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Abstract

We revisit the problem of deciding whether a given string is uniquely decod-
able from its bigram counts by means of a finite automaton. An efficient
algorithm for constructing a polynomial-size nondeterministic finite automa-
ton that decides unique decodability is given. Conversely, we show that the
minimum deterministic finite automaton for deciding unique decodability has
at least exponentially many states in alphabet size.

Keywords: uniqueness, sequence reconstruction, Eulerian graph,
finite-state automata

1. Introduction

Reconstructing a string from its snippets is a problem of fundamental
importance in many areas of computing. In a biological context this prob-
lem amounts to sequencing of DNA from short reads [6] and reconstruction
of protein sequences from K-peptides [9]. Communications protocols [3, 8]
recombine snippets from related documents to identify differences between
them, and fuzzy extractors [10] use similar techniques for producing keys
from noise-prone biometric data. Computational linguistics also makes occa-
sional use of this snippet representation (under the name Wickelfeatures [1]),
as a means to learn transformations on varying-length sequences.

In general, there may be a large number of possible string reconstructions
from a given collection of overlapping snippets; for example, the snippets {at,
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an, ka, na, ta} can be combined into katana or kanata. In order to keep the
decoding complexity and ambiguity low, it is desirable in practice to choose
a snippet length that allows only a few distinct reconstructions — the ideal
number being exactly one.

Main results. We consider the problem of efficiently determining whether
a collection of snippets has a unique reconstruction. More precisely, we
construct a nondeterministic finite automaton (NFA) on O(|Σ|3) states that
recognizes precisely those strings over the alphabet Σ that have a unique
reconstruction. Our NFA has a particularly simple form that provides for
an easy and efficient implementation, and runs on a string of length ℓ in
time O(ℓ|Σ|3) and constant memory. We further show that the minimum
equivalent deterministic finite automaton has at least 2|Σ|−1 states. This
lower bound is still far off from the upper bound 2O(|Σ| log |Σ|) implicit in [11]
and closing this gap is an intriguing open problem.

Related work. It was shown in [7] that the collection of strings having a
unique reconstruction from the snippet representation is a regular language.
An explicit construction of a deterministic finite-state automaton (DFA) rec-
ognizing this language was given in by Lia and Xie [11]. Unfortunately, this
DFA has

2|Σ|(|Σ|+ 1)(|Σ|+ 1)(|Σ|+1) ∈ 2O(|Σ| log |Σ|)

states, and thus is not practical except for very small alphabets. As we show
in this paper, there is no DFA of subexponential size for recognizing this
language; however, we exhibit an equivalent NFA with O(|Σ|3) states.

Outline. We proceed in Section 2 with some preliminary definitions and no-
tation. In Section 3 we present our construction of an NFA recognizing
uniquely decodable strings, and we prove its correctness in Section 4. Fi-
nally, we present a new lower bound on the size of a DFA accepting uniquely
decodable strings in Section 5, and conclude in Section 6 with discussion and
an open problem.

2. Preliminaries

We assume a finite alphabet Σ along with a special delimiter character
$ /∈ Σ, and define Σ$ = Σ ∪ {$}. For k ≥ 1, the k-gram map Φ takes string
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x ∈ $Σ∗$ to a vector ξ ∈ N
Σk

$ , where ξi1,...,ik ∈ N is the number of times
the string i1 . . . ik ∈ Σk occurred in x as a contiguous subsequence, counting
overlaps.1 As we have seen, the bigram map Φ : $Σ∗$ → N

Σ2
$ is not injective;

for example, Φ($katana$) = Φ($kanata$).
We denote by LUNIQ ⊆ Σ∗ the collection of all strings w for which

Φ−1(Φ($w$)) = {$w$}

and refer to these strings as uniquely decodable, meaning that there is exactly
one way to reconstruct them from their bigram snippets. The examples
$katan$ and $katana$ show that ∅ 6= LUNIQ 6= Σ∗ for |Σ| > 1. The induced
bigram graph of a string w ∈ Σ∗ is a weighted directed graph G = (V,E),
with V = Σ$ and E = {e(a, b) : a, b ∈ Σ$}, where the edge weight e(a, b) ≥ 0
records the number of times a occurs immediately before b in the string $w$.

We also follow the standard conventions for sets, languages, regular ex-
pressions, and automata [2, 4, 5]. As such, a factor of a string (colloquially
a snippet) is any of its contiguous substrings. The term Σ∗ denotes the free
monoid over the alphabet Σ, and, for S ⊆ Σ, the term S∗ has the usual
regular-expression interpretation; the language defined by a regular expres-
sion R will be denoted L(R). In addition, we will denote the omission of a
symbol from the alphabet by Σx̄ := Σ \ {x} for x ∈ Σ.

Finally, we shall use the standard five-tuple [4] notation (Σ, Q, q0, δ, F ) to
specify a given DFA, where Σ is the input alphabet, Q is the set of states, q0
is the initial state, δ is the transition function, and F are the final states; an
analogous notation is used for NFAs. We use the notation |·| both to denote
the size of an automaton (measured by the number of states) and the length
of a string.

3. Construction and simulation of the NFA

3.1. Obstruction languages and their DFAs

Our starting point is the observation, also made in [11], that LUNIQ is
a factorial language, meaning that it is closed under taking factors. From
here, Lia and Xie [11] proceed to characterize LUNIQ in terms of its minimal

1In this paper we will focus on the bigram case when k = 2, although the general case
k > 2 readily follows [7, 11].
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Figure 1: The canonical DFA for Kx,a,b, for a 6= b (left) and a = b (right); note that this
DFA never has more than 9 states, regardless of alphabet size.

forbidden words. Rather than looking at forbidden words, we will consider
obstructions in the form of simple regular languages.

For x ∈ Σ and a, b ∈ Σx̄, define

Ix,a,b = L (Σ∗axΣ∗
ābΣ

∗) .

Thus, Ix,a,b is the collection of all strings w ∈ Σ∗ whose induced bigram graph
has an edge from a to x and a directed path from x to b avoiding a. Similarly,
for x ∈ Σ and a, b ∈ Σx̄, define

Jx,a,b = L (Σ∗aΣ∗
x̄bΣ

∗) .

Thus, Jx,a,b the collection of all strings w ∈ Σ∗ whose induced bigram graph
has a directed path from a to b avoiding x. Finally, define an obstruction
language

Kx,a,b = Ix,a,b ∩ Jx,a,b,

whose elements will be called obstructions. The language of all obstructions
will be denoted

LOBST =
⋃

x∈Σ

⋃

a,b∈Σx̄

Kx,a,b. (1)

The DFA recognizing a typical Kx,a,b is illustrated in Figure 1. One can verify
that these DFAs indeed recognize Kx,a,b straightforwardly for Σ = {a, b, x},
and note that the automata continue to be correct for any Σ′ ⊇ {a, b, x}.
An important feature of Kx,a,b is that 9 states always suffice for its DFA,
regardless of Σ (one can also check that the DFAs given in Figure 1 are
canonical by applying the DFA minimization algorithm [4]).
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3.2. The NFA as a union of obstructions

For x ∈ Σ and a, b ∈ Σx̄, let Mx,a,b = (Σ, Qx,a,b, sx,a,b, Fx,a,b, δx,a,b) be the
canonical DFA recognizing the obstruction language Kx,a,b. Observe that
there are

|Σ| (|Σ| − 1 + (|Σ| − 1)(|Σ| − 2)) ∈ O(|Σ|3) (2)

distinct obstruction languages. Indeed, there are |Σ| choices for x. If a = b,
we have |Σ|−1 ways to choose a ∈ Σx̄, and if a 6= b, we have (|Σ|−1)(|Σ|−2)
ways to choose (a, b) ∈ Σ2

x̄.
Define the NFA MOBST = (Σ, Q,Q0, F,∆) as follows:

Q =
⋃

x∈Σ

⋃

a,b∈Σx̄

Qx,a,b

Q0 =
⋃

x∈Σ

⋃

a,b∈Σx̄

{sx,a,b}

F =
⋃

x∈Σ

⋃

a,b∈Σx̄

Fx,a,b

∆ =
⋃

x∈Σ

⋃

a,b∈Σx̄

δx,a,b.

In words, MOBST is the union NFA comprised of all the DFAsMx,a,b; note that
its only source of nondeterminism is that it simultaneously starts in each of
the start states sx,a,b. By design, MOBST is an NFA recognizing the language
LOBST.

We collect these observations into a theorem.

Theorem 1. The NFA MOBST

(i) recognizes the language LOBST,

(ii) has
|Σ| (7(|Σ| − 1) + 9(|Σ| − 1)(|Σ| − 2)) ∈ O(|Σ|3)

states, and

(iii) can be simulated on w ∈ Σℓ in O(ℓ|Σ|3) time and Θ(1) space.

Proof. Item (i) follows from the discussion above. The claim in (ii) follows
from the calculation in (2) and the construction in Figure 1, which implies
|Mx,a,a| = 7 and |Mx,a,b| = 9. To simulate MOBST on a string w with the
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complexity in (iii), our simulator runs each of the DFAs Mx,a,b on w. If
any of them accept, the simulator accepts; if none accept, it reject. The
DFAs Mx,a,b can be constructed in constant time and space, sequentially, by
substituting the appropriate values of x, a, b in the transitions of the generic
DFAs illustrated in Figure 1.

4. Proof of correctness

So far, we have defined two seemingly unrelated objects: LUNIQ, the collec-
tion of uniquely decodable strings, and LOBST, the language of obstructions.
We shall now prove that the two are complementary.

Theorem 2.

LUNIQ = Σ∗ \ LOBST.

We develop the proof with the aid of several lemmata.

4.1. LOBST ⊆ Σ∗ \ LUNIQ

The forward direction has the simpler proof, deriving from one lemma.

Lemma 3. For x ∈ Σ and a, b ∈ Σx̄, we have

Kx,a,b ⊆ Σ∗ \ LUNIQ.

Proof. By definition, w contains a factor of the form u = axu′b, with u′ ∈ Σ∗
ā,

and a factor of the form v = av′b, with v′ ∈ Σ∗
x̄. Note that u and v cannot

overlap, and so w must be of the form w′ = αuβvγ or w′′ = αvβuγ for some
α, β, γ ∈ Σ∗. Since u and v both start with a and end with b, the bigram
encodings of w′ and w′′ will be identical, meaning that their preimage string
w is not uniquely decodable.

4.2. LOBST ⊇ Σ∗ \ LUNIQ

The proof of the reverse direction draws heavily from the definitions in
[7], some of which were reproduced in Section 2. For sake of exposition, we
note that the weighted inflow and outflow of a node v in the bigram graph
of a string2 are given by

inflow(v) =
∑

u 6=v

e(u, v) outflow(v) =
∑

u 6=v

e(v, u).

2These are distinct from the weighted in-degree and out-degree in graph theory, in that
they do not include the weights of self-loops.
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The self-flow of v is simply self-flow(v) = e(v, v). Finally, for an edge
e(v, w) > 0, we say that v is a parent of w or w is a child of v and de-
note both with v → w.

In addition, the pruning operator Px(w) deletes all occurrences of the
letter x ∈ Σ from the string w ∈ Σ∗. A vertex x 6= $ is removable in a
bigram graph G [7, Definition 4] if:

(a) x has a single child b,

(b) no parent of x has a child b, and

(c) if x is a child of x, then outflow(x) = 1.

The removal of a removable node results in a string with the same number
of decodings as w [7]. Where these x correspond to a node with outflow 1
in the bigram graph of w, we call them type-I removable; otherwise, we call
them type-II removable.

Our first observation is that pruning a removable node preserves obstruc-
tions:

Lemma 4. Suppose that w ∈ Σ∗ induces the bigram graph G(w) with a
removable node r, and let w′ = Pr(w). Then w ∈ LOBST if and only if
w′ ∈ LOBST.

Proof. For the forward direction, assume w ∈ LOBST, meaning that w belongs
to some Kx,a,b. Note that if r /∈ {x, a, b} then w′ ∈ Kx,a,b, because deleting
r does not change membership in either Ix,a,b or Jx,a,b. Thus, we need only
consider what happens when one of r ∈ {a, b, x} is pruned.

We can rule out the case r = a because a has two distinct children and
so, by definition, is not removable. For the case r = b, we note that b appears
at least twice in the string and thus has outflow ≥ 2. For b to be removable,
it must have a single child b′, making w′ an element of Kx,a,b′.

It remains to consider the case r = x. Recall that w ∈ Kx,a,b and thus
contains a factor u = axu′b, with u′ ∈ Σ∗

ā. Consider the sub-case where w
contains ab as a factor. Now if u′ = ε then x is not removable in G (its
parent a points to its child b), so assume that u′ = x′u′′ for x′ ∈ Σ \ {x, a, b}
and u′′ ∈ Σ∗

ā. In this case, x might be removable in G, but then w′ ∈ Kx′,a,b.
Alternatively, suppose w ∈ Kx,a,b does not contain ab as a factor. It must,
however, contain the factor v = av′b with v′ ∈ Σ+

x̄ . If u
′ = ε then w′ has the

factor ab and also the factor av′b, and thus belongs to Ky,a,b for some y in v′.
Otherwise, w′ has the factors au′b = au′

1u
′
2 . . . u

′
kb and av′b = av′1v

′
2 . . . v

′
ℓb.
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We cannot have u′
1 = v′1, for then w would have the factors axu′

1 and au′
1, and

x would not be removable in G. If u′
1 does not occur in v′, then w′ ∈ Ku′

1,a,b
.

If u′
1 occurs in v′, then w′ ∈ Kv′1,a,u

′

1
.

The direction w′ ∈ LOBST =⇒ w ∈ LOBST is proved analogously.

Before stating the next lemma, we introduce another bit of notation.
For two nodes a, b (not necessarily distinct) in a given bigram graph, the
existence of a directed path from a to b will be denoted by a ⇒ b. If in
addition there is a directed path from a to b avoiding x, we indicate this by
a

x̄
⇒ b. These relations may be concatenated with the obvious semantics.

Thus, a → b
x̄
⇒ c ⇒ d implies the existence of a directed path in G that

takes the edge a → b, then reaches c having avoided x between b and c, and
then reaches d.

Lemma 5. Suppose the bigram graph G has a node g with distinct children
x, y ∈ Σḡ such that x ⇒ g and y ⇒ g. Then every traversal of G belongs to
Kx,g,g ∪Ky,g,g ∪Kx,y,y ∪Ky,x,x.

Proof. Our assumptions on G imply g → x ⇒ g and g → y ⇒ g. We claim

that least one of x
ȳ
⇒ g, y

x̄
⇒ g must hold. Indeed, suppose that every directed

path from x to g passes through y — then there is a directed path from y

to g avoiding x. Consider the case that x
ȳ
⇒ g. In this case, we also have

that G also satisfies at least one of (i) g → x
ȳ
⇒ g, (ii) g → x ⇒ y ⇒ x

ȳ
⇒ g.

Case (i) corresponds to traversals belonging to Ky,g,g and (ii) corresponds to

traversals belonging to Ky,x,x. A similar analysis of the case y
x̄
⇒ g proves

the claim.

Finally, we show that any non-uniquely decodable string must be an ob-
struction:

Lemma 6.

Σ∗ \ LUNIQ ⊆
⋃

x∈Σ

⋃

a,b∈Σx̄

Kx,a,b.

Proof. Pick a w ∈ Σ∗ \ LUNIQ. Since w is not uniquely decodable, its bigram
graph G has more than one valid traversal. Let G′ be the graph obtained
after pruning the removable nodes from G (in some order) until no removable
nodes are remaining. Then G′ is a non-trivial graph [7, Theorem 9] and
has the same number of decodings (valid traversals) as G [7, Theorems 5,6].
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Furthermore, Lemma 4 above implies that a decoding u ofG is an obstruction
iff the corresponding pruned decoding u′ of G′ is an obstruction.

Thus, to prove the theorem, it suffices to show that every decoding of
G′ is an obstruction. By construction, G′ has no removable nodes, meaning
that at least one of the following holds for every node g ∈ G′, g 6= $:

(i) g → a and g → b for distinct a, b ∈ Σḡ.
(ii) self-flow(g) > 0 and outflow(g) > 1
(iii) a → g → b and a → b for a, b ∈ Σḡ

If (iii) holds for any node g, then every decoding of G′ is an obstruction
of the type Kg,a,b.

There are two ways that (ii) can hold for any g: (ii′) g → g and e(g, x) > 1
or (ii′′) g → g and g → x, g → y for x 6= y. In case of (ii′), any decoding of
G′ must contain both a factor gg and also a factor gx and a directed path
from x back to g. Thus, any such decoding belongs to Kx,g,g. Similarly, in
case of (ii′′), we have x ⇒ g or y ⇒ g, resulting in the decoding belonging to
Kx,g,g or Ky,g,g respectively.

It remains to examine the case where every node g satisfies (i). Suppose
for now that in addition to g → x and g → y for x 6= y ∈ Σḡ we also have
g → z for some z ∈ Σ \ {g, x, y}. In any decoding of G′, at least two of
{x, y, z} must have a directed path back to g. Lemma 5 then implies that
every decoding of G′ belongs to

⋃

t6=t′∈{x,y,z}

Kt,g,g ∪Kt′,g,g ∪Kt,t′,t′ ∪Kt′,t,t.

Having dispensed with the three-child case and with (ii) and (iii) above,
the only remaining scenario is that every g 6= $ in G′ has exactly 2 children
and self-flow(g) = 0. We claim that in this case, there must be a g ∈ G′ with
children x 6= y such that x ⇒ g and y ⇒ g. If this were not the case, G′

would be uniquely decodable — since at each node g, we would be obligated
to first take the unique child that does have a directed path back to g. But
this contradicts Lemma 8 in [7], which states that a bigram graph where
every node other than $ has exactly 2 children and no self-flow has multiple
decodings. Let g be the requisite node with children x 6= y; by Lemma 5 we
have that every decoding of G′ belongs to Kx,g,g ∪Ky,g,g ∪Kx,y,y ∪Ky,x,x.

Theorem 2 follows immediately from Lemmas 3 and 6 — in light of which,
the runtime complexity in Theorem 1(iii) can be improved from O(ℓ|Σ|3) to
O(ℓ̃|Σ|3), where ℓ̃ is the length of the shortest prefix u /∈ LUNIQ of w.
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5. Lower bound for DFAs recognizing LUNIQ

We know from Theorems 1 and 2 that LUNIQ ⊂ Σ∗ is a regular language.
Let us denote the minimum DFA recognizing LUNIQ by M◦

UNIQ
. In this section

we examine the size of M◦
UNIQ

, as measured by the number of states. In [11],
Lia and Xie constructed a DFA on

2|Σ|(|Σ|+ 1)(|Σ|+ 1)(|Σ|+1) ∈ 2O(|Σ| log |Σ|) (3)

states recognizing LUNIQ. However, their construction is not optimal: for
example, when |Σ| = 3, the left-hand size of (3) is equal to 8192 while the
canonical DFA for LUNIQ ⊂ {a, b, c}∗ has 84 states.3 The main result of this
section is the following lower bound, which is also not tight as it gives a value
of 4 states for this alphabet size.

Theorem 7. For |Σ| ≥ 1,

|M◦
UNIQ

| ≥ 2|Σ|−1.

Proof. Define =U to be the usual equivalence relation induced on Σ∗ by LUNIQ:
x =U y if and only if there is no t ∈ Σ∗ that distinguishes x from y, meaning
that xt ∈ LUNIQ from yt /∈ LUNIQ or vice versa. Then the Myhill-Nerode
theorem [4] assures us that the number of states in a DFA accepting LUNIQ is
at least the number of strings that are pairwise-distinguishable with respect
to LUNIQ.

Our proof proceeds by induction on the alphabet size, where we con-
struct a set Di of 2

i pairwise-distinguishable strings over the alphabet Σi =
{〈j〉 : 0 ≤ j ≤ i}, i = 0, 1, 2, . . .. For the base case i = 0, we take D0 = {0}.

Now suppose, as an inductive hypothesis, that we have constructed the
set Di of 2

i distinguished strings over the alphabet Σi, for i ≥ 0. We then
define Di+1 over the alphabet Σi+1 as the union Di+1 = Di ∪D′

i, where D′
i

simply appends the letter 〈i+ 1〉 ∈ Σi+1 to each string in Di; more precisely,
D′

i = {w · 〈i+ 1〉 : w ∈ Di}. Thus, for example, D2 = {0, 01, 02, 012} and
D′

2 = {03, 013, 023, 0123} combine to form D3. Note that the letters always
appear in w ∈ Di in strictly increasing order, and thus Di ⊂ LUNIQ for all
i ≥ 0.

3This may be verified by determinizing, negating, and then minimizing the NFA MOBST

constructed in Section 3 or by minimizing the DFA of Lia and Xie [11].
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What remains to prove is that the members of Di+1 as constructed above
are all pairwise distinguishable under =U. In proving that u 6=U v for all
distinct u, v ∈ Di+1, we consider three cases: (i) both strings belong to Di,
(ii) both strings belong to D′

i, and (iii) one string belongs to Di and the
other to D′

i. For u, v ∈ Di, our inductive hypothesis applies to give u 6=U v.
Consider u, v ∈ D′

i. Since the sequences u and v are strictly increasing and
distinct, there is necessarily a letter x that appears in one and not the other.
Then u and v are distinguished by xx. To see this, suppose, without loss of
generality, that x appears in u but not in v, and note that last letter of u
and v is 〈i+ 1〉 6= x; then vxx ∈ LUNIQ and uxx /∈ LUNIQ.

Finally, consider the case of u = u1u2 . . . uk ∈ Di and v = v1v2 . . . vℓ ∈
D′

i. We examine two sub-cases. First, suppose the strings u1u2 . . . uk−1 and
v1v2 . . . vℓ−1 are distinct. Let x be a letter that appears in one and not the
other. Then u and v are distinguished by xx using the argument above. In
the other sub-case, we have u1u2 . . . uk−1 = v1v2 . . . vℓ−1 = w. Then u and
v are distinguished by t = wukw. Indeed, ut = wukwukw ∈ LUNIQ, while
Φ($vt$) can be decoded as v′ = wvℓwukw or as v′′ = wukwvℓw.

6. Discussion

We have provided a novel, constructive proof that LUNIQ is a regular lan-
guage, which yields as a by-product a O(|Σ|3)-sized NFA recognizing LUNIQ

that can be efficiently simulated. We have also shown that the minimum
DFA has 2f(|Σ|) states, where

n− 1 ≤ f(n) ≤ Cn logn

for some universal constant C. The exact growth rate of f(n) is an intriguing
open problem.
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