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Abstract

Determining whether an unordered collection of overlapping substrings (called shingles) can be
uniquely decoded into a consistent string is a problem that lies within the foundation of a broad assortment
of disciplines ranging from networking and information theory through cryptography and even genetic
engineering and linguistics. We present three perspectives on this problem: a graph theoretic framework
due to Pevzner, an automata theoretic approach from our previous work, and a new insight that yields
a time-optimal streaming algorithm for determining whether a string ofn characters over the alphabet
Σ can be uniquely decoded from its two-character shingles. Our algorithm achieves an overall time
complexityΘ(n) and space complexityO(|Σ|). As an application, we demonstrate how this algorithm
can be extended to larger shingles for efficient string reconciliation.

I. INTRODUCTION

The problem of efficiently reconstructing a string from a given encoding is fundamental to a broad
range of settings. In the information theory world, this is related to theα-edits or string reconciliation
problem [4, 22], wherein two hosts seek to reconcile remote strings that differ in a fixed number of
unknown edits, using a minimum amount of communication. A similar problem is faced in cryptography
through fuzzy extractors [8], which can be used to match noisy biometric data to encrypted baseline
measurements in a secure fashion. Within a biological context, this problem has common roots with the
sequencing of DNA from short reads [4] and reconstruction ofprotein sequences from K-peptides [28].
This idea has even shown up in computational linguistics, where it was used to learn transformations on
varying-length sequences [27].

In a simple formal statement of theunique string decoding problem, one is given a strings ∈ Σ∗ over
the alphabetΣ. The string is considered uniquely decodable if there is no other strings′ ∈ Σ∗ with the
same multiset of length2 substrings (known as bigrams). In the general case, we will be interested in
substrings of lengthq ≥ 2, which we will call q-grams orshingles. In our analysis, we shall assume
throughout that alphabet characters can be compared in constant time; otherwise, multiplicativelog(|Σ|)
terms need to be added where appropriate. Our main result is aΘ(n) time, O(|Σ|) space streaming
algorithm for deciding unique decodability. To our knowledge, the best previous algorithm [14] has time
complexityO(n|Σ|3) and space complexityΘ(|Σ|3).

A. Approach

Two principal approaches have been put forth for deciding unique string decodability.
The first is due to Pevzner [25] and Ukkonen [32], who characterized the type of strings that have the

same collection of shingles. This approach can be used to generate a simple unique decodability tester
whose naive worst-case running time on strings of lengthn is Θ(n4).

The second approach is based on an observation that the set ofuniquely decodable strings form a
regular language [15]. With this observation, it is possible to produce a deterministic finite state machine
on exp(Ω(|Σ| log |Σ|)) states [16] and a non-deterministic one onO(|Σ|3) states [14]. The DFA is
prohibitively expensive to construct explicitly, while the NFA may be simulated in timeO(n|Σ|3) and
spaceΘ(|Σ|3).
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In this work, we present a streaming, online, linear time algorithm for testing unique decodability of a
string. We further show how this algorithm can be extended toprovide an efficient protocol for the classic
α-edits (or string reconciliation) problem, in which one is tasked with reconciling two remote strings
that differ in at mostα unknown edits (insertions or deletions) [23]. This approach can be extended into
a one-way rateless streaming protocol that reconciles strings an arbitrary edit distance apart.

B. Outline

We begin with an overview of related work from the information theory and theoretical computer
science communities in Section II, followed by a brief exposition of existing approaches to our core
problem in Section III. Our linear-time algorithm for deciding unique decodability, together with a proof
of correctness, is described in Section IV. We show in Section V how this algorithm can be generalized
for theα-edits problem, and close with concluding remarks and remaining open theoretical questions in
Section VI.

II. RELATED WORK

A. Unique decoding

It was shown in [15] that the collection of strings having a unique reconstruction from the shingles
representation is a regular language. Following up, Li and Xie [16] gave an explicit construction of a
deterministic finite-state automaton (DFA) recognizing this language. Our work in [14] has demonstrated
that there is no DFA of subexponential size for recognizing this language, and instead we have exhibited
an equivalent NFA withΘ(|Σ|3) states.

There has also been work on the probability of a collection ofshingles having a unique reconstruction.
The authors in [1] show that one can expect a unique decoding for substrings of identically distributed,
independent random bits as long as the substrings are roughly logarithmic in the size of the overall
decoded string. The work in [9] also provides evidence of a high probability of unique decoding for
logarithmically sized substrings, and includes generalizations to non-binary and even non-uniformly
random characters for the strings. This is extended in [2] tocharacterize the number of decodings
for a given collection of shingles, and [26] considers decoding from regularly gapped collections of
substrings in a DNA sequencing framework. Finally, [21] considers an information-theoretic capacity of
the sequencing problem, and presents a greedy algorithm forreconstruction that is asymptotically optimal.

B. Edit distance

The problem of determining the minimum number of edits (insertions or deletions) required to transform
one string into another has a long history in the literature [6, 11]. Orlitsky [22] shows that the amount of
communicationCα̂(x, y) necessaryto reconcile two stringsx andy (of lengths|x| and |y| respectively)
that are known to be at most̂α-edits apart is at most

Cα̂(x, y) ≤ f(y) + 3 log f(y) + log α̂+ 13,

for

log

((

|y|+ α̂

α̂

))

≤ ⌈f(y)⌉ ≤ log

((

|y|+ α̂

α̂

))

+ 3 log(α̂),

although he leaves an efficient one-way protocol as an open question.
The literature includes a variety of proposed protocols forthis problem. Cormode et al. [7] propose a

hash-based approach that requires a known boundα̂ on edits betweenx andy (assuming, without loss
of generality, thaty is the longer string) and communicates at most

4α log(
2|y|

α
) log(2α̂) +O

(

α log |y| log
log(|y|)

ln 1
1−ǫ

)

(1)



bits to reconcile the strings with probability of failureǫ.
Orlitsky and Viswanthan [24] propose a interactive protocol that does not need to know the number

of edits in advance and requires at most

2α log |y| (log |y|+ log log |y|+ log(1/ǫ) + logα)

bits of communication.
Other approaches include those of Evfimievski [10] for smalledit distances, Suel [30] based on delta-

compression, and Tridgell [31] which presents the computationally efficient (but potentially communica-
tionally inefficient) rsync protocol.

C. Reconciliation

Another natural approach to theα-edits problem involves the utilization of areconciliationalgorithm,
which reconciles remote data with minimum communication.

a) Set reconciliation:The problem of set reconciliation seeks to reconcile two remote setsSA and
SB of b-bit integers using minimum communication. The approach in[20] involves translating the set
elements into an equivalentcharacteristic polynomial, so that the problem of set reconciliation is reduced
to an equivalent problem of rational function interpolation, much like in Reed-Solomon decoding [18].

The resulting algorithm requires one message of roughlybm bits of communication andbm3 compu-
tation time to reconcile two sets that differ inm entries. The approach can be improved to expectedbm
communication and computation through the use of interaction [19] and generalized to multisets and to
arbitrary error-correcting codes [12].

b) String reconciliation: A string σ can be transformed into a multisetS through shingling, or
collecting all contiguous substrings of a given length, including repetitions. For example, shingling the
string katana into length2 shingles produces the multiset:

{at, an, ka, na, ta} . (2)

As such, in order to reconcile two stringsσA andσB , the protocol STRING-RECON [1] first shingles
each string, then reconciles the resulting sets, and then puts the shingles back together into strings in
order to complete the reconciliation. It is important to note that if two strings differ byα edits, then they
will also differ in O(α) shingles, as long as shingle size is a constant.

The process of combining shingles of lengthl back into a string involves the construction of a modified
de Bruijn graph of the shingles. In this graph, each shingle corresponds to an edge, with weight equal
to the number times the shingle occurs in the multiset. The vertices of the graph are all lengthl − 1
substrings over the shingling alphabet; in this manner, an edge e(u, v) corresponds to a shingles if u
(resp.v) is a prefix (resp. suffix) ofs. A special character$ used at the beginning and end of the string
in order to mark the first and last shingle.

An Eulerian cycle in the modified de Bruijn graph, starting atthe first shingle, necessarily corresponds
to a string that is consistent with the set of shingles. Unfortunately, there may be a large number of
strings consistent with a given shingling, so that well-defined decoding requires either the specification
of one cycle of interest or another way to guarantee only one possible cycle.

III. E XISTING APPROACHES

We now describe two existing approaches for determining whether a given string is uniquely decodable.



A. Transformation

In an analysis of approximate string matching, Ukkonen [32]conjectured that two strings with the
same shingles are related through two string transformations, for (q − 1)-gramsz1 andz2 and arbitrary
stringsxi:

• Transposition - wherein a string

x = x1z1x2z2x3z1x4z2x5

is transformed into
x′ = x1z1x4z2x3z1x2z2x5.

• Rotation - wherein a string
x = z1x1z2x2z1

is transformed into
x′ = z2x2z1x1z2.

Pevzner [25] proved that this conjecture is true, thus providing a simple but inefficient algorithm for
determining the unique decodability of a string.

B. Regular languages

A second approach for testing unique decodability is automata theoretic in nature.
1) Preliminaries: We assume a finite alphabetΣ along with a special delimiter character$ /∈ Σ, and

defineΣ$ = Σ ∪ {$}. For k ≥ 1, the q-gram mapΦ takes stringx ∈ $Σ∗$ to a vectorξ ∈ N
Σq

$ , where
ξi1,...,iq ∈ N is the number of times the stringi1 . . . iq ∈ Σq occurred inx as a contiguous subsequence,
counting overlaps. Note that, though we focus this section on the bigram case whenq = 2, the results
are straightforwardly generalized to the caseq > 2.

It is easy to see that the bigram mapΦ : $Σ∗$→ N
Σ2

$ is not injective; for example, the shingles in (2)
imply that Φ($katana$) = Φ($kanata$). We denote byLUNIQ ⊆ Σ∗ the collection of all stringsw for
which

Φ−1(Φ($w$)) = {$w$}

and refer to these strings asuniquely decodable, meaning that there is exactly one way to reconstruct
them from their bigrams. The inducedbigram graphof a stringw ∈ Σ∗ is a weighted directed graph
G = (V,E), with V = Σ$ andE = {e(a, b) : a, b ∈ Σ$}, where the edge weighte(a, b) ≥ 0 records the
number of timesa occurs immediately beforeb in the string$w$. Finally, we will denote the omission
of a symbol from the alphabet byΣx̄ := Σ \ {x} for x ∈ Σ.

2) Regularity of obstructions:For x ∈ Σ anda, b ∈ Σx̄, the languages

Ix,a,b = L (Σ∗axΣ∗
ābΣ

∗)

and
Jx,a,b = L (Σ∗aΣ∗

x̄bΣ
∗)

form the obstruction language
Kx,a,b = Ix,a,b ∩ Jx,a,b,

whose elements are calledobstructions(because they obstruct a unique decoding). The language of all
obstructions is thus

LOBST =
⋃

x∈Σ

⋃

a,b∈Σx̄

Kx,a,b. (3)



The work in [14] provides a canonical DFA that recognizesKx,a,b with 9 states, regardless ofΣ. Over
all x ∈ Σ anda, b ∈ Σx̄, there are

|Σ| (|Σ| − 1 + (|Σ| − 1)(|Σ| − 2)) (4)

distinct obstruction languages, whose union can thus be accepted by an NFA ofΘ(|Σ|3) states.
The main theorem in that work is that the language of obstructions is precisely the complement of the

language of uniquely decodable strings.

Theorem 1 ([14]).
LOBST = Σ∗ \ LUNIQ.

The result of Theorem 1 is that the NFA acceptingKx,a,b’s can be used to test for unique decodability.

IV. EFFICIENT ONLINE TESTING

We now describe our main result: an efficient, online streaming algorithm for determining whether a
given stringw ∈ Σ∗ is uniquely decodable from its bigrams. Algorithm 1 is online in the sense that it
needs only constant-time pre-processing, and streaming, in that results for one string can be sub-linearly
extended to a superstring.

As a convention, we will use “low” lettersa, b, c to denote members ofΣ while the “high” letters
u, v, w will denotestringsoverΣ. For anyu ∈ Σ∗, we writeG(u) for the bigram graph induced byu,
and we shall use the notationa→ b (resp.a⇒ b) to mean that there is a directed edge (resp. path) from
a to b. We use the shorthand “u is UD” to denote thatu ∈ LUNIQ. The ith character ofw is denoted by
w[i] and charactersi throughj by w[i : j].

The following theorem establishes the correctness of Algorithm 1.

Theorem 2. Algorithm 1 returns TRUE iff its stringw ∈ LUNIQ.

Proof: Observe thatu /∈ LUNIQ implies uσ /∈ LUNIQ for all σ ∈ Σ (in fact, Σ∗ \ LUNIQ is a two-sided
ideal under concatenation). Thus, as soon as a non-UD prefix is observed, we know that the entire string
is not UD.

Our algorithm can conclude that the prefix is not UD in two places: at line 11 and line 20. Line 11
handles an intrusion upon an existing cycle. Formally, thismeans that the prefixu = w[1 : i − 1] may
be expressed asu = va1a2 . . . akv

′ wherev, v′ ∈ Σ∗, (aj)1≤j≤k ∈ Σ, a1 = ak and the current character
x = w[i] is equal to someaj , for 1 ≤ j ≤ k. Thus the stringw[1 : i] has at least two distinct decodings,
among which areva1a2 . . . akv′x andva1v′xaj+1aj+1 . . . aka2 . . . aj.

Line 20 handles the case ofcommunicatingparentsa and b (one of them possibly a self-parent), by
which we mean that they are in the same strongly connected component. Note that the mere existence
of a node with two communicating parents is insufficient to disqualify a string, as the examplew =
axbxa shows. However, the condition in the loop has us visiting a node x = w[i] that alreadyhas two
communicating parents. First, let us dispense with the casewherex ∈ {a, b} — say,x = b without loss
of generality. Sincea → x, x → x andx ⇒ a, the self-loop atx can be taken after the first visit tox
or after a later visit, creating an ambiguity in the decoding. Thus, we will takex /∈ {a, b} and assume
without loss of generality that the first occurrence ofa in w[1 : i− 1] occurs before the first occurrence
of b. We claim thatw[1 : i] must be of the form(Σ \ {a, b, x})∗ax(Σ \ {a, x})∗bx(Σ \ {a})∗ax. Indeed,
a must occur twice inw[1 : i − 1] (since it occurs beforeb but b ⇒ a) and the second occurrence of
a must be after the last occurrence ofb (for otherwiseb’s directed path toa would intrude upon an
existing cycle and render the string non-UD earlier on). Immediately followinga’s first occurrence isx,
followed by some string containing neithera (whose second occurrence will be atw[i− 1]) nor x (for
otherwise the edgeb→ x will intrude on an existing cycle and disqualify the string earlier on). Thenbx



input : stringw ∈ Σ∗

output: TRUE if w ∈ LUNIQ andFALSE otherwise

1 initialize eachv ∈ Σ asnot having been visited;
2 initialize eachv ∈ Σ asnot belonging to a cycle;
3 initialize the graphG with vertex setΣ and no edges;
4 markw[1] as having been visited;
5 for i := 2 to |w| do
6 has the nodew[i] already been visited?if NO then
7 markw[i] as having been visited;
8 else// node w[i] has already been visited -- thus, it is on a

cycle
9 does the edgew[i− 1]→ w[i] already exist inG? if NO then

10 doesw[i] belong to an existing cycle?if YES then
// intrusion on an existing cycle

11 return FALSE;
12 else// creating a new cycle
13 labelw[i] and all the nodes visited since the previous occurrence ofw[i] as

belonging to a cycle;
14 end
15 else

// the edge w[i− 1]→ w[i] already exists in G
// stepping along an existing cycle

16 end
17 end
18 are there two distinct nodesa, b ∈ G such thata→ w[i], b→ w[i] anda, b belong to the

same strongly connected component ofG?
// the possibility a = w[i] is not excluded

19 if YES then
20 return FALSE;
21 end
22 draw the edgew[i− 1]→ w[i] in G;
23 end
24 return TRUE;

Algorithm 1: Online algorithm for testing unique decodability

occurs for the first time and is immediately followed a stringnot containinga and followed byax. Define
i1, i2, i3 to be the indices of the first, second and last occurrences ofx in w[1 : i], respectively, and put
v1 = w[1 : i1−1], v2 = w[i1+1 : i2−1], v3 = w[i2+1 : i3−1]. Observe thatw[1 : i] = v1xv2xv3x and
w′ ≡ v1xv3xv2x have the same bigram encoding. Note also that necessarilyv2 6= v3, since the former
does not containa and the latter does. This shows that the prefixw[1 : i] is not UD.

Having shown that whenever our algorithm disqualifies a string it is indeed not UD (completeness),
we now show that any string that survives at the loop’s termination is in fact UD (soundness).

We prove this claim by induction on the prefix length. Our inductive hypothesis is that the prefix
u = w[1 : i− 1] is UD. We read the next characterx = w[i]. Clearly, if u ∈ LUNIQ andx does not occur
in u thenux ∈ LUNIQ. As such, we consider the case wherex does occur somewhere inu. If the edge
w[i − 1] → x does not currently exist in the bigram graphG(u), then we may assume thatx occurs
exactly once inu, as, otherwise, it would already be marked as belonging to a cycle, disqualifyingu.



Thus,u = vxv′ wherev, v′ ∈ Σ∗
x̄. Furthermore, our assumption thatu ∈ LUNIQ implies thatv andv′ cannot

have any letters in common, for thenx would be on a cycle upon which the new edgew[i−1]→ x would
intrude. Finally, observe that if two UD strings have no characters in common, then their concatenation
is also UD. Thus,ux ∈ LUNIQ.

It remains to consider the case where the edgew[i − 1] → x already exists inG(u). Although we
are stepping along an existing cycle and not creating a new one, this transition may render the string
non-UD, as the examplew[1 : i] = axbxbax shows. Sinceu = w[1 : i − 1] is UD, there can be at
most two distincta, b such thata → x and b → x (the existence of 3 or more distinct nodes pointing
to x is easily seen to renderu non-UD; see [15, Theorem 9] for an analogous fact regarding 3or more
children). The case of a singlea→ x is trivial, so suppose thata→ x andb→ x, but a andb are not in
the same strongly connected component. There is no loss of generality in assuming thatb is reachable
from a but not vice versa. In this case, the only valid decoding ofw[1 : i] is of the formvaxv′bx where
v ∈ (Σ \ {x, b})∗ andv′ ∈ (Σ \ {a})∗.

A. Runtime analysis

Algorithm 1 can be implemented in timeΘ(n) on strings ofn characters over an alphabetΣ, with the
aid of several simple data structures. We account for the running time:

• Lines 01-04. This is simple initialization. It can be accomplished explicitly inΘ(|Σ|) time for our
data structures delineated hereafter, or in constant time with a sparse representation.

• Lines 06-08. We use a simple array to keep track of which vertices have been seen, a constant time
cost for each string character.

• Line 9. The key observation here is that the graph is necessarily sparse, since any node with more
than two parents or children necessarily renders the graph not uniquely decodable [15]. As such,
the graph can be stored as an adjacency list so that this line represents a constant time operation
for each string character.

• Lines 10-19. We maintain a stack onto which vertices are pushed in the order that they are visited.
When a vertex is visited a second time, we pop all vertices offthe stack until we revisit the original
node, marking all popped vertices as being within an existing cycle. Each character ofw will be,
at worst, pushed and popped from the stack once, resulting inan aggregated running time ofΘ(n)
for this step.

• Line 21. To determine whether two verticesa, b are in the same strongly connected component, we
record the first and last index inw at whicha occurs inia andja, respectively, and do the same for
b. The verticesa andb belong to the same connected component if and only if[ia, ja]∩ [ib, jb] 6= ∅.
This check is a constant-time operation per character.

V. STRING RECONCILIATION

We next present the string reconciliation protocol in [13] as a specific example where our online unique
decodability algorithm is applicable. This specific protocol is a refinement of a shingling approach in [1],
and is further based on a transformation to an instance of theset reconciliation [20].

A. Definitions

The protocol is fundamentally based on the concept of ashingling. Formally, ashingles = s1s2 . . . sk
is simply an element ofΣ∗

$. For two shingless = s1s2 . . . sk andt = t1t2 . . . tℓ, we write s
l
 t if there

is some length≥ l suffix u of s that is also a prefix oft, or, more precisely, if we can rewrites = s′u
andt = ut′ for stringss′, t′ and|u| ≥ l. We define thenon-overlapping concatenations⊙l t (or justs⊙ t

in context) as the concatenations′ut′, wheres = s′u, t = ut′ and |u| = l− 1. For example,kata
3
 tana

andkata⊙3 tana = katana.
For a fixedl, the sequence of shingless1

l
 s2

l
 . . .

l
 st is said torepresentthe wordw ∈ Σ∗ if

w = s1⊙ s2⊙ . . .⊙ st andsi
l
 si+1 for all i. If S =

{

s1, . . . , st
}

is a multiset of shingles, we will use



1. Split σ into a setSσ of length l shingles, with theith shingle of the string denotedsi. Similarly
split τ into Sτ .

2. Reconcile setsSσ andSτ .
3. The first host setsS0

σ ←− {s0}.
4. For i from 1 to |σ| − l + 1 do

Si
σ ←− Si−1

σ ∪ {si}
While Si

σ is not uniquely decodable
Merge the last two shingles added toSi

σ.

5. Exchange indices of merged shingles.
6. Uniquely decodeSi

σ andSi
τ on the remote hosts.

Protocol 1: Reconciliation of remote stringsσ andτ .

Φ−1(S) ⊆ Σ∗ to denote the collection of all words represented byS. More formally, defineΠ = Π(S)

to be the set of all permutations ont = |S| elements with the property thatsπ(i)
l
 sπ(i+1) for all i.

ThenΦ−1(S) is
{

w ∈ Σ∗ : $w$ = sπ(1) ⊙ sπ(2) ⊙ . . .⊙ sπ(t), π ∈ Π
}

.

We refer to the members ofΦ−1(S) as thedecodingsof S, and say thatS is uniquely decodable if
|Φ−1(S)| = 1.

A shinglingI of a wordw = w1 . . . wt ∈ Σ∗ is a set of substrings ofw that representsw. We say that
I is an uniquely decodable shingling ofw if |Φ−1(I(w))| = 1.

As a simple example, consider the stringw = katana with the shinglingI(w) = {$k, ka, at, ta, an, na, n$}.
As we saw in Section III-B, forl=2, I can be alternately decoded intokanata and is thus not uniquely
decodable. However, if the second and third shingles are merged intoata, that the shingling becomes
{$k, ka, ata, an, na, n$}, and then there is exactly one decoding:katana.

B. Elaboration

Protocol 1 transforms a string that is not uniquely decodable into one that is by merging shingles.
Several important details of Protocol 1 require explanation and proof of correctness.

1) Steps 1 and 2:The first two steps of the protocol derive from the base protocol described in
Section II-C. Note thatl is an implementation parameter.

2) Step 3: The expressionSi
σ represents the multiset of shingles that have been seen so far. It

is modified, by combining shingles as necessary in the subsequent steps, in order to ensure unique
decodability. If full reconciliation is desired (i.e. bothhosts know the other host’s string, as opposed to
just one host having this knowledge) then Steps 3 and 4 are similarly run on the remote host with set
Si
τ .
3) Step 4: In merging two shinglessa andsb, we are simply computing the non-overlapping concate-

nationsa := sa ⊙ sb, as defined earlier. Since the shingles are contiguous and based on an initial length
l shingling, we know necessarily thatsa

l
 sb. Furthermore, it is clear that such merging will always,

eventually, lead to a decodable set of shingles because, at worst, the protocol results in just one shingle
representing the entire string, which is necessarily uniquely decodable.

The main challenge of this step is in checking whether a givenset of shingles is uniquely decodable.
This can be done in an online manner with two extensions to ouralgorithm in IV.

a) Extension toq-grams: First, Algorithm 1 needs to be extended to shingles of lengthq > 2,
rather than just bigrams. This can be accomplished by considering wi to be the lengthq − 1 prefix of
the ith shingle of the input string; forq = 2, we have the existing case thatwi is theith character of the
string.



$

k

a

t

n

$k

ka

at

ta

an

na

Fig. 1. A de Bruijn graph corresponding to the substring$katana.
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Fig. 2. A uniquely-decodable modified de Bruijn graph corresponding to the substring$katana.

In this model, the input alphabet is enlarged toΣq−1 and edges correspond to shingles. Note that this
extension works even with the mixed-length shingles which Protocol 1 produces.

b) Extension for shingle merging:When shingles are merged, we are effectively combining two
edgese1 = (v1, v2) ande2 = (v2, v3) into their transitive closuree3 = (v1, v3). This is demonstrated when
Figure 1, which is not uniquely decodable, is transformed into Figure 2, which is uniquely decodable
because shinglesta,an, andna have been merged into their transitive closuretana.

Such a transitive closure can be implemented in Algorithm 1 by patching steps 11 and 20 so as to
reverse one step of the broader iteration, and add the transitive closure edge instead, instead of returning
FALSE as in the current implementation.

4) Step 5:Each host needs to know which shingles were merged on the other host in order to produce
a uniquely decodable multiset of shingles. To exchange thisinformation, we first canonically order all
shingles, and then note that each merge involves at least oneshingle of lengthl and another (possibly
composite) shingle of length≥ l. As such, a merge is fully specified by sending the index of thelength
l shingle, and the index of one of the shingles that comprises the composite shingle.

5) Step 6: The resulting collection of shingles can only be decoded in only one way, which can be
provided by any efficient algorithm for generating an Eulerian cycle through the graph (e.g., the algorithm
implied in [15, Theorem 11] can be implemented in linear time).



C. Communication Complexity

Only Steps 2 and 5 in Protocol 1 transmit data. For two stringsof lengthn differing in α edits, Step
2 will require O(α l2) bits of communication for the implementation parameterl. Step 5 will require
between0 and2n log(n− l + 1) communication, depending on the decodability of the string.

More precisely, the communication efficiency of the protocol relies upon having as few merge op-
erations as possible, since, at worst,every shingle is merged in Step 5, requiring2n log n bits of
communication for a shingle set of sizen. In the best case, no shingles are merged and the communication
complexity of the protocol is directly related to the edit distance between reconciled strings. The shingle
size l thus represents a tradeoff between communication spent on set reconciliation and communication
spent on merge identification.

Though it is hard to give precise bounds on the number of shingles that are merged in this step, the
work in [1] provides some guidance for random strings. Specifically, for strings ofn random bits, in
which each bit is0 with probability p > 0.5, then we can expect each node in the de Bruijn graph of
length l shingles to have only one outgoing edge (implying unique decodability) if

l ≤ n+ 1 +
W (− ln(p)p−n)

ln p
, (5)

whereW (·) is the LambertW function [5]. Whenn goes to infinity, then (5) isO(log(n)), meaning
that logarithmically sized shingles should avoid communicationally expensive merges.

Thus, when the two strings are composed of random iid bits, then, under the appropriate choice ofl
from (5), we can expect that no merging is needed giving an overall communication complexity that is
O
(

α log2(n)
)

, for largen.

D. Rateless approach

Observe that Protocol 1 communicates two types of data: (i) set reconciliation data from step 2, and
(ii) merged shingle indices in step 5.

The set reconciliation data can be ratelessly streamed for reconciling strings with arbitrary edit distance
by using a simple modification of the protocol in [20]. Specifically, a characteristic polynomial

χ
Sσ

(Z) = (Z − s1)(Z − s2)(Z − s3) · · · (Z − s|Sσ|)

of the shinglessi ∈ Sσ is computed and its evaluations at points in an appropriately sized finite field
are provided to the decoder, which similarly computes evaluations of its own characteristic polynomial.
The rational function representing the division of the two polynomials can be determined from any∆
sample points, if the two shingle sets differ in at most∆ shingles (an additionalk verification points can
be added to probabilistic check the result).

The merged shingle indices, which can be determined independently of the reconciliation, can be
encoded with any standard rateless code [3, 17, 29], and the two rateless streams can be combined by
considering them inputs to yet a third rateless encoding.

VI. CONCLUSION

We have provided a linear-time algorithm for determining whether a given string is uniquely decodable
from its bigrams. Our algorithm is online, in that it needs only constant-time pre-processing, and stream-
ing, in that results for one string can be sub-linearly extended to a superstring. We have also shown how
this algorithm can be incorporated into an existing protocol for string reconciliation, though the space of
applications potentially extends further to networking, cryptography, and genetic engineering.

Several interesting open questions remain. For one, it is natural to ask whether the proposed online
algorithm can be extended for testing the existence of2, 3, ... or k decodings. It is also interesting to
provide sharper bounds for the numbers of merged shingles inProtocol 1 under different random string
models, as this could help determine the correct choice for initial shingling sizel, in addition to tightening
bounds on the communication complexity of the protocol.
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