they are in error.  The 

running time of such an operation would be dependent only on the number of entries 

in the set. Again, this scheme would be useful only if the data set on the server has a 

small number of initial entries on which insertions are performed or if it has a very 

large number of entries on which deletions are performed.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Overview of Tornado Codes: 

A code C(B) is defined as a set of  n message bits and β n check bits that are 

associated with a bipartite graph B. The graph B has n left nodes and β n right nodes, 

corresponding to the message bits and the check bits respectively. The encoding 

consists of computing each check bit as the sum of the bits of its neighbors in B. The 

encoding time is proportional to the number of edges in B. If  the value of a check bit 

is known and all but one of the message bits associated with that check bit is known, 

the missing message bit can be found by computing the sum of the check bit and its 

known message bits.  

 
 

Fig 1: Graph representation of one stage of the Tornado Code. (Fig from “Practical Loss -Resilient 

Codes”, by Michael Luby, Michael Mitzenmacher, Amin Shokrollahi, Daniel Spielman and Volker 

Stelmann) 

   

Encoding and decoding are simple XOR operations on bits or packets. The total 

decoding time is proportional to the number of edges in the graph. From the above 

diagram it is clear that at most one message bit that contributes to a particular check 



bit or the check bit itself, can be lost if the code is to be recovered. To produce codes 

that are more loss – resilient, the basic structure is cascaded to form the cascaded 

code C(B). The first structure produces β n check bits for the original n message bits 

and at the next stage a similar structure is used to produce β 2 n check bits for the β n 

check bits. At the final stage a conventional loss resilient code such as Reed- 

Solomon or BCH code is used.  

The final code would resemble the following diagram: 

 

 
 

Fig2: Graph representation of the complete code. (Fig from “Practical Loss -Resilient Codes”)  

 

The number of stages and the basic structure of the bipartite graph involve a very 

complicated design procedure based on differential equations that are beyond the 

scope of this project. An implementation of the Tornado code developed by Jeffrey 

Considine1 was used to explore the possibility of the use of these codes in data 

synchronization. 



 

Implementation issues and conclusions: 

Tornado codes are difficult to implement, as there isn’t much documentation 

available on the codes. Designing good graphs for the codes involves complex 

differential equations. The code that was used in the project was of very low rate (less  

than 1/2). The basic idea behind using error-correcting codes for the Set 

Reconciliation problem was to use the redundant bits in an error-correcting code to 

synchronize two hosts. In this implementation the number of redundant bits exceeded 

the number of message bits and so, wasn’t really practical to apply it to the Set – 

Reconciliation problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Overview of LDPC Codes:  

LDPC codes or Low-Density Parity-Check Codes are a class of codes where each 

code is specified by a parity -check matrix with the following properties: 

• Each column contains a small fixed number j>= 3 of 1’s and  

• Each row contains a small fixed number k>j of 1’s.  

• A majority of the entries in the matrix are 0’s  

An (n,j,k) low-density code is a code of block length n with a matrix as shown below: 

 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 

 

In the above code N=20, j=3, k=4. (Matrix from  “Low -Density Parity-Check Codes”, by R.G. 

Gallagher. 

 

The encoding procedure is similar to that of any linear code, where the message bits 

are multiplied by a generator matrix to produce a code word. Each parity check 



matrix has a generator matrix associated with it and if one is given, the other can be 

easily determined.  

 
Decoding: 
There are two basic decoding schemes for the LDPC codes.  

In the first scheme, the decoder computes all parity checks and then changes any digit 

that is contained in more than some   fixed number of unsatisfied parity- check 

equations. Using these new values, the parity checks are recomputed, and the process 

is repeated until the parity checks are all satisfied.  

In the second scheme an algorithm known as the “ sum-product” algorithm is used 

which is similar to the “ belief-propagation algorithm” used in networks.  

Information about each bit of the codeword derived from the received data is 

expressed as a probability ratio, the probability of the bit being 1 divided by the 

probability of the bit being 0. The probability ratios will be adjusted to take account 

of information obtained from other bits along with the requirement that the parity 

checks be satisfied.  

The algorithm alternates between recalculating the probability ratios for each check.  

 

Implementation issues and conclusions: 

An implementation of LDPC codes developed by Radford McNeal2 and David 

MacKay3 was used in the study. The software is capable of simulating memoryless 

channels, including Binary Symmetric Channels and Additive White Gaussian Noise 

Channels.  

Results: 

The code wasn’t s able to decode some arbitrarily random vectors. When 

synchronizing databases that contain critical information, it is absolutely necessary 

that the two hosts reflect the same data. The fact that the LDPC codes cannot correct 

all possible errors, however, make it a bad choice for application to the Set 

Reconciliation problem. 

 

 



 

 

Conclusion: 

Although the results of this project clearly indicate that Error Correcting Codes can 

be used for the Set Reconciliation problem, most of the codes available right now are 

not well suited for this purpose.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Boston University, Boston. 
2 University of Toronto, Toronto.  
3 Cambridge University, UK.  
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