
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

DATA SYNCHRONIZATION IN

MOBILE AND DISTRIBUTED NETWORKS

by

SACHIN KUMAR AGARWAL

B.Tech., Regional Engineering College, Warangal, India
May 2000

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science
2002

Approved by

First Reader
Ari Trachtenberg
Assistant Professor of Electrical and Computer Engineering
Boston University

Second Reader
David Starobinski
Assistant Professor of Electrical and Computer Engineering
Boston University

Acknowledgments

I would like to first acknowledge my advisor, Prof. Ari Trachtenberg for his

constant support and guidance through the research and writing that constitute this

thesis. It is a great understatement to say that this work would not have been

possible without his help. I would also like to extend my gratitude to Prof. David

Starobinski for his constructive inputs in the form of discussions and new ideas to

this work. I would also like to acknowledge my readers, Prof. David Starobinski and

Prof. Jeffrey Carruthers for their comments and helpful discussions.

I would like to thank my family who has been extremely supportive throughout

the time I’ve been working on my thesis. My father and mother for being there when

I needed them and my brother for his encouragement.

Finally I would like to thank my lab cohorts for their help and tolerance during

the thesis process.

iii

DATA SYNCHRONIZATION IN MOBILE AND DISTRIBUTED

NETWORKS

SACHIN KUMAR AGARWAL

Boston University College of Engineering, 2002

Major Professor: Ari Trachtenberg, Assistant Professor of Electrical and Computer

Engineering

Abstract

The rapid increase in networked mobile devices has made it important to develop

scalable data synchronization protocols that will periodically synchronize data held

on these devices. Synchronization seeks to maintain consistency in data that is being

changed on each of these mobile hosts independently. This has to be achieved within

practical constraints on overhead that limit the amount of data exchanged during

synchronization, the amount of memory used to store synchronization data, and

the computation involved while running the synchronization protocol. In addition,

any synchronization protocol should scale with the number of devices that might

be synchronized with each other and should be resilient to failure, given the ad-hoc

nature of mobile networks.

We study some of the representative synchronization protocols in use today

and then compare them to characteristic polynomial interpolation synchronization

(CPISync), a more mathematical approach to synchronization implemented by us

on a PC-PDA synchronization system. Two devices synchronizing using CPISync

exchange only O(m) bits where m is the upper bound on the number of differences

between the reconciling data sets of the devices. Thus, CPISync is well-suited for

iv

typical PC-PDA data synchronization scenarios where the number of changes (addi-

tions/deletions/modifications) to databases between two synchronizations is typically

bounded by a small constant. When a good bound on m is not known a priori we

show that an enhancement to the basic algorithm keeps CPISync time complexity

within a small multiplicative factor of the case when m is known a priori. Our exper-

iments show that CPISync scales well with growing data size, which is increasingly

the case with newer mobile devices.

v

Contents

Abstract iv

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 The Broad Picture . 1

1.2 Applications of Synchronization . 2

1.3 Scope of this Thesis . 4

2 Contemporary Synchronization Technologies 8

2.1 Conflicts . 9

2.2 Scalability in Mobile Device Networks 10

2.2.1 Hotsync . 11

2.2.2 Intellisync . 14

2.2.3 SyncML . 16

2.2.4 CPISync . 17

2.3 Putting it together . 19

vi

3 PDA Synchronization 22

3.1 CPISync . 23

3.2 Deterministic CPISync . 23

3.2.1 Metrics and Measurements . 32

3.2.2 Results . 33

3.3 Probabilistic CPISync . 38

3.3.1 System Model . 40

3.3.2 Results . 43

4 Conclusions 45

4.1 Summary . 45

4.2 Future Work . 47

Curriculum Vitae 56

vii

List of Tables

3.1 Threshold values at which CPISync takes the same time as Slowsync. 36

3.2 Fitted polynomials P (m) for CPISync running time for various data

set sizes. 37

viii

List of Figures

1.1 Representative PDA Specification - Palm Vx 3

1.2 Some applications of synchronization 5

2.1 Synchronization and Conflicts . 9

2.2 Pentagon of Scalability in Mobile Device Networks 10

2.3 Communication complexities compared - Slowsync and Fastsync . . . 12

2.4 Slowsync and Fastsync modes of Hotsync 14

2.5 Newer data transfer technologies and memory sizes 15

2.6 Intellisync Anywhere server installed on a company’s network 16

2.7 Scalability of Slowsync and CPISync with database size and number

of differences . 18

2.8 Synchronization protocols - a comparison 21

3.1 CPISync explained by example . 25

3.2 Finite fields in CPISync . 27

3.3 CPISync PC-PDA synchronization model 29

3.4 Sample experiment script . 31

3.5 Scalability of CPISync and Slowsync 32

3.6 Experimental results - CPISync vs. Slowsync for small data sets . . . 34

3.7 Experimental results - CPISync vs. Slowsync for large data sets . . . 35

ix

3.8 Flowchart showing steps in Probabilistic scheme 38

3.9 Latency optimization for Probabilistic scheme 41

3.10 Probabilistic scheme vs. Deterministic scheme 43

4.1 Name-dropper communication complexity using CPISync and whole

data transfer . 48

4.2 Name-dropper time complexity using CPISync and whole data transfer 49

x

Chapter 1

Introduction

1.1 The Broad Picture

Dynamic information is the currency of most computer networks today. Information

available on networked devices tends to change over a period of time, rather than

remain static, and these changes must be propagated throughout the network. While

the specific requirements of propagating these changes may vary from real time dis-

semination of changes to lazy propagation of changes, there have to be mechanisms

which guarantee this functionality, at an acceptable overhead.

An ad hoc network is an network of mobile routers and hosts that together form

an arbitrary network topology. The routers and hosts in an ad hoc network are free to

move and organize themselves arbitrarily; thus, the network’s topology may change

randomly. Mobile hosts may be considered as weakly connected nodes in an ad hoc

network [1] because of the absence of a fixed topology connecting these devices and

the intermittent addition and removal of such devices from the network. Note the

ambiguous use of the term “network” - the other end of the network to which the

device is synchronizing may be a mobile device, a PC or a server. For example, an

1

2

appointment schedule may be simultaneously maintained on a PC in office, a PC

at home, and a mobile device like a PDA (Personal Digital Assistant). The three

hosts will have to synchronize the appointment database periodically to maintain

consistent data in the database.

A natural metric of acceptable overhead for synchronization will usually be a

measure of the cost in terms of the latency and the bandwidth involved in dis-

semination of information through the network for synchronization. Mobile device

network throughput is also very sensitive to the number of rounds involved in any

communication. Non-interactive synchronization protocols that are not dependent

on repeated data exchanges while synchronizing are preferred because the overhead

of packet transmission is substantial for wireless networks (increasingly used by mo-

bile devices) as compared to wired networks. Mobile devices are usually also bogged

down due to excessive protocol overhead because of their limited computational ca-

pabilities and limited power resources. Some of these limitations become apparent

from Figure 1.1, which highlights the specifications of the Palm Vx PDA [2]. For

example, the Palm Vx has a single threaded processor with a clock speed of just

32MHz, which is lesser than even entry level PCs by orders of magnitude.

1.2 Applications of Synchronization

The same data may be separately modified on hosts and these changes need to be

propagated to other hosts on the network . A good example is the Internet Domain

Naming System (DNS) described in [3, 4]. DNS is used to map Internet address

strings into IP addresses. It has an elaborate hierarchial system of updating the

domain name databases periodically (typically 3 hours) because DNS lookup tables

change with time. The Internet is divided into various DNS zones. Each zone has

3

 Palm Vx

Processor - DragonBall MC68VZ328

Clock Speed - 20 Mhz

Memory - ROM 2MB, RAM 8MB

Interface - Serial, IrDA, USB (Opt.)

Battery - Li-Ion

*

* RAM is the total amount of memory

available to the both applications and the

data residing on the Palm PDA. There is

no separate secondary storage.

Figure 1.1: Representative PDA Specification - Palm Vx

a primary DNS server and one or more secondary DNS servers that periodically

synchronize DNS information with the primary DNS server in order to obtain the

latest version using either all zone transfer (AXFR) [3, 4] or incremental zone transfer

(IXFR) [5] zone transfer. AXFR zone transfer results in the primary DNS server

sending its whole DNS database to the secondary server and uses a lot of network

bandwidth. IXFR zone transfer on the other hand is incremental and only changes

in the DNS database are sent from the primary server to the secondary server. Each

DNS database version has a version number that is used by the primary server

to determine the updates to send to a secondary DNS server. This requires the

primary server to store many previous versions of the DNS database to determine

which updates are to be sent to the secondary server with a given version number.

Information about older versions should be purged if the total length of an IXFR

4

response would be longer than that of an AXFR zone transfer, in which case it

would be more efficient to do a complete AXFR zone transfer. Quick and efficient

updates to the DNS information can substantially reduce the problem of Internet

“Hot Spots” [6] which arise when there is a sudden increase in the number of hits

on a particular web site. Hotspots overwhelm a particular server because of a large

number of HTTP requests. This situation can be corrected by quickly changing the

DNS information held on name servers so that alternate servers help balance the

load.

There are other applications that require synchronization. Unix utilities like

rsync [7] are used to synchronize files with minimum transfer of redundant informa-

tion. The Coda System [8, 9] proposed by Kistler and Satyanaraynan et al provides

a model for disconnected operation and subsequent reconciliation of distributed file

systems and data in mobile devices. The general Coda system model is similar to the

one used in some mobile device networks, including some PDAs. An efficient syn-

chronization routine will be useful in boosting the performance of resource discovery

algorithms such as the Name Dropper algorithm described in [10]. In addition, there

is a pressing need for efficient synchronization in gossip information dissemination

such as in [11]. There are countless other applications of synchronization, some of

the more important being routing information dissemination in networks, synchro-

nization of mobile device databases and the distribution of software updates over the

Internet. Figure 1.2 shows some applications where data synchronization is critical.

1.3 Scope of this Thesis

There are two basic components to this thesis. Chapter 2 of this thesis, which

is based on [12], discusses some of the contemporary synchronization technologies

5

Synchronization

Internet Domain Naming System File Replication and Mirroring

Incremental Database Updates

Data Replication

in Mobile and

Wired Networks

The Internet

Resource Discovery

OSPF

Gossip Protocols

Software Updates

Periodic Data Backup

rsync

mil edu com net org gov zw

bu mit

Figure 1.2: Some applications of synchronization

and compares their performance with respect to utilization of bandwidth, processing

and memory. We have discussed Hotsync (the synchronization scheme used in Palm

PDAs), Pumatech’s Intellisync and the industry wide SyncML initiative. In addition,

there is a brief description of the CPISync algorithm in Chapter 2 to compare it with

the above protocols. The survey brings out some of the scalability limitations of each

these protocols.

In the second part, we discuss CPISync, which is a synchronization solution based

on a set reconciliation problem’s solution. Chapter 3 describes the CPISync algorithm

in detail and application of CPISync algorithm for PDA synchronization. Some of

this work has appeared in [13]. This algorithm was first proposed in [14] in which the

authors had provided preliminary results that suggested that the algorithm could be

useful for data synchronization among databases with a limited number of differences

6

between them.

The major contribution of our research is transcribing the algorithm from a purely

mathematical idea to an actual implementation on a mobile device (Palm PDA)

and a PC. The algorithm was studied and analyzed first. A substantial part of

the research was the partitioning of the algorithm into two asymmetric parts (in

terms of computational complexity) corresponding to the asymmetric computational

capabilities of a PDA and a PC. The less computationally intensive part was coded

into the slower Palm IIIxe PDA running the Palm Operating System while the more

intensive part of the algorithm was coded into the faster PC. The design specification

took into consideration subtleties like fitting all the calculations to the word size of

the Palm processor architecture to speed up the computation on the Palm PDA.

The Palm PDA has a word length of 16 bits and methods to limit all mathematical

operations within this limit were put in place. We also implemented a more advanced

512 bit data version of CPISync in anticipation of future applications of the algorithm

not necessarily related to PDAs. In all these implementations, we tried to reduce

the constants associated with the cubic complexities of some of the mathematical

operations of CPISync. In addition to all this, issues of communication between the

Palm PDA and the PC were sorted out and put in place for a real implementation

on the PC-PDA synchronization system.

Methods and tools to quantify and compare the performance of CPISync with the

Hotsync protocol (the commercially used synchronization protocol in Palm PDAs)

were developed and deployed. Results from this analysis were used to mathematically

model an intelligent mechanism to switch between CPISync and Hotsync on the spe-

cific requirements of a synchronization. These results were also used to design a more

sophisticated version of CPISync which could synchronize without a prior bound on

the number of differences between the databases. This was the ‘probabilistic’ algo-

7

rithm first proposed in [14]. The more sophisticated version was also implemented

on the PC-PDA system. In related work, our implementation of CPISync is being

used as the underlying synchronization routine in the development of a real memo

application on the Palm PDA platform. The memo application uses CPISync to

synchronize with PCs, as described in [15].

The encouraging results of the utility of CPISync in fast PDA synchronization

lead us to apply the algorithm to the more general problem of Network Synchroniza-

tion. We concentrated on the resource discovery problem in networks in particular.

To this end, we picked upon the ‘Name-Dropper’ network resource discovery algo-

rithm [10]. We built a simple simulator to compare the performance of the Name-

Dropper using CPISync and wholesale data transfer (like Slowsync) separately for

synchronization. For completeness, we contrasted these results with flooding, a com-

monly used resource discovery algorithm. This project brings forward some interest-

ing results and we hope that more work in this area will be an interesting extension

to the application of CPISync.

Finally there is a conclusion at the end of this thesis, which includes directions

for future work, including the preliminary work on the application of CPISync to the

network resource discovery problem.

Chapter 2

Contemporary Synchronization

Technologies

Data synchronization is the process of reconciling two sets of data (databases) so

that their contents are identical at the end of synchronization. The end result of

a device synchronizing with another device would be the emergence of an identical

copy of the database on both the devices that reflects the data that was common to

both the devices as well as unique data that each of the device contributed.

In this chapter we first describe the concept of a ‘conflict’ in synchronization in

Section 2.1. In Section 2.2 we explain synchronization issues with mobile devices in

particular and then go on to explain some synchronization technologies like Hotsync,

Intellisync, SyncML and finally CPISync. The description of CPISync is brief here

and is meant to serve as background for Section 2.3 that compares the various syn-

chronization protocols mentioned above. Some of the work presented in this chapter

appeared in [12].

8

9

4 Omega

3 Gamma

2 Beta

1 Alpha

5 Sigma

3 Gamma

2 Phi

1 Alpha

CONFLICT

KEYD ATAKEYD ATA

3 Gamma

2 ?

1 Alpha

4 Omega

5 Sigma

KEYD ATA

SYNCHRONI ZATION ROUTINE

HOST A HOST B

Figure 2.1: Synchronization and Conflicts

2.1 Conflicts

Inherent to any data synchronization routine is the possibility of a conflict. Conflicts

arise when the same record (a record identified by the same key) is modified locally

on different hosts. In such cases the synchronization routine has to make a decision

about which data to pass into the new synchronized database and which data to

ignore. Often, decisions are made on criteria like keeping the more current data

(using time stamps) or by a user specified preference. For example, a particular

user who makes changes to his appointment schedule on his PDA while his secretary

makes changes to his appointment schedule on an office PC might want that the PDA

data (updated by him) always overrides the PC data (updated by his secretary) in

case there is a conflict.

10

Communication
 Complexity

Memory

Network SizeComputation

Central Point of Failure

(Scalability with multiple
 device networks)

Figure 2.2: Pentagon of Scalability in Mobile Device Networks

An instance of conflict is shown in Figure 2.1. The record with key value 2 in the

database held by Host A and Host B has different data. It is up to the synchronization

routine to decide what value the data field pointed by the key 2 should be written to

synchronized database, as shown in the figure. These decisions are resolved manually

in case there is no rule set by the user about which data should be overwritten.

We will not address conflict resolution issues here, a good discussion of which can

be found in [16].

2.2 Scalability in Mobile Device Networks

The overall end user synchronization experience in a mobile device is determined

by a variety of factors including latency in synchronization, the amount of battery

power used, any monetary cost involved (such as the cost of the network connection,

air time etc.) and the robustness and reliability of the synchronization routine. The

overall scalability of any synchronization protocol is determined by how well the

protocol addresses these issues.

11

PDAs and other mobile devices are limited in how fast they can communicate

over a network because of the nature of the links that connect them. Moreover, their

limited computational capabilities are a significant factor in the design of a syn-

chronization protocol for these devices. They have additional constraints of limited

memories and limited power supplies (see Figure 1.1). Figure 2.2 shows the overall

issues when mobile device synchronization is considered, with each of the vertices of

the pentagon representing a scalability issue in mobile device synchronization. The

computation and communication have a direct bearing on the latency and the bat-

tery usage of the device. Mobile device memories are limited and any protocol which

uses a lot of memory will not be suitable for many of the lower end devices. At the

same time, we wish to develop protocols that allow a large number of devices on

the network to synchronize among themselves and are robust and preferably peer-to-

peer instead of centralized, keeping in line with the ad-hoc nature of mobile device

networks.

2.2.1 Hotsync

Palm PDAs run the Palm Operating System that provides the Hotsync protocol to

synchronize databases held on the PDA and the PC to which the PDA synchronizes.

Hotsync operates in two modes, depending on the synchronization history of the

PDA with the particular PC.

A Fastsync occurs when the PDA synchronizes with the same PC its synchro-

nized with the last time. In this case the PDA synchronizes by processing records

based on the status flags of each record which indicate whether it has been modi-

fied, deleted, left untouched or is a new record. This method approaches the lower

information theoretic bounds on the communication complexity because intuitively

12

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
0

1

2

3

4

5

6

7
x 10

5

Number of records stored on the device

A
m

ou
nt

 o
f b

yt
es

 tr
an

sf
er

re
d

slow sync
fast sync

Figure 2.3: Comparison between the communication complexities (in bytes) of Fast-
sync and Slowsync.

the amount of data to be sent across to synchronize is at least equal to the difference

between the two data sets (provided we knew somehow which data was updated or

was new in the hosts with respect to the other). A more rigorous information the-

oretic view of this concept is explained in [14] which suggests that the lower bound

on the amount of information to be exchanged between hosts A and host B with m

differences between their reconciling data sets comprised of b bit elements is given by

Itrans ' b · m − m · log(m) (2.1)

13

This problem of reconciling two hosts’ data sets is formally known as the set recon-

ciliation problem.

Thus Fastsync is the ‘best option’ for two devices that synchronize with only each

other. However, Fastsync will not scale with the number of devices in the network

because the PDA can remember status flags only with respect to one PC.

A Slowsync occurs when the prime condition for Fastsync is not met - when

the PDA is syncing with a PC different from the one to which the it synced the last

time Hotsync was invoked. In this case the PDA transfers the entire database to the

PC to be worked upon by comparison. As PDA storage space becomes bigger and

databases become larger, the issue of increasing latency involved in transferring the

entire database from the PDA to the PC for subsequent synchronization becomes

increasingly important. Figure 2.3 shows the difference in the communication com-

plexity of Slowsync and Fastsync. Here, a database of appointments held on a PC

and PDA is being synchronized using Slowsync and Fastsync. In the former protocol

the PDA transfers its entire database to the PC and then the PC determines how

to synchronize the databases while in the latter only the records which have been

modified or added since the last synchronization are sent to the PC by the PDA.

It may be argued that with the advent of faster connection technologies for con-

necting mobile devices to PCs and networks and with the increasingly fast wireless

LANs at hand, Slowsync latency becomes a tractable bottle-neck. Figure 2.5 shows

some of the more recent technologies used by mobile devices to transfer data to and

from PCs and networks, with a few representative PDAs and their approximate data

storage capabilities marked out for comparison. It is interesting to note that even

the state-of-the-art Firewire (IEEE 1394) [17] and USB [18] technologies are not able

to solve the data transfer latency problem because of a corresponding increase in the

amount of data being handled by newer devices. For example, a Palm Pilot (1MB

14

Home PC

DELETED

1. 9 am : Meet Tom

2. 10 am : Meet Nancy

3. 12 pm : Lunch with Jack

4. 4 pm : Dentist's appointment

Modified Home schedule

PDA

1. 9 am : Meet Tom

2. 10 am : Meet Nancy

3. 12 pm : Lunch with Jackie

4. 4 pm : Dentist's appointment

Modified PDA schedule

MODIFIED

1. 9 am : Meet Tom

2. 10 am : Meet Nancy

3. 12 pm : Lunch with Jack

4. 4 pm : Dentist's appointment

Initial schedule

DELETED

1. 9 am : Meet Tom

2. 10 am : Meet Nancy

3. 12 pm : Lunch with Jack

4. 4 pm : Dentist's appointment

Modified Home schedule

1. 9 am : Meet Tom

2. 10 am : Meet Nancy

3. 12 pm : Lunch with Jackie

4. 4 pm : Dentist's appointment

Modified PDA schedule

MODIFIED

SLOWSYNC

FASTSYNC

Modified status

Figure 2.4: Difference between the two modes of the HotSync protocol. In Slowsync
all data is transferred, while in Fastsync only modifications are sent.

storage) using a serial link to transfer its entire data to a PC (as is the case in Slow

Sync) will take approximately the same order of time (73 seconds) as an Apple Ipod

(5GB storage) using the Firewire 1394b data transfer technology (54 seconds).

2.2.2 Intellisync

The Intellisync Anywhere [19] product family from Pumatech always makes syn-

chronization ‘Fastsync enabled’ by using one central server to which mobile devices

always synchronize. This means that all synchronizing devices have to maintain sta-

tus flags of updates with respect to only the central server, allowing for a Fastsync

every time. Figure 2.6 shows a typical company network using the Intellisync ar-

chitecture to setup and maintain a mobile device network for a Microsoft Exchange

server. Information held at the exchange server is used to update information held

on the Intellisync server. In addition, changes made by end users are stored on the

Intellisync server and periodically synchronized with the exchange server. This peri-

odic synchronization will result in a delay in the time it takes for updates made on

15

10
6

10
8

10
10

10
12

0

2

4

6

8

x 10
8

10
-2

10
0

10
2

10
4

10
6

Data
 Tra

nsfe
rred

 (in Bits
)

Bit Rate

US
B 2

.0
 @

 4
80

 M
b/
s

US
B 2

.0
 @

 4
80

 M
b/
s

US
B 2

.0
 @

 4
80

 M
b/
s

US
B 2

.0
 @

 4
80

 M
b/
s

US
B 2

.0
 @

 4
80

 M
b/
s

US
B 2

.0
 @

 4
80

 M
b/
s

US
B 2

.0
 @

 4
80

 M
b/
s

US
B 2

.0
 @

 4
80

 M
b/
s

Fi
re
wi
re

 1
39
4b

 @
 8
00

 M
b/
s

US
B 1

.0
 @

 1
2
M
b/
s

Et
he
rn
et

 @
 1
00
M
b/
s

RS

23
2
Se
ria
l L
ink

 @
 1
15

 kb
/s

Palm Pilot
1 MBytes

Palm m505
8 MBytes

iPAQ, HP Jornada

64 MBytes

256 MBytes
*MP3 Player

demonstrated as

a PDA recently

1 GBytes

Apple iPOD 5 GBytes

 D
a
ta

 T
ra
n
sf
e
r
T
im

e
 in

 s
e
co

n
d
s

54 seconds

108 seconds

91 seconds

7.2 minutes

1 hour

104 hours

*

73 seconds

Figure 2.5: Recent faster data transfer technologies like USB and Firewire have
reduced data transfer times by orders of magnitudes, though the potential size of
data that may be transferred to or from a PDA has also increased accordingly.

the Exchange server to be available to users.

The centralized approach creates a central point of failure. If the central server

is congested, the entire network suffers. In addition, scalability with the number

of devices in the network is a serious issue because the load on the server increases

linearly with increasing devices in the network. On the upside, there are many

secondary benefits of a centralized scheme, including the feasibility of centralized

security policy and easier methods of broadcasting information in an organization’s

network (such as policy changes, event schedules etc.).

The EDISON architecture proposed in [20] also relies on a centralized, shared

16

Intellisync Anywhere

Server
Exchange Server

Company Network (LAN)

Internet

access

point

Internet

modem

Wireless

access

point

Wireless LAN

Periodic Synchronization (eg. 15 minutes)

Tethered

PDA
Tethered

PDA
Tethered

PDA

Figure 2.6: Intellisync Anywhere server installed on a company’s network

server with which all hosts synchronize. The server maintains an incremental log

of updates so that the hosts can always use Fastsync instead of Slowsync (see Sec-

tion 2.2.1). This architecture is not designed for the general case where a device

may synchronize with any other device on a peer-to-peer basis. In general, a dis-

tributed architecture based on peer-to-peer synchronization provides much better

network performance, in terms of robustness and scalability, than a centralized ar-

chitecture [21–23].

2.2.3 SyncML

SyncML [24] is an open industry initiative supported by many companies including

Ericsson, IBM, Lotus, Matsushita, Motorola, Nokia, Openwave and Starfish. It seeks

to provide an open standard for synchronization across various platforms and devices.

SyncML tries to achieve “Fastsync” capabilities by requiring that every device in

the network keep status flags for each record with respect to every other device in the

network. While this does guarantee the near optimal communication complexity for

17

synchronization, there is an unreasonable demand on the mobile device’s memory

to store the status flags of each record with respect to each other device in the

network, making the memory complexity on each device O(nr) where there are n

devices in the network and r records on the device. This is not scalable for multi-

device networks with a large number of n devices. For example, there might be 100

devices synchronizing among each other and each of these hold 10, 000 records. If it

takes 8 bytes to store status information for a record, each device will have to use

approximately 8MB of memory to store status flags.

Version vectors [25] may be used as an approach to implement SyncML efficiently,

which make the overhead linear in the number of updates m and not on the number of

items in the data sets. It is not clear whether this approach will scale with the number

of devices in a network because the authors in [25] assumed that the network size is

small enough to be considered a constant. This assumption may not be applicable

in a larger setting such as the one shown in Figure 2.6. The overhead would more

accurately be O(n · m) where n is the number of devices in the network.

2.2.4 CPISync

There are many instances of data synchronization when there is a need to synchro-

nize very similar data present on different hosts. CPISync [13, 26] makes the time

complexity of this synchronization almost independent of the size of the data sets

being synchronized and only dependent on the number of differences between the

two data sets, thus approaching the lower information theoretic bounds of Equation

2.1.

This is in marked contrast to Slowsync which utilizes a wholesale data transfer

between hosts while synchronizing data, making data synchronization time linear in

18

020040060080010001200

0
2000

4000
6000

8000

0

50

100

150

200

Number ofrecords
Differences

T
im

e
(s

ec
o
n
d
s)

CPISync

Slow Sync

Figure 2.7: CPISync scales perfectly with increasing number of records in the
database, while the Slowsync time increases linearly with growing number of records.
CPISync time grows quickly with increasing differences between the synchronizing
databases.

the number of records in the database.

CPISync, which is based on a recent solution to the set reconciliation problem [14]

by Minsky, Trachtenberg and Zippel is scalable both with the number of devices in

the network and the size of the databases being synchronized. Though this solution

involves more computation as compared to Slowsync, the computation can be dis-

tributed asymmetrically between the hosts. This means that in case there are hosts

with different computational capabilities (e.g. PC and a PDA), CPISync can transfer

most of the computation to the PC, thus allowing for quicker execution of CPISync

as compared to a symmetric approach.

Figure 2.7 shows the times taken by CPISync and Slowsync to synchronize data

sets of varying sizes and differences on a PC-PDA synchronization system. The time

complexity is the sum of the communication time of transferring data between the

two hosts and the computational complexity of synchronization for CPISync and

Slowsync. Slowsync is completely unscalable with increasing data set sizes due to

19

its linear dependence on the size of data sets being synchronized unlike CPISync

which takes constant time for a given number of differences irrespective of the data

set sizes.

In a PC-PDA synchronization setting the number of differences between succes-

sive synchronizations usually does not exceed a few. For example, in an address book

of 500 addresses, it is unlikely that a user will add or more than 20 new addresses

in a week. In such instances, the case for using CPISync is particularly strong, since

for a small number of differences, the CPISync algorithm outperforms Slowsync sig-

nificantly.

We discuss the CPISync algorithm in detail in Chapter 3.

2.3 Putting it together

Each of the synchronization protocols described above scale in some respects while

not in others. In order to highlight these differences between them Figure 2.8 shows

a set of radar diagrams that highlight the scalability characteristics of the protocols

qualitatively. Each protocol is evaluated according to the following criteria:

Communication - This refers to the amount of data exchanged between the

synchronizing devices. Communication is usually important because of two reasons.

First, it directly affects the time needed for synchronization and secondly it has a

bearing on resources used while synchronizing such as the battery consumed in mobile

devices. Both these factors directly affect the user. Slowsync for example transfers

the entire database from the PDA to the PC for synchronization and scores poorly

on this count as shown in Figure 2.8.

Network size - The network size is the number of devices on the network

that can synchronize. That is, the scalability of the protocol with the number of

20

devices that synchronize with each other. The point to note about any synchroniza-

tion protocol is the amount of information it has to store to synchronize with each

device on the network. SyncML requires too much memory to store synchronization

information. Fastsync does not allow multi-device synchronization.

Robustness - The robustness here is characterized by the nature of the protocol

itself - whether it is resilient to device failure in the network. Intellisync scales poorly

because there is a central point of failure - a central intellisync server (see Figure 2.6)

in the network whose failure will lead to disruption of the whole synchronization

service for every device on the network.

Computation - This is the amount of computation the devices need to do

in order to synchronize. Mobile devices and PDAs generally have weak processors

(though this is changing). CPISync is computationally intensive, though most of

the computation can be transferred to the PC, saving the PDA slow and intensive

number crunching.

Memory - Memory is a precious resource on PDAs. Though the amount of

memory on newer PDAs is rapidly increasingly, PDA memory is shared between the

data and RAM. There is no separate secondary storage or “hard disk” to store data.

A synchronization protocol that takes up minimum real estate in the PDA memory

is always a better choice. SyncML scores poorly on this count because it requires

each device to keep status flags for every other device in the network.

The ideal protocol with respect to the above criteria will correspond to the ‘full’

pentagon as shown in Figure 2.2. It can possibly achieved by an amalgamation of

the desirable characteristics of the protocols discussed in the previous section.

21

Fastsync

MemoryCentral Point of Failure

Computation

Slowsync

1

Communication

Memory
Intellisync

Communication

Memory

Computation

SyncML

Communication

Memory

CPIsync

Communication

Memory

Communication

Network Size

Network SizeNetwork Size

Network SizeComputation Computation

Computation

Network Size

Central Point of Failure Central Point of Failure

Central Point of FailureCentral Point of Failure

Figure 2.8: Scalability strengths and weaknesses of different synchronization proto-
cols. An absolute qualitative scale is used in which high values indicate strengths
and low values indicate weakness.

Chapter 3

PDA Synchronization

Personal digital assistants or PDAs are periodically linked up to computers in

order to synchronize data being held on the PDA and the data held by complementary

applications on the computer. A secondary benefit of periodic synchronization is

that it serves as a backup mechanism. Typical application data that needs to be

synchronized includes address books, memo pads, to-do lists, email clients, schedule

planners and off-line internet and web information (like avantgo [27]). Information

in these applications is modified on the PDA and/or the PC independently. The

more often synchronization is done, more current is the data being held on the PDA

and the PC. A natural result of frequent synchronization is that the amount of ‘new’

information between two successive synchronizations is very small compared to the

total amount of information in the databases of the PDA and the PC.

In this chapter we first introduce CPISync (characteristic polynomial interpo-

lation based synchronization) in Section 3.1 that is based on a set reconciliation

algorithm first proposed in [14]. We then describe two variants of the original al-

gorithm, namely Deterministic CPISync and Probabilistic CPISync in Sections 3.2

and 3.3. The algorithms’ theory as well as implementation and results are described

22

23

in these sections.

The CPISync algorithm is suitable for application in PDA synchronization be-

cause it makes the communication and time complexity of synchronization a func-

tion of the differences between two databases being compared and not the size of

the databases themselves. In this chapter we first discuss the CPISync algorithm

and then go on to discuss its application in the PC-PDA synchronization system.

Towards the end of the chapter we discuss the our results of the CPISync PC-PDA

synchronization as compared to Slowsync, discussed in Section 2.2.1.

3.1 CPISync

Set reconciliation synchronizes unordered data sets, that is to say that the order

of information in the data sets being synchronized is not important – such as an

appointment schedule, where the data can be easily re-ordered later according to the

time of appointments (say). There are two approaches to CPISync possible, one when

an upper bound on the number of differences m between the synchronizing data sets

is known and the other when m is not known and has to be intelligently guessed. We

call the former approach the “Deterministic approach” and the latter “Probabilistic

approach”. In the Probabilistic approach we iterate the Deterministic approach

repeatedly by increasing m in each iteration until a satisfactory reconciliation results.

3.2 Deterministic CPISync

Synchronization is done on two sets of similar data sets held on two different devices.

By similar we mean that most of the records in the data sets are identical. Three

types of updates may occur in databases - an addition of a record, a deletion of a

record or a modification of a record, each introducing a difference.

24

Consider a set SPDA, a data set on the PDA and a similar set on the PC, namely

SPC . SPDA and SPC were probably derived from the same identical set (a previous

synchronization and subsequent independent updates on the hosts for example). For

simplicity we consider sets of integers. For example SPDA = {1, 2, 4, 5} and SPC =

{5, 1, 6}. The objective of an efficient synchronization routine is to determine the set

S = SPDA

⋃

SPC = {1, 2, 4, 5, 6} and install this set S in the PDA and the PC in the

least possible time, using the least amount of communication and computation.

CPISync first constructs a characteristic polynomial for each of the data sets it is

reconciling which is simply a univariate polynomial whose factors are the elements in

of the data set. These characteristic polynomials is sampled at m sample points. The

PDA sends these evaluations to the PC which calculates rational function evaluations

by taking the ratios of the evaluations of the characteristic polynomials at the same

sample points and interpolating a rational function f(z) fitting the points. The

factors of the numerator and denominator of f(z) give the different (missing) set

data.

We now explain the CPISync Algorithm in detail by means of the example given

above. Figure 3.1 outlines the steps of the algorithm which are itemized below.

1. The PDA calculates the characteristic polynomial function from its data set

SPDA. A characteristic polynomial function has all the data set elements as its

factors, as is shown in figure 3.1. For example, for SPDA = SA = {1, 2, 4, 5}, the

characteristic polynomial function χPDA(X) = (X−1)·(X−2)·(X−4)·(X−5).

This is the ‘signature’ of the information contained in the data set. The PC also

calculates the characteristic polynomial function for its own data set SPC =

SB = {5, 1, 6}; χPC(X) = (X−5)·(X−1)·(X−6). Note that the characteristic

polynomials are always monic, i.e., the highest degree term of the polynomial

25

Figure 3.1: CPISync Algorithm - a simple example showing interpolation based
synchronization

has coefficient 1.

2. The characteristic function on the PDA is then ‘sampled’ at some pre-selected

random sample points. In our example, these are {7, 8, 9}. The number of

sample points has to be at least equal to the number of differences in the

system which explains the need to know an upper bound m on the number of

differences in the system.

3. The sampled characteristic polynomial function values of the PDA are trans-

ferred to the PC from the PDA. This almost completes the PDA’s job, it is

now up to the computationally stronger PC to do the remaining steps of the

reconciliation synchronization. In Figure 3.1 the shaded text indicates the

computation performed on the PC: this is the asymmetric capability of the

CPISync algorithm.

26

4. The PC calculates rational function instantiations by dividing each sample

point evaluation of the PDA’s characteristic polynomial function with its own

characteristic polynomial function’s evaluation at that same sample point, end-

ing up with 2-tuples of (sample point, rational function evaluation).

5. These 2-tuples are then interpolated to obtain the rational function F (X). This

rational function is of the type Pu(X)
Qu(X)

where Pu(X) and Qu(X) are (unreduced)

polynomials with coefficients in the finite field F11 (in our example). Pu(X)

and Qu(X) are divided with their GCD to obtain an irreducible polynomial

of the form P (X)
Q(X)

. The sum of the degrees of P (X) and Q(X) equal the total

number of differences between the data sets SPDA and SPC .

6. P (X) and Q(X) are separately factored yielding the differences the PDA and

the PC are missing respectively. The factors of P (X) are sent to the PDA to

update its data set, while the factors of Q(X) are used by the PC to update

its own data set and incorporate the new data from the PDA that it had been

missing.

Note that the last step is the most simplistic scenario. There might be instances

of conflicts (see section 2.1) which would need to be dealt with separately.

There are some subtleties that need to be explained at this point. The first is

the use of finite field arithmetic to limit the size of the characteristic polynomial

evaluations because their calculation involves evaluating a product of factors which

grows very rapidly. We have used F32749 for the PC-PDA synchronization, which

gives us a 15-bit space for the mathematical operations. One bit out of these is used

for the sample points, which are discussed next.

There are two things that need to be explained about the choice of the sample

points. The sample points need to be separate from the data points in the set. This

27

 Finite field

wrap around

2
b+1

2
b

2
b-1

2
b-1

Sample Points Sample PointsData Points

Figure 3.2: The finite field space is divided into two regions, one for sample points
and the other for data points

is because otherwise, the characteristic polynomial of the corresponding data set will

evaluate to 0 in step 2. In our example (Figure 3.1), if we selected 2 as a sample point,

the characteristic polynomial evaluation χPDA(2) = (2−1)·(2−2)·(2−4)·(2−5) = 0.

A bad choice may result in a division-by-zero error in step 4 of the algorithm.

Since we do not know a priori the number of differences in the data to be recon-

ciled, we increase the size of the finite field by approximately 1 bit. One bit provides

adequate space to accommodate the sample points because for b bit data, there can

be a maximum of 2b differences between any two data sets and CPISync requires

at least as many sample points as there are differences. This concept is shown in

figure 3.2. The idea here is to pick the sample points from a separate ‘region’ of the

number line than the data points, eliminating the possibility of a ‘collision’ between

the data and sample points.

The specific choice of the region of sample points in Figure 3.2 is because choosing

sample points symmetrically over the 0 point speeds up calculations in the Gaussian

elimination involved in interpolation in step 2 of the algorithm described above.

28

Symmetric sample points (such as 0, 1,−1, 2,−2...) help in making the Gaussian

elimination faster by making it simple to get many zeros in the matrix while solving

for the coefficients of the rational function, thus speeding up Gaussian elimination.

This is particularly important because as we will see later, most of the latency arises

from this Gaussian elimination. Note that exact symmetry about 0 is possible only

for an odd number of sample points.

A second point of interest to mention here is the choice of the finite field. We

have used Fp where p is a prime number. For the Palm PDA, the word size is 16

bits. We carefully chose p = 32749(= 215 − 19). This is the largest prime number

less than 215(= 32768).

In case the records are variable length strings, they may be hashed into fixed

small length hashes to be used as the data set elements that are reconciled using

CPISync. The difference information in terms of hashes reported by CPISync may

then be transformed into information about the corresponding differing strings using

a reverse table lookup. We have avoided the issues of hashing by restricting our

record database entries to 15-bit integers. We note that, in practice, the hashing

operation needs to be performed only once per entry, at the time that the entry is

added to the data set, thus the complexity of the hashing is not a bottleneck for

synchronization. By restricting entries to 15 bits, we have also avoided the issues of

multiple-precision arithmetic on the PDA.

Figure 3.3 shows the high level scheme of the PDA-PC synchronization. The

thing to note here is that the transfer of data (indicated by the arrows) is typically

through a slow link. In the case of a Palm PDA, the transfer is through a serial cable

or IrDA (Async Serial-IR 9600-115.2kb/s) [28]. Newer PDAs have USB [18] and

Ethernet connectivity. These technologies are substantially faster than serial links,

though newer PDAs often run more data intensive applications, leaving the problem

29

Step 1. Evaluation of the characteristic

polynomial at sample points on the PDA

Step 2. Transmission of

the evaluations to the

PC

Step 3. Reconciliation using the

CPIsync Algorithm on the PC

Step 4. Transmission of

synchronization information

to the PDA

Figure 3.3: The overall scheme of the PC-PDA synchronization system

of slow data transfer between the PDA and the PC network intact, as was shown in

Figure 2.5.

Figure 3.3 indicates that the total communication between the PDA and the PC is

simply the transmission of the characteristic polynomial function evaluations from the

PDA to the PC (there are m such evaluations). After the reconciliation is complete,

the number of data set elements the PDA is missing (m at worst) are transferred

back to the PDA. Thus taken totally, the number of data elements transferred is

O(m), irrespective of the sizes of the data sets on the PDA and the PC.

System Model

The PC-PDA model used a Palm IIIxe with a 16 bit Motorola Dragon ball proces-

sor [29] and 8MB of RAM. The palm was synchronized with a Pentium III class

machine with 512 MB of RAM. We used a serial RS-232 link operating at 115kbps

as the link between the PDA and the PC. Our specific implementation emulates a

30

memo pad implementation. As data is entered into the palm, evaluations of the

characteristic polynomial (described in the previous section) are updated at desig-

nated sample points. Upon a request for synchronization, the Palm sends m of these

evaluations to the PC, corresponding to the differences between the data and the

two machines. The desktop compares these evaluations to its own evaluations and

determines the differences between the two machines, as described in section 3.2 on

page 23.

We do not address issues about which specific data to keep at the end of the syn-

chronization cycle in case of conflicts, but several techniques from database literature

explained in [30] are possible candidates for conflict resolution.

Finite field arithmetic was performed with Victor Shoup’s Number Theory Li-

brary and data transferred between the PDA and the PC in pdb (Palm database)

format. This data was converted to text format using [31]. This data is converted

to input suitable to the CPISync system on the PC using a separate Java language

based string parser. Figure 3.4 shows a sample script of an experimental run of our

system and explains how the PC-PDA system is setup. Our model uses the Hotsync

middleware of the Palm operating system to transfer data as pdb files. We have used

the default conduit provided in the Palm OS API [32] for this purpose.

In the experiments we performed, the number of differences between the data sets

held on the PC and the PDA varied from 0 to about 1200 and the size of the data

sets varied from 100 to 10000. Since it was not practical to manually introduce these

ranges of data and differences, we implemented an automatic data generator on the

PC and the PDA. The program on the PDA was called Reconciliation Genie. This

program took two inputs – the size of the database and the number of differences

to be introduced. Instead of actually generating this data set, genie just calculated

the characteristic polynomial of the data set elements (they were serially ordered).

31

115200 bps
 link setup

Hotsync
Middleware
Server

Hotsync
Middleware
Client

Data converters
Process timers
CPISync Server
Uploader

Setup the PDA-PC RS-232 link @115 kbps

Fetch the Characteristic polynomial
evaluations database from the PDA

Convert this database to raw text

Parse the raw text and extract the
characteristic polynomial evaluations.
Convert them to CPISync readable format

Run CPISync

Convert the data to be uploaded to
the PDA to a Palm database (pdb)

echo SYNCHRONIZATION SCRIPT STARTED

echo SETTING UP 115200 BAUD ON PILOT-LINK
export PILOTRATE="115200"

echo GETTING DATA FROM PDA...PRESS HOTSYNC
echo START TIMER WHEN THE HOTSYNC IS INITIATED
pilot-xfer -f rgenieDB
java TimeKeeper recon.time

echo CONVERTING DATABASE TO RAW TEXT
pilot-file -v rgenieDB.pdb > rawdata.txt

echo CONVERTING TO CPISYNC READABLE DATA
java convert4 rawdata.txt > recondata.txt

echo FLAGGING END OF DATA DOWNLOAD FROM PDA
java TimeKeeper recon.time

echo ENTERING CPISYNC ROUTINE
a.out < recondata.txt >>reconstatdata.txt

echo FLAGGING END OF RECONCILIATION ON PC
java TimeKeeper recon.time

echo RECONCILIATION COMPLETED

echo CONVERTING TO PALM DATABASE FOR UPLOAD
csv2pdb -i recon.inf reconout.txt updata.pdb

echo UPLOADING DATA INTO PDA...PRESS HOTSYNC
pilot-xfer -i updata.pdb

echo FLAGGING STOP OF TIMER
java TimeKeeper recon.time

echo STARTING TIMING ANALYSIS ON TIMING DATA
java StatCalc recon.time >> reconstatdata.txt

echo DONE ... END OF SCRIPT

SCRIPT

Upload this palm database to the PDA

Extract useful information from
communcation time and CPISync
run time

Figure 3.4: A sample script to illustrate an experiment on the PC-PDA system

The range of the data elements could be between 8188 and 24561 in the finite field

F32749. This particular choice is because out of the total 32749 elements in the finite

field, the first and last quarter are reserved for sample points (as was explained in

section 3.2.

A complementary program on the PC took the same inputs – the size of the

database and the number of differences to be introduced and constructed a database

accordingly. So for testing purposes, we simulated a situation wherein we ‘knew’

32

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000

Slow sy nc

CPIsync

CPIsync vs. slow sync - scalability

T
im
e
(s
e
c
o
n
d
s)

Set size (elements)

(a)

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

CPIs ync
slow sy nc

CPIsync vs. slow sync - time

Differences

T
im
e
(s
e
c
o
n
d
s)

(b)

Figure 3.5: Comparison between (a) Scalability with the size of the data sets (b) the
time complexities of CPISync and Slowsync for increasing differences.

the number of differences so as to set up the desired synchronization set size and

difference parameters. It is important to note here that the CPISync system on the

PDA and the PC itself was not a simulation.

3.2.1 Metrics and Measurements

We consider the time required for a synchronization to complete as the most im-

portant metric in our experiments. There are two factors that jointly contribute to

the total synchronization time - the data transfer time and the computation time

to synchronize. For Slowsync the dominant component of the latency is the data

transfer time, whereas for CPISync the computation time generally dominates. Our

experiments compare the latencies of CPISync and Slowsync in various scenarios.

The synchronization latency is measured from the time at which the PDA beings to

send its data to the PC until the time at which the PC determines the differences

between the databases. On the down link from the PC to the PDA, both Slowsync

and CPISync will transmit the same updates.

33

3.2.2 Results

We ran the CPISync and Slowsync protocols on the PC-PDA synchronization system

for various set sizes - varying from sets of 100 elements to sets of 10000 elements with

differences varying from 0 to more than 1200 for these data sets. We timed the total

latency of the synchronization as the sum of the communication time (time taken to

transfer data from the PDA to the PC) and the computational time (time taken to

reconcile the data sets), ignoring the time to upload data from the PC back to the

PDA since this is identical for both the protocols. Figures 3.6 and 3.7 show some

of the data we collected. The values given are averages over 10 trials of identical

experiments.

Figure 3.5 (a) depicts the superior scalability of CPISync over Slowsync. In this

figure we have plotted the time used by each synchronization scheme as a function

of data set size for a fixed number of differences between data sets.

It is clear from the resulting graphs that Slowsync is markedly non scalable: the

time taken by Slowsync increases linearly with the size of the data sets. CPISync on

the other hand is almost independent of the data set sizes. Comparing Figure 2.3 to

Figure 3.5 (a) we observe that the qualitative behavior of CPISync is similar to that

of Fastsync. The remarkable property of CPISync is that it can be employed for any

synchronization scenario, regardless of context, whereas Fastsync is employed only

when the synchronization took place between the same PC and the same PDA.

In figure 3.5 (b), we compare the performance of CPISync to Slowsync for data

sets with fixed sizes but increasing number of differences. As expected, CPISync

performs significantly better than Slowsync when the two synchronizing data sets

do not differ by much. However as the number of differences between the two data

sets increase, the computational complexity of CPISync becomes significant. Thus,

34

Data set size vs. time

0.00

50.00

100.00

150.00

200.00

250.00

0 2000 4000 6000 8000 10000 12000

Data set size

Ti
m
e
(s
ec
on
ds
)

Slowsync

CPISync

500 element set

0.00

5.00

10.00

15.00

20.00

25.00

0 100 200 300 400 500

Differences

Ti
m
e
(s
ec
on
ds
)

Slowsync

CPISync

1000 element set

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 200 400 600 800

Differences

Ti
m
e
(s
ec
on
ds
)

Slowsync

CPISync

A

B

C

Figure 3.6: (A) highlights the superiority of CPISync over Slowsync by showing
that Slowsync does not scale with increasing number of elements in a data set and a
fixed number of differences. The next two graphs show the comparison the latency of
CPISync and Slowsync for (B) 500 and (C) 1000 element sets and varying differences.

there exists a threshold where wholesale data transfer (Slowsync) becomes a faster

method of synchronization; this threshold is a function of the data set sizes as well

as the number of differences between the two data sets. For the 10, 000 record sets

depicted in the figure, this threshold corresponds to roughly 1200 differences.

By preparing graphs like Figures 3.6 and 3.7 for various different set sizes, we

are able to produce a regression with coefficient of determination1 [33] almost 1

1This is a measure of how good the fitted curve is - it is determined by normalizing the square
of the difference between the given points to which the curve is fitted and the evaluation of the

35

3000 element set

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 200 400 600 800 1000

Differences

Ti
m
e
(s
ec
on
ds
)

Slowsync

CPISync

10000 element set

0.00

50.00

100.00

150.00

200.00

250.00

0 500 1000 1500

Differences

Ti
m
e Slowsync

CPISync

5000 element set

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 200 400 600 800 1000

Differences

Ti
m
e
(s
ec
on
ds
)

Slowsync

CPISync

A

B

C

Figure 3.7: These three graphs show the comparison the latency of CPISync and
Slowsync for (A) 3000, (B) 5000 and (C) 10000 element sets and varying differences.

that analytically models the performance of Slowsync and CPISync. The resulting

threshold values are listed in Table 3.1. The regression for Slowsync is obtained

using Maple by fitting the data to a linear function that depends only on the data

set size, where as for CPISync the regression is obtained by fitting the data to

a cubic polynomial using Maple that depends only on the number of differences.

Note that in a PDA application like an address book or memo, changes between

concurrent synchronization typically involve only a small number of records. For

such applications, CPISync will usually be much faster than Slow Sync.

curve’s interpolated function at the corresponding value

36

In Table 3.2, we show the fitted cubic polynomials generated using Maple cor-

responding to 100, 250, 500, 1000, 3000, 5000 and 10000 element data sets for the

total time(latency) with parameter m (differences). It is interesting to note that for

a small data sets (and consequently small differences), it is the communication time

which seems to dominate and the cubic fit is not good, whereas for sets of size 1000

or more, the cubic computational complexity dominates the total latency. The com-

munication time is dependent on the operating systems on the PDA and the PC and

there was a high level of inconsistency observed in the timing (of the order of ±30%)

even though all these results have been averaged out over 10 trials. In the table,

we see there is an overhead of about 3.3 seconds (constant term coefficient) which

corresponds to the setup time of the protocol and other operating system overheads.

For bigger size sets (≥ 1000), it is interesting to note from Table 3.2 that the

highest order (cubic) coefficient is almost the same irrespective of the number of

elements in the set. This again shows that CPISync is not dependent on the size of

the data set. In fact, for big data sets with considerable differences, the latency may

be represented by any one of the polynomials in Table 3.2, since for large values of

m the cubic term dominates the value of the latency. We shall use this fact to model

an optimal Probabilistic scheme in section 3.3.

Data set Size Differences
100 161
250 175
500 253
1000 431
2500 620
3000 727
5000 899
10000 1177

Table 3.1: Threshold values at which CPISync takes the same time as Slowsync.

37

The implementation of CPISync described here requires the knowledge of a tight

upper bound m, on the number of differing entries. One simple method for obtaining

such a bound involves having both hosts A and B count the number of modifica-

tions to their data sets since their last synchronization. The next time the hosts

synchronize, host A sends to host B a message containing its number of updates,

denoted mA. Host B uses its own value mB to compute m = mA + mB which is the

upper bound on the total number of differences between the two hosts. Clearly, this

bound m will be tight if the two hosts have performed updates to mutually exclusive

records. However, they may be completely off if the hosts have performed exactly

the same updates to the same records in their databases. This may happen if, prior

to synchronization, both hosts A and B synchronized with a third host C. Another

problem with this method is that it requires maintaining separate information for

each host with which synchronization is performed; this may not be reasonable for

large networks. Thus the simple method just described will be rather ineffective

for some applications. In the next section we describe a probabilistic scheme that

can determine a much tighter value of m. This result is of fundamental importance

as it means that, in a general setting, both the communication and computational

complexities of CPISync depend mostly on m.

Data set Size Fitted Cubic Polynomial

100 −3.18573E − 06m3 + 5.41161E − 04m2 + 2.66366E − 03m + 3.33124

250 1.05747E − 06m3 − 2.45622E − 04m2 + 3.36804E − 02m + 3.23576

500 6.28175E − 08m3 + 2.70934E − 05m2 + 2.02042E − 02m + 3.33711

1000 1.01182E − 07m3 + 7.74547E − 06m2 + 2.32522E − 02m + 3.13590

3000 8.79353E − 08m3 + 2.59495E − 05m2 + 1.63701E − 02m + 3.45446

5000 9.76246E − 08m3 + 1.37409E − 05m2 + 2.02848E − 02m + 3.43659

10000 1.03861E − 07m3 + 4.79533E − 06m2 + 2.26613E − 02m + 3.40529

Table 3.2: Fitted polynomials P (m) for CPISync running time for various data set
sizes.

38

Start

Get sample point evaluations
from PDA and k additional
verification evaulations.

Perform interoplation to determine
the rational function.

Factorize the numerator and
denominator of the rational
function to get differences.

Stop

Does
the interpolated

rational function satisfy
 the verification

points ?

Yes

No

Figure 3.8: Probabilistic scheme

3.3 Probabilistic CPISync

An extension of CPISync when the upper bound on the number of differences between

the reconciling hosts is not know is performed in the following manner.

• 1. Hosts A and B guess an upper bound m and perform the deterministic

CPISync described in the previous section, resulting in host B computing a

rational function F (X) = P (X)
Q(X)

as described in 3.2 on page 23. If the function

F (X) corresponds to the differences between the two host sets, that is if

F (X) =
χA(X)

χB(X)
(3.1)

39

then the zeros of F (X) will determine precisely the mutual difference between

the two sets. In order to check this, host A (PDA) chooses k random sample

points ri and sends their evaluations χA(ri) to host B (PC), which uses these

evaluations to compute evaluations

G(ri) =
χA(ri)

χB(ri)
(3.2)

by comparing the evaluations F (ri) and G(ri), the PC (host B) can assess

whether F(X) is indeed the correct interpolation for the rational function χA(X)
χB(X)

.

• 2. In case each G(ri) does not correspond to F (ri) for each ri we repeat step 1

for a larger value of m

In general, the two hosts keep guessing m until the resulting polynomials agree in all

k sample points. A precise probabilistic analysis in [14] shows that such an agreement

corresponds to a probability of error

ε = m

(

|SA| + |SB| − 1

sb

)k

(3.3)

where m is the number of differences between the two reconciling hosts A and B.

Using a trivial upper bound m ≤ |SA| + |SB| we see that an arrangement of

k =

⌈

logρ

(

ε

|SA| + |SB|

)⌉

(3.4)

samples (where ρ = |SA|+|SB |−1
2b) to get a probability of error ε for the whole protocol.

Thus, for example reconciling host sets of 106, 64-bit integers with error probability

ε = 10−20 would require agreement of k = 2 random samples.

40

This verification protocol requires the transmission of at most m+k samples and

one random number seed (for generating random sample points) to reconcile two

sets; the value k is determined by the desired probability of error ε using the above

expression for k. The m sample points are used to interpolate a rational function,

corresponding to a guess of the differences between the two machines, and the latter

k points are used to verify the correctness of this guess. If the verification succeeds,

the synchronization is complete. On the other hand, if verification fails, then the

PC collects all the sample points seen so far into a guess of the differences between

the two machines at the same time requesting k additional random evaluations from

the PDA to confirm its new guess. This procedure is iterated until the verification

succeeds, at which point the synchronization is complete. Since m evaluations will

necessarily be enough to completely determine up to m differences, verifications will

necessarily succeed after at most m + k transmissions. Figure 3.8 shows a flowchart

of probabilistic CPISync.

Thus, though the verification protocol will require more rounds of communication

for synchronization that the Deterministic CPISync, it will not require transmission

of significantly more bits of information. We see in the next section that the compu-

tational overhead of this protocol is also not large.

3.3.1 System Model

From an end-user perspective, the most important metric of usability of any synchro-

nization protocol is the latency in the synchronization process. We therefore consider

optimizing the latency with the view of minimizing it. We thus propose a scheme

whose completion time is at worst a constant α times larger than the time needed to

synchronize the two hosts when the number of differences is know a priori (using the

41

0

20

0 200 400 600

T
im
e
 (

se
c
o
n
d
s)

m1 m4
m2 m3

t 3

t 4

t 2
t 1

Differences

CPIsync completion time

Figure 3.9: A model of the approach used to optimize the latency of synchronization
when no bound is known on the number of differences between data sets.

Deterministic scheme discussed in 3.2 on page 23). This probabilistic scheme retains

one of the essential properties of its deterministic counterpart: the synchronization

latency depends only on the number of differences and not on the total size of the

host data sets. We prove that α = 4 is the optimal bound for this scheme and show

how to achieve it.

Our approach to this optimization relies in part on the data graphed in Figure 2.7.

We fit our data to a polynomial regression that interpolates the latency of CPISync

as a function of the number of differences m between the two hosts as was shown in

Table3.2. Since an exact value for m is not known at the start, the PDA and PC

start with an initial guess m for an upper bound on m. In Figure 3.9, this initial

guess corresponds to a value m1, which corresponds to a verification time of t1 = 3.65

seconds. If verification fails this guess, we update our bound to the value m2 that

42

corresponds to a verification time that is δ times larger than for m1 differences(i.e.

t2 = δ · t1). In the case of Figure 3.9, δ = 2 giving m = 151 and t2 ≈ 7.29 seconds.

At each iteration we guess the bound mi such that ti = δ · ti−1. We continue until

verification succeeds for some guessed bound mn requiring time tn = δn−1 · t1 [13]:

Theorem 1 The latency-optimizing probabilistic scheme takes at most α(δ) = δ2

δ−1

times longer than a deterministic scheme with an a priori knowledge of the actual

number of differences.

Proof: Denote by T ∗(m) the synchronization latency when m is know a priori,

and by T (m) the synchronization latency required by this probabilistic scheme. Fur-

thermore, denote by ti the time needed for the i-th verification round in which mi

differences are guessed between the two hosts.

Suppose that a correct upper bound, mn ≥ m, is observed first at the n-th

iteration, for n > 1. The total synchronization time required for the probabilistic

scheme is then simply the sum of the geometric progression

T (m) = t1 + . . . + tn = t1 + δ · t1 + . . . + δn−1 · t1 =
δn − 1

δ − 1
· t1 (3.5)

Note that T ∗(m) ≥ tn−1 = δn − 2 · t1, since mn is assumed to be the first correct

upper bound m. We this obtain

T

T ∗
≥

δn − 1

(δ − 1)δn−2
, for all n > 1. (3.6)

It is easy to check that the right hand side of (3.6) is maximized when n → ∞,

meaning that T/T ∗ ≥ δ2/(δ − 1). By examining the derivative of α(δ) with respect

to δ, one finds that this function attains a minimum value at δ = 2, leading to

an optimal ratio of α = 4. Thus, the best policy for this scheme is to double the

43

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200 1400

Differences

T
im

e
(s
e
c
o
n
d
s)

Probabilistic

Deterministic (Lower bound)

Deterministic * 4 (Upper bound)

Figure 3.10: A comparison of the Probabilistic scheme with no known upper bound
m to the deterministic scheme with a given value of m.

verification time at each iteration.

3.3.2 Results

Figure 3.10 illustrates the performance of this probabilistic scheme compared to that

of the deterministic scheme. Note that the probabilistic results remain within the

guaranteed factor 4 of the corresponding deterministic results.

It is interesting to note the ‘staircase’ pattern of Figure 3.10. The sharp inflection

points corresponding to the ‘steps’ are the values of differences where the Probabilis-

tic algorithm upgrades the value of m. The computational time is almost totally

dominated by the Gaussian elimination while interpolating (see [14] for details) –

the vander monde matrix used has dimensions m ∗m and the sharp inflection points

44

corresponds to the algorithm ‘upgrading’ m after an unsuccessful verification. The

factoring of the polynomials is not the main computational bottleneck, even though

in theory both Gaussian elimination and factoring are cubic in complexity.

Chapter 4

Conclusions

This thesis was divided into two major parts. In the first part, various synchroniza-

tion technologies were investigated (Chapter 2) while in the second part the CPISync

algorithm for fast peer-to-peer synchronization was discussed in detail (Chapter 3).

Strengths and weaknesses of various synchronization technologies were highlighted

and the compared to the new CPISync algorithm. The CPISync algorithm was shown

to be more scalable as compared to whole data transfer algorithms like Slowsync.

4.1 Summary

Various synchronization protocols and technologies like Hotsync (Fastsync and Slowsync),

Intellisync, SyncML and CPISync are suitable for specific classes of synchronization

problems because they scale only with certain parameters and not with others. For

example, the total time is determined by the communication complexity and cor-

responding time for sending synchronization data over the network connecting the

synchronizing devices as well as the amount of time required for any computations

while determining the differences. The memory used on each device to maintain

synchronization information is also taken into consideration as one of the scalability

45

46

criteria, as is the number of devices that can synchronize among themselves (the size

of the network). Finally, the robustness of the protocol - whether it is centralized or

peer-to-peer is another scalability criteria.

Fastsync only works for two device networks while Slowsync does not scale with

large data sets on the synchronizing hosts. Similarly Intellisync depends entirely

on a central server for synchronization instead of a peer-to-peer approach which

makes it prone to central point of failure problems. SyncML is not scalable with a

large number of devices on the network because it requires each device to maintain

synchronization information for each record with respect to every other device in the

network. CPISync alleviates all these problems, but is expensive when there are many

differences between the synchronizing hosts due to the computational complexity

being cubic in the number of differences between the synchronizing hosts.

The CPISync algorithm has been implemented in a PC-PDA synchronization

setting and has been shown to perform better than Slowsync for the case when the

number of differences between the synchronizing PC and PDA is not overly large,

as is the typical case in successive PC-PDA synchronizations. Since CPISync based

Synchronization is independent of which particular device the PDA synchronized

to the last time, the same algorithm can be used repeatedly while synchronizing a

PDA with different devices, unlike Fastsync. On the memory front, the device has

to maintain synchronization information which is of the order of O(m), m being the

upper bound on the number of differences between the two synchronizing hosts. The

same information can be reused to synchronize with any number of devices.

The CPISync algorithm is thus able to solve the synchronization problem ef-

ficiently for many cases of synchronization, although as mentioned earlier, it will

not work well for a large number of differences between synchronizing hosts. A

more intelligent mechanism of choosing a synchronization protocol depending on the

47

specifics of the data being synchronized will solve the synchronization protocol most

efficiently. For example, if the two devices synchronize successively then Fastsync

may be employed, otherwise CPISync or Slowsync may be chosen depending upon

the number of differences between the two devices.

4.2 Future Work

Many problems in networking arise from the need to periodically match up informa-

tion held by hosts. Representative examples include OSPF link state routing [34, 35],

Resource discovery in networks [10], Gossip protocols [11, 21, 36], QoS routing [37, 38]

and Replicated database updating [25]. These applications often end up sending re-

dundant information over the network in order to synchronize similar data held on

hosts. This is one of the foremost scalability problems in these protocols - how to

keep the protocol communication overheads low while guaranteeing accuracy and

correctness.

The issue here then is to reduce the amount of redundant information being

exchanged between hosts, which makes the CPISync algorithm an option while syn-

chronizing host-to-host information because the number of differences between two

successive versions of the information are typically very small as compared to the size

of the information. For example, the number of changes in resources available on a

network typically vary very slowly and so the change in information about resources

is very small between updates in resource discovery. Attempting to employ CPISync

for these problems is an exciting extension of CPISync to network synchronization

problems.

As an initial incentive to explore these directions, we have developed a simple sim-

ulator called Net sim to simulate the amount of data transfer and the corresponding

48

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

0 0.2 0.4 0.6 0.8 1

Graph Connectivity (1 = completely connected)

Flood

Name-dropper (Slowsync)

Name-dropper (CPISync)

B
y

te
s

tr
a

n
sf

er
re

d

o
v

er
 t

h
e

n
et
w

o
rk

Figure 4.1: Simulated network usage in terms of bytes transferred for Flooding and
Name-dropper resource discovery algorithms in a 1024 host network. The total bytes
is the total number of bytes transferred over the network. Notice the superior per-
formance of CPISync based Name-dropper as compared to Slowsync based Name-
dropper

amount of time taken to run the Name-Dropper resource discovery algorithm [10] on

a randomly generated network topology using CPISync and Slowsync as the under-

lying device-to-device synchronization methods.

The Name-Dropper resource discovery algorithm conveys information about re-

sources available on a network to all the hosts connected to the network. In its

simplest form, the Name-Dropper may be employed to enable hosts to discover other

hosts on the network. Name-Dropper works like a gossip protocol in which hosts

contact their neighbors randomly to get information about their neighbors and this

continues until all the information is propagated throughout the network.

Figures 4.1 and 4.2 shows some of the preliminary results of our experiments. We

simulated a 1024 node random network with increasing connectivity and determined

the amount of communication (Figures 4.1) and the corresponding time(Figure 4.2)

required to complete a Name-Dropper run. As expected, using CPISync to exchange

49

1

10

100

1,000

10,000

0 0.2 0.4 0.6 0.8 1

Graph Connectivity (1 = completely connected)

T
im

e
(s

ec
o

n
d
s)

Name-dropper (CPISync)

Name-dropper (Slowsync)

Flood

Figure 4.2: Simulated network usage in terms of time for Flooding and Name-dropper
resource discovery algorithms in a 1024 host network. The total time is the sum of
the computation time and the time taken to transfer the data, with the worst case
bottleneck in the network operating at 56kbps. Notice that for well connected graphs,
CPISync based Name-dropper is faster than Slowsync based Name-dropper.

information between adjacent hosts resulted in considerable gains.

These experiments point to the application of CPISync to the more general prob-

lem of device-to-device synchronization in heterogeneous distributed networks.

A more complete PC-PDA synchronization system that can generally synchronize

PDA and PC databases is also an exciting extension to the work presented in this

thesis. It would be particularly interesting to apply some heuristics to determine

when the devices should switch between various modes of synchronization - Fastsync,

Slowsync and CPISync for example.

Another interesting application field for the CPISync algorithm would be in the

area of synchronization network algorithms [39] that seek to synchronize entire net-

works of devices by performing successive two-host synchronizations with the order

being decided by how a data set containing the host ID might have been sorted using

various classical sorting algorithms - the order of comparison of elements in the host

50

ID data sets corresponds to the order of synchronizing two hosts with those IDs.

The CPISync algorithm itself may be improved in ways to make the computa-

tional complexity more tangible for a large number of differences being reconciled.

Recent work suggests that the cubic complexity (in the number of differences) of

the algorithm may be made linear using a divide and conquer approach [40]. The

biggest part of the latency in CPISync synchronization is the gaussian elimination

step in order to interpolate the rational function as was discussed in section 3.2. Any

improvements in this area will have a direct bearing on the efficiency of CPISync.

Bibliography

[1] C. E. Perkins, Ad hoc Networking. Addison-Wesley, first ed., 2000.

[2] “3COM Palm Inc..” http://www.palm.com.

[3] P. Mochapetris, “DNS: The Domain Name System,” RFC 1034, Network Work-

ing Group, ISI, November 1987.

[4] P. Vixie, S. thomson, Y.Rekhter, and J. Bound, “Dynamic Updates in the Do-

main Name System (DNS UPDATE),” RFC 2136, Network Working Group, ISI,

April 1997.

[5] M. Ohta, “RFC 1995: Incremental Zone Transfer in DNS,” internet-draft, Tokyo

Institute of Technology, August 1996.

[6] J. Kangasharju and K. W. Ross, “A Replicated Architecture for the Domain

Name System,” in INFOCOM (2), pp. 660–669, 2000.

[7] A. Tridgell and P. Mackerras, “The Rsync Algorithm,” Tech. Rep. TR-CS-96-05,

Australian National University, 1996.

[8] J. J. Kistler and M. Satyanarayanan, “Disconnected Operation in the Coda

File System,” in Thirteenth ACM Symposium on Operating Systems Principles,

51

52

(Asilomar Conference Center, Pacific Grove, U.S.), pp. 213–225, ACM Press,

1991.

[9] M. Satyanarayanan, “Coda: A Highly Available File System for a Distributed

Workstation Environment,” in Proceedings of the Second IEEE Workshop on

Workstation Operating Systems, (Pacific Grove, CA), September 1989.

[10] M. Harchol-Balter, T. Leighton, and D. Lewin, “Resource Discovery in Dis-

tributed Networks,” in 18th Annual ACM-SIGACT/SIGOPS Symposium on

Principles of Distributed Computing, (Atlanta, GA), May 1999.

[11] K. Guo, M. Hayden, R. v. Renesse, W. Vogels, and K. P. Birman, “GSGC: An

Efficient Gossip-Style Garbage Collection Scheme for Scalable Reliable Multi-

cast,” tech. rep., Cornell University, December 1997.

[12] S. Agarwal, D. Starobinski, and A. Trachtenberg, “On the scalability of data

synchronization protocols for pdas and mobile devices,” Special Issue of IEEE

Networks on Scalability in Communication Networks, 2002. to appear.

[13] A. Trachtenberg, D. Starobinski, and S. Agarwal, “Fast PDA Synchronization

Using Characteristic Polynomial Interpolation,” in Proceedings of the IEEE In-

focom, 2002. To appear.

[14] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set Reconciliation with Nearly

Optimal Communication Complexity,” Tech. Rep. TR2000-1813, Cornell Uni-

versity, 2000.

[15] A. Yaar, D. Starobinski, and A. Trachtenberg, “Engineering Scalable Data Syn-

chronization For A Personal Digital Assistant.” in preparation, 2002.

53

[16] A. Silberschatz, H. F. Korth, and S. Sudarshan, Datbase System Concepts. Mc-

Graw Hill, third ed., 1997.

[17] “IEEE 1394.” http://computer.org/multimedia/articles/firewire.htm.

[18] “Universal Serial Bus.” http://www.usb.org.

[19] “Intellisync.” http://www.pumatech.com.

[20] M. Denny and C. Wells, “EDISON: Enhanced Data Interchange Services Over

Networks,” May 2000. class project, UC Berkeley.

[21] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and

C. H. Hauser, “Managing Update Conflicts in Bayou, a Weakly Connected Repli-

cated Storage System,” ACM Operating System Review, pp. 172–182, December

1995.

[22] U. Cetintemel, P. Keleher, and M. Franklin, “Support for Speculative Update

Propagation and Mobility in Deno,” 1999.

[23] D. Ratner, P. L. Reiher, G. J. Popek, and R. G. Guy, “Peer Replication with

Selective Control,” in Proceedings of the International Conference on Mobile

Data Access, pp. 169–181, 1999.

[24] “SyncML Standard.” http://www.syncml.org.

[25] M. Rabinovich, N. H. Gehani, and A. Kononov, “Scalable Update Propagation

in Epidemic Replicated Databases,” in Extending Database Technology, pp. 207–

222, 1996.

54

[26] A. Trachtenberg, D. Starobinbki, and S. Agarwal, “Fast PDA Synchronization

Using Characteristic Polynomial Interpolation,” Tech. Rep. TR2001-03, Boston

University, 2001.

[27] “Avantgo Mobile Internet Service.” http://avantgo.com/products/ individu-

als/basic.html.

[28] “Infrared Data Association.” http://www.irda.org.

[29] “Motorola Seminconductor Products Sector.” http://e-www.motorola.com/.

[30] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts.

McGraw-Hill, third ed., 1999.

[31] “Pilot PRC-Tools.” http://sourceforge.net/projects/prc-tools/.

[32] N. Rhodes and J. McKeehan, Palm Programming: The Developer’s Guide.

O’Reilly, first ed., 1999.

[33] S. Weisberg, Applied Linear Regression. John Wiley and Sons, Inc., 1985.

[34] B. S. Davie and L. L. Peterson, Computer Networks: A Systems Approach.

Morgan Kaufman Publishers, second ed., 2000.

[35] A. S. Tanenbaum, Computer Networks. Prentice-Hall Inc., 3 ed., 1995.

[36] A. Demers, D. H. Greene, C. Hause, W. Irish, and J. Larson, “Epidemic Al-

gorithms for Replicated Database Maintenance,” in Proceedings of the Sixth

Annual ACM Symposium on Principles of Distributed Computing, (Vancouver,

British Columbia, Canada), pp. 1–12, ACM, August 1987.

[37] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, “Quality of Service

Based Routing: A Performance Perspective,” in SIGCOMM, pp. 17–28, 1998.

55

[38] A. Shaikh, J. Rexford, and K. G. Shin, “Evaluating the impact of stale link state

on quality-of-service routing,” IEEE/ACM Transactions on Networking, vol. 9,

pp. 162–176, April 2001.

[39] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction To Algorithms.

MIT Press and McGraw-Hill Book Company, 6th ed., 1990.

[40] Y. Minsky and A. Trachtenberg, “Practical Set Reconciliation.” in preparation,

2002.

56

Curriculum Vitae

Sachin Agarwal was born in the small south Indian town of Tumkur, on February

11, 1979, son of Rashmi Agarwal and Arun Kumar Agarwal. In 2000 he gradu-

ated with distinction from the Regional Engineering College, Warangal, India with

a Bachelor of Technology degree in Electronics and Communication Engineering. At

college, he was a recipient of the college merit scholarship.

He entered the graduate program in Computer Engineering offered by Boston

University’s College of Engineering in Fall 2000, where he also worked as a graduate

research assistant in the Networking and Information Systems Laboratory. While

working there, he was the co-author of the following publications

• A. Trachtenberg, D. Starobinski, and S. Agarwal, “Fast PDA Synchronization

Using Characteristic Polynomial Interpolation”, in the Proceedings of the IEEE

INFOCOM 2002.

• S. Agarwal, D. Starobinski, and A. Trachtenberg, “On the Scalability of Data

Synchronization Protocols for PDAs and Mobile Devices”, special issue of the

IEEE Network Magazine: Scalability in Communication Networks, July/August

2002.

He was awarded the NSF/Corporate travel award for the IEEE INFOCOM 2002

conference.

This thesis marks the end of his master’s trek - uphill, but with an understanding

advisor Dr. Ari Trachtenberg who offered exciting research and generous financial

support, he has fond memories of all the times spent getting there. So much so that

he continues to work towards his doctoral degree at Boston University, on the banks

of the Charles river in Boston, Massachusetts.

