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Abstract

We consider the problem of providing opportunistic spectrum access to sec-

ondary users in wireless cellular networks. From the standpoint of spectrum

license holders, achieving benefits of secondary access entails balancing the

revenue from such access and its impact on the service of primary users.

While dynamic optimization is a natural framework to pursue such a balance,

spatial constraints due to interference and uncertain demand characteristics

render exact solutions difficult. In this paper, we study guiding principles for

spectrum license holders to accommodate secondary users via reservation-

based admission policies. Using notions of dynamic optimization, we first

develop the concept of average implied cost for establishing a connection in

an isolated locality. The formula of the cost provides an explicit character-

ization of the value of spectrum access. We then generalize this concept to

arbitrary topologies of interference relations and show that the generalization

is justified under an analogue of the reduced load approximation judiciously

adapted from the wireline to the wireless setting. An explicit characteriza-

tion of this quantity demonstrates the localized nature of the relationship

between overall network revenue and reservation parameters. Based on this

relationship, we develop an online algorithm for computing optimal reserva-

tion parameters at the cells based on localized message passing. The results

Preprint submitted to Elsevier July 31, 2010



in the paper are verified through a numerical study.

1. Introduction

The increase in demand for wireless communications, along with reported

inefficiencies in radio spectrum utilization, have recently led to a global effort

to reform legacy spectrum regulations [1, 2, 3, 4]. One aspect of these re-

forms is to grant spectrum license holders extended property rights that allow

trading of spectrum in secondary markets. From the standpoint of spectrum

regulators, such markets help improve spectrum utilization. From the stand-

point of license holders, secondary markets provide a novel opportunity to

increase revenue by expanding their subscriber pools.

In this work, we focus on wireless cellular networks and devise techniques

for license holders to maximize their revenue under market agreements which

attract users of secondary nature. In particular, we differentiate between two

types of network users who pay the license holder pre-defined fixed prices for

unit time of use of the network. The first represents primary, or original,

users of the cellular network. The secondary type represents users who seek

network access on opportunistic basis.

Revenue maximization can be readily studied within the framework of

dynamic programming to define a decision policy for pricing and/or admis-

sion control based on user type and the state of the network [5, 6, 7, 8].

However, the choice of fixed prices in this work stems from the practical side

of the problem since users of cellular networks, in general, favor fixed and

simple pricing policies. Thus, we focus on admission control since it can be

implemented by network operators without user involvement.

Still, it is well-known that computational complexity of dynamic ap-

proaches, in general, becomes prohibitive for even smallest nontrivial net-

works [9]. In particular, in a wireless setting, the effect of interference from

an established connection in one cell extends beyond that cell and indirectly

affects all cells in the network. For example, a connection in progress leads
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to a temporal reduction in utilization in its immediate neighbourhood, which

may in turn help accommodate more connections in the second-tier of cells

around it. Thus, an optimal dynamic solution for the problem typically en-

tails making admission decisions based on the current state of the network

(i.e., channel occupancy in each cell), and therefore its implementation is

rather impractical.

Our main contribution is to provide guiding principles for implementing a

set of policies that require less information from the network and are referred

to as reservation-based admission policies. Under such policies, admission of

a call request by a primary user is accepted as long as there is capacity

in the network, while a request by a secondary user is granted only if the

total interference at each cell stays below a fixed threshold, or reservation

parameter, typically taken to be less than the capacity of the cell. This way,

part of the capacity of each cell is reserved exclusively for primary traffic

which has more priority and is more rewarding as well. While admission

control for cellular networks is a well studied topic, see [10] for a recent

survey, we consider the problem for general network topologies under full

realization of the effect of interference.

The choice of reservation policies is motivated by their optimality for the

isolated cell [11, 12, 13]. Thus, we consider first the isolated cell for which

the “average implied cost” of an established connection can be explicitly de-

termined. Then we extend this concept to general topologies and adapt the

so-called reduced load approximation (RLA) [16], widely used in the anal-

ysis of circuit-switched networks, to compute certain network performance

measures in the wireless setting and provide analytical insight. The premise

behind the RLA is to assume that a decision to admit/reject a call is based

on independent decisions at the different cells. This allows approximated

values of call blocking probabilities to be directly calculated.

Our second contribution is to devise an adaptive mechanism for imple-

menting the reservation-based admission policy. Namely, we provide an on-
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line algorithm to update reservation parameters at the cells in light of fluctu-

ations in traffic rates. We exploit the fact that sensitivity of the revenue to a

unit change of the reservation parameter at the cell can be locally evaluated

by the base station using localized message passing techniques. We use this

fact to propose an online distributed algorithm that computes optimal reser-

vation parameters in the network. Since unimodality of the revenue function

is not guaranteed in the generality of topologies, we suggest an implementa-

tion akin to simulated annealing that probabilistically improves the revenue

in each step of the process. Finally, we provide a numerical study in support

of the theoretical results.

The rest of this paper is organized as follows: In Section 2, we present an

operational model for cellular networks under a reservation-based admission

policy. We suggest an analytical framework to capture the network-wide ef-

fect of interference and use the RLA to compute blocking probabilities. In

Section 3, we derive an exact expression for the implied cost in the special case

of the isolated cell and then give corresponding formulas for general topolo-

gies based on the RLA. In Section 4, we present the revenue-maximizing

distributed algorithm. We provide a numerical study in Section 5 and finally

conclude the paper in Section 6.

2. Analytical Framework

A cellular network is considered under the following teletraffic conditions:

At each cell i, connection requests of type m = 1, 2 arrive independently as

a Poisson process with rate λ
(m)
i . Here, type 1 refers to requests by primary

users and type 2 to those by secondary users. Once established, a connection

lasts for an exponentially distributed time with unit mean, independently of

the history prior to the request arrival.

We model a cellular network as a weighted graph G = (N,E) where N

denotes the collection of cells and edge weight wij ≥ 0 is the interference

bandwidth required from cell j by a connection established at cell i. Since a
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connection may generate interference on other connections in the same cell,

the modeled physical situation typically implies that wii > 0 for each cell i. A

connection can be sustained only if it experiences admissible interference, and

that a new connection request cannot be honoured if it leads to premature

termination of another connection that is already in progress.

To formalize this condition, let ni denote the number of connections in

progress at each cell i so that
∑

i∈N niwij is the total interference acting on

cell j. Given an interference capacity κj for cell j, a network load n = (ni :

i ∈ N) is feasible if
∑

i∈N

niwij ≤ κj for each j, (1)

and it evolves as a time-homogeneous Markov process with state space S =

{n ∈ Z
N
+ : n is feasible}.

Identifying wij values depends on the underlying spectrum access mech-

anism employed in the network. For example, in narrowband networks, a

frequency band is divided into non-overlapping channels where operational

constraints prohibit the same channel to be assigned simultaneously to con-

nections in the same cell or in any neighbouring cells. Thus, condition (1)

dictates that wij is the total number of channels a connection established at

cell i would lock at cell j. In wideband networks, connections share the whole

frequency band and wij can be characterized by the strength of electromag-

netic coupling between connections at the different cells. One approach to

compute such values is via defining capacity regions based on a set of lin-

ear constraints. See for example [17] and [18] for an in-depth discussion on

identifying such values.

2.1. Optimal Admission Policy

An admission policy is a decision policy that accepts or rejects a con-

nection request based on the type of the connection and the state of the

network. A necessary criterion for an admission policy is to preserve the

feasibility condition defined in (1). Let h be an admission policy defined on
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the state space S. Assume that the license holder charges an admitted type

1 connection r(1) units currency per unit time and charges an admitted type

2 connection r(2) units. Let n
(m)
i (t) be the number of connections of type m

established at cell i at time t. Assuming call duration of unit mean, the long

term rate of revenue generation from the network is given by

W (h) , lim
τ→∞

1

τ
Eh

[

∫ τ

0

∑

i∈N

(

r(1)n
(1)
i (t) + r(2)n

(2)
i (t)

)

dt

]

.

An optimal policy is a policy that maximizes W (h). A well-known ap-

proach for characterizing an optimal policy is via dynamic programming.

However, the complexity of such approach becomes prohibitive for even small-

est nontrivial networks. Moreover, an optimal dynamic solution typically

entails making admission decisions based on the state of channel occupancy

in the whole network, and therefore its implementation is rather impractical.

2.2. Reservation Policies

Consider a set of admission policies which we refer to as reservation-based

policies. Each such policy will be represented by a vector R = (Ri : i ∈ N)

where Ri is the reservation parameter at cell i and such that 0 ≤ Ri ≤ κi.

Under a reservation policy R, a type 1 connection is admitted if its inclusion

preserves condition (1), while a type 2 connection is admitted only if, in

addition to (1) , its inclusion preserves the total interference, from type 1

and type 2 connections, at each cell i below Ri. This way, the reservation

policy guarantees priority for type 1 connections by reserving (κi−Ri) of the

interference capacity of each cell exclusively for type 1 connections.

Note that reservation-based policies require less network information.

Namely, the state of the cell is lumped into two quantities; the interference

capacity and the reservation parameter. Furthermore, given the decaying na-

ture of interference with distance, the effect of interference from cells beyond

a certain distance can be neglected. This observation will be used later in
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Section4 to devise an algorithm for computing reservation parameters based

on a localized message passing technique.

Now, given a reservation policy R, let B
(m)
i denote the blocking proba-

bility of type m connections at cell i. By the PASTA property of Poisson ar-

rivals, B
(m)
i can be determined by the equilibrium distribution of the Markov

process and the long-term revenue rate under policy R can be expressed as

W (R) =
∑

i∈N

∑

m=1,2

r(m)λ
(m)
i (1− B

(m)
i ). (2)

Explicit expression for equilibrium occupancy probabilities can be obtained

by exploiting reversibility of the occupancy process, however a major diffi-

culty arises in computation of the equilibrium distributions, and therefore of

blocking probabilities, due to the computational complexity of determining

normalizing constants. Even in cases where such computation is possible, the

results give little insight on the relationship between the overall revenue and

individual reservation parameters. Such a relationship can be alternatively

pursued by adapting the RLA to the situation in hand [15].

Our starting point is to consider an isolated cell with capacity κ, reser-

vation parameter R, and arrival rate vector λ = (λ(1), λ(2)). Assume that

an established connection requires one unit capacity from the cell. Also let

n denote the total number of connections in progress in the cell. The state

diagram of the cell occupancy process is shown in Figure 1. The steady state

probability of having a total of n connections in progress can be directly

obtained by solving the detailed balance equations. Hence

πλ(n) =

{

(λ(1)+λ(2))n

n!
Z if 0 ≤ n < R

(λ(1)+λ(2))R(λ(1))n−R

n!
Z if R ≤ n ≤ κ,

where Z is a normalizing constant such that
∑κ

n=0 πλ(n) = 1. Furthermore,
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Figure 1: State transition diagram of the occupancy process for the isolated cell under a
reservation policy with parameter R.

blocking probabilities for type 1 and 2 are given respectively by

B(1)(λ, κ, R)
.
= πλ(κ) (3)

B(2)(λ, κ, R)
.
=

κ
∑

n=R

πλ(n). (4)

For general topologies, we approximate the blocking probability for type

m in cell i, B
(m)
i , by the quantity

B̂
(m)
i = 1−

∏

j∈N

(1− b
(m)
j )wij , (5)

where {b
(m)
j : j ∈ N} satisfy the fixed point relation

b
(m)
j = B(m)

(

ρj , κj, Rj

)

, (6)

with ρj = (ρ
(1)
j , ρ

(2)
j ) and

ρ
(m)
j = (1− b

(m)
j )−1

∑

i∈N

wijλ
(m)
i

∏

l∈N

(1− b
(m)
l )wil. (7)

The rationale behind this formula is a hypothetical situation as follows:

Consider wij’s to be integer numbers obtained by properly scaling inequal-

ity (1). Thus, it is useful to interpret wij as units interference at cell j from

a connection in progress at cell i. Under the reduced load approximation,

any connection request is subject to independent admission/rejection deci-
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sion for each unit of interference that it generates at each cell. Namely, a

connection request is admitted if all units interference “sub-requests” are

admitted independently at all cells. Thus, equality (6) can be interpreted

as the blocking probability at cell j for one unit interference generated by a

type m connection, and ρ
(m)
j becomes the total arrival rate of units interfer-

ence of type m at cell j after being thinned by other cells in the network.

Finally, equality (5) gives the blocking probability of a (full) type m con-

nection request at cell i, provided that each cell j admits a unit interference

with probability 1 − b
(m)
j . In view of the exact analysis of the isolated cell,

equalities (6) and (7) are consistency conditions that should be satisfied by

the probabilities {b
(m)
j : j ∈ N}.

One way of solving the system of equations (6) is via iteration. However, a

unique solution for (5) is guaranteed only for the case when Rj = κj for all j.

Furthermore, for that special case, the approximation is known to be exact for

an asymptotic regime when
∑

k=1,2 λ
(k)
j and κj increase in proportion [16]. In

the next section, we employ the RLA to capture the sensitivity of revenue to a

unit change in a reservation parameter. The derived expression will provide

the base for the revenue-maximizing algorithm devised later in Section 4.

Before that, we discuss the important concept of implied cost, which aims to

capture the implications of admitting a connection in the network. In this

context, we will provide an illuminating insight on this concept based on the

simple case of the isolated cell.

3. Implied Cost

Subjecting a given cell to an additional unit of interference affects blocking

at all the cells in the network, at various extents. For example, during the

holding time of a connection, the interference generated by that connection

can cause rejection of new connections arriving at neighbouring cells, which

may in turn open up room for admitting new connections in other cells. Here

the concept of implied cost that captures such effects of acceptance/rejection
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decisions is discussed.

3.1. Isolated Cell

Consider the isolated cell example and let σR(n) denote the reduction

in the long-term revenue if the system is started with n + 1 instead of n

connections in progress. Note that, if r(m) and λ(m) are bounded, the implied

cost does not depend on the initial state of the system [5, Theorem 3.2].

Hence, σR(n) can be interpreted as the implied cost of admitting a connection

when the cell occupancy is n. A reservation parameter R is optimal if it

dictates admission of a type m connection when r(m) > σR(n), i.e., when the

immediate reward exceeds the implied cost of admission.

The quantity σR(n) is explicitly identified in [5] for the isolated cell where

for 0 ≤ n < R:

σR(n) =
r(1)λ(1)B(1)(λ, κ, R) + r(2)λ(2)B(2)(λ, κ, R)

(λ(1) + λ(2))B(1)(λ, n, n)
(8)

and for R ≤ n ≤ κ:

σR(n) =
r(1)B(1)(λ, κ, R)

B(1)(λ, n, R)

+
r(2)λ(2)

(

B(2)(λ, κ, R)− B(2)(λ, n, R)
)

λ(1)B(1)(λ, n, R)
. (9)

Now note that the system occupancy distribution seen by an admitted type 1

connection is given by

π(1)
o (n) =

{

πλ(n)∑κ−1
i=0 πλ(i)

if 0 ≤ n ≤ κ− 1

0 otherwise
(10)

Also for an admitted type 2 connection

π(2)
o (n) =

{

πλ(n)∑R−1
i=0 πλ(i)

if 0 ≤ n ≤ R− 1

0 otherwise.
(11)
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The average implied cost c(m) of admitting a connection of type m can be

obtained by averaging σR(n) over the system occupancy distribution; i.e.,

c(m) =
κ−1
∑

n=0

π(m)
o (n)σR(n), m = 1, 2. (12)

Theorem 3.1. (Average Implied Cost in an Isolated Cell): For m = 1, 2

c(m) =
(

1−B(m)(λ, κ, R)
)−1 ∑

k=1,2

r(k)λ(k) d

dλ(m)
B(k)(λ, κ, R). (13)

Proof. The proof of the theorem follows directly from computing formula (12)

using expressions (8,9,10,11).

In view of Theorem 3.1, the average implied cost in an isolated cell can

be exactly and directly computed. However, it will be important in the

subsequent discussion of general topologies to consider an insightful form

of (13). Therefore, assume each cell receives a fictitious flow of connection

request of each type m with rate λ̂(m) and reward per connection r̂(m) such

that λ̂(m) = r̂(m) = 0. Thus, the long-term revenue rate, W (R), as given

by (2) remains unchanged. Now consider the derivative ofW (R) with respect

to λ̂(m) . Namely:

d

dλ̂(m)
W (R) =

d

dλ̂(m)

(

∑

k=1,2

r(k)λ(k)(1− B(k)(λ, κ, R))

)

, (14)

where now λ = (λ(1), λ(2), λ̂(1), λ̂(2)). Note that connection requests arrive

independently and therefore dλ(k)

dλ̂(m)
= 0 for k,m = 1, 2. Thus, equality (14)

can be written as

d

dλ̂(m)
W (R) = −

∑

k=1,2

r(k)λ(k) d

dλ̂(m)
B(k)(λ, κ, R)). (15)
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Now by combining (14) and (15), the average implied cost in an isolated cell

can be written in the equivalent form

c(m) = −
(

1− B(m)(λ, κ, R)
)−1 d

dλ̂(m)
W (R). (16)

3.2. General Topologies

An extension of Theorem 3.1 to general topologies can be pursued under

the RLA. Namely, each blocking probability B
(m)
j is approximated by the

quantity B̂
(m)
j as given in expressions (5,6,7). In this case, the long-term

revenue rate (2) can be approximated by

Ŵ (R)
.
=
∑

j∈N

∑

m=1,2

r(m)λ
(m)
j (1− B̂

(m)
j ), (17)

by replacing B
(m)
j with B̂

(m)
j . The definition of fictitious flows can be ex-

tended to the present context so that for any cell i, the fictitious flow of

type m is such that λ̂
(m)
i = r̂

(m)
i = 0, wii = 1, and wij = 0 for i 6= j. Ex-

pression (17) can be used as a proxy to W (R) and, by mimicking (16), the

average implied cost of type m connections at cell j is defined as

c
(m)
j

.
= −(1− b̂

(m)
j )−1 d

dλ̂
(m)
j

Ŵ (R),

where b(m) is given by (6).

Theorem 3.2 and Theorem 3.3 below are generalization of [15, Theorem

2.2 and Theorem 2.3] to those cases where the parameters wij ’s are not

restricted to values taken from the set {0, 1}. The theorems here amount

to a nontrivial extension of the analysis of [15]. Proofs of the theorems are

provided in the appendix.
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Theorem 3.2. : For m = 1, 2 and j ∈ N

c
(m)
j = (1− b

(m)
j )−1

∑

k=1,2

∂B(k)(ρj , κj, Rj)

∂ρ
(m)
j

×

∑

i∈N

ρ
(k)
ij

(

r(k) − (wij − 1)c
(k)
j −

∑

l∈N−j

wilc
(k)
l

)

,

(18)

where b
(m)
j is defined by (6), ρ

(m)
j is defined by (7), and

ρ
(k)
ij = (1− b

(k)
j )−1wijλ

(k)
i

∏

l∈N

(1− b
(k)
l )wil . (19)

In Theorem 3.2, ρ
(k)
ij represents the arrival rate of units interference of

type k from cell i to cell j, after being thinned at other cells in the network.

The total arrival rate of interference to cell j in (7) can be verified to satisfy

ρ
(k)
j =

∑

i∈N ρ
(k)
ij . Note that the relation (18) is linear in the implied costs;

hence {c
(k)
j : k = 1, 2, j ∈ N} can be computed via matrix inversion methods.

Now for each cell j, let ∆−
j Ŵ (R) denote the left derivative of Ŵ (R) in

the jth entry. That is, ∆−
j Ŵ (R) is the amount by which Ŵ (R) increases

when the Rj is decreased by 1

∆−
j Ŵ (R) = Ŵ (R)− Ŵ (R− ej), (20)

where ej = (ej(i) : i ∈ N) is a binary vector that has a value 1 only at the

jth entry. Also let ∆+
j H denote the right derivative

∆+
j Ŵ (R) = Ŵ (R+ ej)− Ŵ (R). (21)

The following theorem identifies the sensitivity of Ŵ (R) to individual

reservation parameter values in terms of the average implied costs. The

theorem forms the basis of the adaptive admission control algorithms studied

13



in the next section. First, consider the following matrices:

[

d

dρ
(m)
j

B(k)(ρj , κj, Rj)

]

2×2

j ∈ N, (22)

and assume they are invertible.

Theorem 3.3. : For j ∈ N ,

∆±
j Ŵ (R) =−

∑

k=1,2

∆±
j B

(k)(ρj, κj , Rj)
∑

i∈N

ρ
(k)
ij ×

(

r(k) − (wij − 1)c
(k)
j −

∑

l∈N−j

wilc
(k)
l

)

,

(23)

where

∆−
j B

(k)(ρj , κj, Rj) = B(k)(ρj , κj, Rj)− B(k)(ρj , κj, Rj − 1) (24)

and

∆+
j B

(k)(ρj, κj , Rj) = B(k)(ρj, κj , Rj + 1)− B(k)(ρj , κj, Rj). (25)

4. Revenue Maximization via Adaptive Reservation

A guiding principle for revenue maximization involves updating the reser-

vation parameters to improve Ŵ (R) based on the increments/decrements

∆±
j Ŵ (R). A straightforward implementation of this principle may have two

pitfalls:

1. Centralized computation of ∆±
j Ŵ (R) may not scale gracefully to large

networks. Thus, a localized procedure for computing these quantities

is required.

14



2. Unimodality of Ŵ (R) cannot be guaranteed in light of the generality

of considered topologies; hence classical techniques based on steepest

ascent may lead to local maxima of Ŵ (R).

In this section, the first issue is addressed by exploiting expressions (18)

and (23) which are of particular interest from the standpoint of distributed

implementation. The second issue will be addressed by resorting to algo-

rithms based on simulated annealing; a generic method for global optimiza-

tion widely used in problems which involve discrete state spaces [19].

First note that obtaining the quantities b
(m)
j ’s and c

(m)
j ’s requires solving

systems of fixed point equations (6) and (18), respectively. Thus, given a

vector x = (x
(m)
j : m = 1, 2; j ∈ N), define the following linear mapping

using formula (6)

f (m) : R2|N | → R
|N |, f (m) = (f

(m)
1 , f

(m)
2 , · · · , f

(m)
|N | ), (26)

where

f
(m)
j (x)

.
= B(m)

(

ρj(x), κj , Rj

)

, j ∈ N. (27)

Here ρj(x) = (ρ
(1)
j (x), ρ

(2)
j (x)) is defined as in (7) so that

ρ
(m)
j (x)

.
=(1− x

(m)
j )−1

∑

i∈N

wijλ
(m)
i

∏

l∈N

(1− x
(m)
l )wil . (28)

Define also the mapping

g(m) : R2|N | → R
|N |, g(m) = (g

(m)
1 , g

(m)
2 , · · · , g

(m)
|N | ), (29)
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based on formula (18). Namely, for a given vector y = (y
(m)
j : m = 1, 2; j ∈

N),

g
(m)
j (y)

.
=(1− b

(m)
j )−1

∑

k=1,2

∂B(k)(ρj , κj, Rj)

∂ρ
(m)
j

×

∑

i∈N

ρ
(k)
ij

(

r(k) − (wij − 1)y
(k)
j −

∑

l∈N−j

wily
(k)
l

)

. (30)

Note that {b
(m)
j : m = 1, 2; j ∈ N} and {c

(m)
j : m = 1, 2; j ∈ N} are fixed

points of the mappings (f (1), f (2)), and (g(1), g(2)), respectively.

An important observation is that values of wil typically decrease as cell

l is further located from cell i. Thus, it is reasonable to assume wil = 0

for cells beyond a certain distance from cell i. We measure such distance

by the number of consecutive neighbouring cells and we refer to it as the

neighbourhood distance. We use this observation to propose a procedure

for computing b
(m)
j ’s and c

(m)
j ’s using localized message passing between cells

that are within a neighbourhood distance of each other.

Assume that each cell l periodically measures the average arrival rate λ
(m)
l

for each type m. Assume also that each cell l starts with arbitrary initial

values of b
(m)
l and c

(m)
l for m = 1, 2. The values are updated as follows:

1. Each cell l broadcasts the quantities b
(m)
l and c

(m)
l to cells within its

neighbourhood distance. Thus, each cell i can compute the quantity

λ
(m)
i

∏

l∈N(1− b
(m)
l )wil for each type m.

2. Each cell i broadcasts the quantity λ
(m)
i

∏

l∈N(1− b
(m)
l )wil to its neigh-

bouring cells. Thus each cell j can compute ρ
(m)
ij and ρ

(m)
j , where ρ

(m)
ij

is given by (19) and ρ
(m)
j =

∑

i∈N ρ
(m)
ij .

3. Each cell j iterates the mappings (26), (27), (28) (29), (30) and broad-

casts the new values to its neighbouring cells.

The procedure is repeated for sufficient time till the iterations converge

and each cell has all the quantities required to compute (23). Each step of
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the procedure should be allowed sufficient time so that the network comes

to general consensus. It is important to report here that there is no solid

result that proves convergence of this iterative approach for any topology.

However, the numerical example we provide in Section (5) for a 7-cell lattice

topology shows convergence.

Distributed Simulated Annealing:

On a longer time scale, let each cell j update its reservation parameter

Rj at rate γj. Namely, for a given Rj define the set of neighbouring states

{Rj − 1, Rj + 1 : 0 ≤ Rj ± 1 ≤ κj}. When the internal clock ticks, the cell

chooses a neighbouring state R′
j according to a certain probability distribu-

tion. The cell then computes the corresponding value ∆±
j Ŵ (R) based on the

conventions in (20) and (21); that is:

case (1): If R′
j = Rj − 1 compute ∆−

j Ŵ (R)

case (2): If R′
j = Rj + 1 compute ∆+

j Ŵ (R).

In case (1), the cell adopts R′
j = Rj − 1 as a new reservation parameter if

∆−
j Ŵ (R) < 0. If ∆−

j Ŵ (R) ≥ 0 the cell adopts the new reservation parame-

ter with probability exp

(

−∆−

j Ŵ (R)

sjt

)

, where sjt represents a time decreasing

temperature schedule at the cell such that sjt goes to 0 as time t → ∞.

This way a local maxima of the function Ŵ (.) can be avoided. In case (2),

the cell adopts R′
j = Rj + 1 if ∆+

j Ŵ (R) > 0 or otherwise with probabil-

ity exp

(

∆+
j Ŵ (R)

sjt

)

. A pseudo-code for the distributed algorithm is given as

follows:
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Distributed Simulated Annealing Algorithm

1. Initialize Rjstart

2. Rj ← Rjstart

3. With rate γj

3.1 Choose a neighbouring state R′
j ∈ {Rj − 1, Rj + 1}

with probability pj

3.2 If R′
j = Rj − 1

3.2.1 If min {1, exp
(

−∆−

j W (R)

sjt

)

} > random[0, 1)

Rj ← R′
j

3.3 If R′
j = Rj + 1

3.3.1 If min {1, exp
(

∆+
j W (R)

sjt

)

} > random[0, 1)

Rj ← R′
j

3.4 t← t+ 1.

The algorithm can be considered as a distributed version of the simulated

annealing algorithm. It can adapt to traffic fluctuations due to the time-of-

day use of the network. In particular, when traffic rate changes at a certain

cell, the iterative procedure converges to new values of b
(m)
j ’s and c

(m)
j ’s.

Consequently, the cells update their reservation parameters according to the

new set of values.

Choosing a simulated annealing approach seems natural in light of the

generality of network topologies considered for this work and the lack of

knowledge of the shape of revenue function under such generalization. Con-

vergence properties of simulated annealing have been studied for example

in [19]. Still, for some topologies, the shape of the revenue function can be

closely characterized and thus, more efficient algorithms can be implemented.

For example, in the special case of the isolated cell, it has been shown in [13]
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that, under certain traffic assumptions, the revenue function is unimodal and

thus, logarithmic search techniques such as Fibonacci search [20] can be used.

5. Numerical Example

In the following, we give a numerical example for updating reservation

parameters based on formula (23) via the distributed simulated annealing

algorithm and show its adaptivity to fluctuations in traffic rates. Consider for

this purpose a CDMA wideband system of 7-cell lattice topology with a graph

representation shown in Figure 2. Assume that an established connection at a

given cell generates interference at that cell and every other cell that it shares

a boundary with. Thus, interference between cells that share no boundary is

neglected. The system has the following parameters: channel bandwidth =

1.25 MHz, uplink data rate = 64.4 kbps, path loss exponent = 4.0, and the

fraction of time a user is expected to be active = 40%. We compute wij and

κi using a Chernoff bound approach as detailed in [18] with mobile terminal

locations taken to be random and uniformly distributed in the cells. Namely,

we obtain:
{

wii = 15.0

wij = 1.0 if i and j are neighbors,

and κi = 54.0 for all i.

Now assume that the license holder opens cell 1 for type 2 traffic; i.e.,

λ
(2)
i = 0 for i = 2, · · · , 7. Let r(1) and r(2) be 1.0 and 0.75, respectively.

Assume also that each cell i = 1, 2, · · · , 7 updates its reservation parameter

using a Poisson clock with rate γi = 1.0. Once the clock ticks, the cell chooses

a neighboring state R′
i = Ri±1 with probability 0.5. The cell then computes

∆+
i Ŵ (R), or ∆−

i Ŵ (R), and updates its reservation parameter if necessary.

To obtain values of ∆±
i Ŵ (R), we first solve offline equations (6) and (18)

iteratively via repeated substitution. In this experiment, we set stj = 0, i.e.,

we do not use a temperature schedule at the cells as it is not the purpose of

the example to verify local maxima avoidance techniques.
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Figure 2: Network graph of a 7-cell hexagonal lattice topology used for the numerical
example of section 5.

Figure 3(a) shows the trajectories of updating the reservation parameters

at the different cells. For the first 1000 steps, λ
(1)
i for i = 1, · · · , 7 are taken to

be 1.0 and λ
(2)
1 is 5.0. The algorithm starts with each cell having a reservation

parameter Ri = 25. As each cell updates its parameter according to its own

Poisson clock rate, the cells converge to the value R∗
i = 52 for all i.

In the second part of the experiment, we change the traffic rates so that

for the rest of the experiment λ
(1)
i = 1.5 for all i and λ

(2)
1 = 4.0. The

result shows that all the cells adapt their reservation parameters and quickly

converge to the values R∗
1 = 51 and R∗

i = 50 for i = 2, · · · , 7.

Figure 3(b) shows the rate of revenue from the network at the different

time steps of implementing the algorithm. For the first 1000 steps and while

λ
(2)
1 = 1.0, the revenue rate increases gracefully to the value 8.11. When

traffic rates change, the algorithm adapts and the revenue improves and

converges to the new value 10.99.

Verifying optimality of algorithm performance requires an exhaustive

search over all the possible reservation parameters. This task is computa-

tionally intense. However, the previous results show that the achieved polices

are symmetric and have at most two distinct reservation parameter values;
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(Ŵ
)

Step (t)

(b)

Figure 3: (a) Trajectories for updating the reservation parameters in a 7-cell lattice
topology. In the first 1000 steps, the reservation parameters converge to the values
R∗

i
= 52 for i = 1, · · · 7. When traffic rates change, the algorithm adapts and the reserva-

tion parameters converge fast to the new values R∗

1
= 51 and R∗

i
= 50 for i = 2, · · · 7. (b)

Rate of revenue at different time steps of the implementation. In the first 1000 steps, the
revenue rate improves to the value 8.11. After the change in traffic rates, the algorithm
adapts the reservation parameters and the rate improves to the new value 10.99.
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one for cell 1 and one for cells 2− 7. In this context, we limit our search to

a sub-domain that covers all reservation parameter vectors R which have at

most two distinct entry values. For each set of parameters, we compute rev-

enue rate under the RLA. The maximum rate is found to be 8.11, achieved at

the same set of parameters obtained by the algorithm. In the same manner,

the results of the second part of the experiment have been verified.

6. Conclusion

In this paper, we have considered an admission control problem for wire-

less cellular networks under the objective of revenue maximization. The

problem involved service measures which favor primary users by reserving

part of the capacity of each cell for their exclusive use. We have developed

an analytical framework that captures the average implied cost of establish-

ing a connection in the network. An important value of this work lies in the

fact that it develops concepts from wireline to wireless telephony and proves

their usefulness for computational tractability. We have used simplified rea-

soning in explaining these concepts and making them appeal to readers who

are more interested in the practical side of the problem. In this respect, and

starting with an isolated cell, we have exactly and explicitly characterized

the average implied cost of establishing a connection by using notions from

dynamic programming. An extension of this result to general topologies has

been pursued under the reduced load approximation and led to guiding prin-

ciples for updating reservation parameters at the cells. Given the complexity

of implementing a reservation-based policy in a centralized fashion, we have

suggested a distributed online algorithm that can be employed at the base

stations and can adapt to fluctuations in traffic rates.

Appendix A. Proofs of Theorems 3.2 and 3.3

For convenience of the proofs, we consider an extended network model by

augmenting each (original) cell i ∈ N by cell i′. Fictitious call requests at
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cell i are now assumed to arrive at cell i′, instead of cell i, and such that

wi′j =

{

1 if j = i,

0 else.

Note that the specification on the right hand side involves cell i ∈ N rather

than i′. Here we refer to the arrival rate of fictitious call requests by λ
(m)
i′ ,

instead of λ̂
(m)
i , and the reward rate by r

(m)
i′ , instead of r̂

(m)
i , where as before

λ
(m)
i′ = r

(m)
i′ = 0 for all i. Hence, the extended model is analytically equivalent

to the original model. We denote the set of cells in this new model by

D = {i, i′ : i ∈ N}.

For the purposes of reducing notational burden, we will consider more

than one form of revenue function (17) by emphasizing or suppressing its

dependence on the parameters R and λ. Now consider the following form of

the revenue function (17) with emphasis on its dependence on the demand

vector λ:

Ŵ (λ) =
∑

m=1,2

∑

i∈N

r(m)ξ
(m)
i (λ), (A.1)

where we define

ξ
(m)
i (λ) = λ

(m)
i

∏

j∈N

(1− b
(m)
j (λ))wij (A.2)

and

b
(m)
j (λ) = B(m)(ρj(λ), κj, Rj) (A.3)

where

ρj(λ) = (ρ
(1)
j (λ), ρ

(2)
j (λ))

and

ρ
(m)
j (λ) = (1− b

(m)
j (λ))−1

∑

i∈D

wijλ
(k)
i

∏

l∈N

(1− b
(m)
l (λ))wil, m = 1, 2. (A.4)
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Here (A.3) and (A.4) are functional representations of formulas (6) and (7),

respectively.

Lemma 1. For j ∈ N and m = 1, 2

d

dλ
(m)
j′

Ŵ (λ) = −
∑

k=1,2

∑

l∈N

(1− b
(k)
l (λ))−1

(

∑

i∈D

wilr
(k)
i ξ

(k)
i (λ)

)

d

dλ
(m)
j′

b
(k)
l (λ).

Proof. Given a vector b = (b
(k)
l : k = 1, 2; l ∈ N) ∈ [0, 1]2N , define the

following equivalent form to (A.1)

Ŵ (λ,b) =
∑

k=1,2

∑

i∈D

r
(k)
i λ

(k)
i

∏

l∈N

(1− b
(k)
l )wil. (A.5)

Thus, we can write

d

dλ
(m)
j′

Ŵ (λ) =

[

d

dλ
(m)
j′

+
∑

k=1,2

∑

l∈N

d

dλ
(m)
j′

b
(k)
l

∂

∂b
(k)
l

]

Ŵ (λ,b)

∣

∣

∣

∣

∣

b=b(λ)

where b(λ) = (b
(k)
l (λ) : k = 1, 2; l ∈ N). The claim of the lemma can be

then verified by observing that d

dλ
(m)
j′

Ŵ (λ;b) = 0 and

∂

∂b
(k)
l

Ŵ (λ,b)=−
∑

i∈D

r
(k)
i λ

(k)
i wil(1− b

(k)
l )wil−1

∏

s∈N−l

(1− b(k)s )wis

=−(1− b
(k)
l )−1

∑

i∈D

wilr
(k)
i λ

(k)
i

∏

s∈N

(1− b(k)s )wis.

Lemma 2. Let δjl be 1 if j = l and 0 otherwise. Then, for l, k ∈ N and
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k,m ∈ {1, 2}:

d

dλ
(m)
j′

b
(k)
l (λ) = δjl

∂

∂ρ
(m)
l

B(k)(ρl, κl, Rl)

−
∑

u=1,2

∂

∂ρ
(u)
l

B(k)(ρl, κl, Rl)(1− b
(u)
l (λ))−2

(

∑

i∈D

wil(wil − 1)ξ
(u)
i (λ)

)

d

dλ
(m)
j′

b
(u)
l (λ)

−
∑

u=1,2

∂

∂ρ
(u)
l

B(k)(ρl, κl, Rl)(1− b
(u)
l (λ))−1 ×

∑

s∈N−l

(1− b(u)s (λ))−1

(

∑

i∈D

wilwisξ
(u)
i (λ)

)

d

dλ
(m)
j′

b(u)s (λ).

Proof. Given b = (b
(k)
l : k = 1, 2; l ∈ N), we define the following form

of (A.3)

b
(k)
l (λ,b) = B(k) (ρl(λ,b), κl, Rl) (A.6)

so that

d

dλ
(m)
j′

b
(k)
l (λ) =

[

d

dλ
(m)
j′

+
∑

u=1,2

∑

s∈N

d

dλ
(m)
j′

b(u)s (λ)
∂

∂b
(u)
s

]

b
(k)
l (λ;b)

∣

∣

∣

∣

∣

b=b(λ)

.

(A.7)

Note that
d

dλ
(m)
j′

b
(k)
l (λ,b) = δjl

∂

∂ρ
(m)
l

B(k)(ρl, κl, Rl). (A.8)

25



By the same token and for s 6= l

∂

∂b
(u)
s

b
(k)
l (λ,b)

= −
∂

∂ρ
(u)
l

B(k)(ρl, κl, Rl)(1− b
(u)
l )−1 ×

∑

i∈D

wilλ
(u)
i wis(1− b(u)s )wis−1

∏

j∈N−s

(1− b
(u)
j )wij

= −
∂

∂ρ
(u)
l

B(k)(ρl, κl, Rl)(1− b
(u)
l )−1(1− b(u)s )−1 ×

∑

i∈D

wilwisλ
(u)
i

∏

j∈N

(1− b
(u)
j )wij . (A.9)

While for s = l

∂

∂b
(u)
l

b
(k)
l (λ,b)

= −
∂

∂ρ
(u)
l

B(k)(ρl, κl, Rl)
∑

i∈D

wilλ
(u)
i (wil − 1)×

(1− b
(u)
l )wil−2

∏

j∈N−l

(1− b
(u)
j )wij

= −
∂

∂ρ
(u)
l

B(k)(ρl, κl, Rl)(1− b
(u)
l )−2

∑

i∈D

wil(wil − 1)λ
(u)
i

∏

j∈N

(1− b
(u)
j )wij .

(A.10)

The desired result is obtained by substituting (A.8)-(A.10) in (A.7).

Next, we express Lemmas 1 and 2 in a matrix form that will be useful in

the sequel. Namely, define the following matrices
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w =

[

[wij ]D×N
0

0 [wij]D×N

]

2D×2N

db

dλ
=





[

E
(1,1)
jl

]

N×N

[

E
(1,2)
jl

]

N×N
[

E
(2,1)
jl

]

N×N

[

E
(2,2)
jl

]

N×N





2N×2N

, where

E
(k,m)
jl =

d

dλ
(m)
l′

b
(k)
j (λ)

η =





[

η
(1,1)
jl

]

N×N

[

η
(1,2)
jl

]

N×N
[

η
(2,1)
jl

]

N×N

[

η
(2,2)
jl

]

N×N





2N×2N

, where

η
(k,m)
jl = δjl

∂

∂ρ
(m)
l

B(k)(ρj, κi, Ri).

Λ =





[

Λ
(1)
jl

]

N×N
0

0
[

Λ
(2)
jl

]

N×N





2N×2N

, where

Λ
(k)
jl =

{

∑

i∈D wil(wil − 1)ξ
(k)
i (λ) if j = l

∑

i∈D wijwilξ
(k)
i (λ) otherwise.

We define also the following diagonal matrices

β =





[

diag[1− b
(1)
i (λ)]

]

N
0

0
[

diag[1− b
(2)
i (λ)]

]

N





2N×2N

ξ =





[

diag[ξ
(1)
i (λ)]

]

D
0

0
[

diag[ξ
(2)
i (λ)]

]

D





2D×2D
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and the row vectors

r = [row[r
(1)
i ]D row[r

(2)
i ]D]2D,

dŴ

dλ
=

[

row[
d

dλ
(1)
j′

Ŵ (λ)]N row[
d

dλ
(2)
j′

Ŵ (λ)]N

]

2N

.

Lemmas 1 and 2 can be expressed respectively in terms of these matrices as

dŴ

dλ
= −rξwβ−1 db

dλ
(A.11)

db

dλ
= η(I − β−1Λβ−1 db

dλ
).

In particular, the last equality can be written as

db

dλ
= (I + ηβ−1Λβ−1)−1η. (A.12)

Proof of Theorem 3.2

Appeal to equalities (A.11)-(A.12) to obtain the matrix equation

dŴ

dλ
= −rξwβ−1(I + ηβ−1Λβ−1)−1η

= −rξwβ−1(I − (I + ηβ−1Λβ−1)−1ηβ−1Λβ−1)η

= −rξwβ−1(I −
db

dλ
β−1Λβ−1)η

= −

(

rξwβ−1 +
dŴ

dλ
β−1Λβ−1

)

η. (A.13)

The second equality uses the Matrix Inversion Lemma and can be verified di-

rectly, the third equality uses expression (A.12), and the last equality follows
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from (A.11). The jth component of this vector equality is:

d

dλ
(m)
j′

Ŵ (λ) = −
∑

k=1,2

∂

∂ρ
(m)
j

B(k)(ρj , κj, Rj)
∑

i∈D

r
(k)
i wijξ

(k)
i (λ)(1− b

(k)
j (λ))−1

+

(

∑

i∈D

wij(wij − 1)ξ
(k)
i (λ)

)

(1− b
(k)
j (λ))−2 d

dλ
(k)
j′

Ŵ (λ)

+
∑

l∈N−j

(

∑

i∈D

wijwilξ
(k)
i (λ)

)

(1− b
(k)
j (λ))−1(1− b

(k)
l (λ))−1 d

dλ
(k)
l′

Ŵ (λ).

Using expression (17) in the theorem, the equality can be written as

d

dλ
(m)
j′

Ŵ (λ) = −
∑

k=1,2

∂

∂ρ
(m)
j

B(k)(ρj , κj, Rj)×

∑

i∈D

ρ
(k)
ij

(

r
(k)
i + (wij − 1)(1− b

(k)
j (λ))−1 d

dλ
(k)
j′

Ŵ (λ)

+
∑

l∈N−j

wil(1− b
(k)
l (λ))−1 d

dλ
(k)
l′

Ŵ (λ)

)

.

The proof is completed by multiplying both side of the equality with (1 −

b
(m)
j (λ))−1 and letting

c
(m)
j = −(1 − b

(m)
j (λ))−1 d

dλ
(m)
j′

Ŵ (λ) for all j. (A.14)

�

Proof of Theorem 3.3

We will prove the formula for ∆−
j Ŵ (R). The proof for ∆+

j Ŵ (R) can be

obtained by following the same procedure in this proof. Here we will use an

informal argument similar to the one used in the proof of [15, Theorem 2.3].

Namely, given that the matrices in (22) are invertible, there exists a solution
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θuj for u = 1, 2 which solves the system of equations

∆−
j B

(k)(ρj , κj, Rj) +
∑

u=1,2

θuj
d

dρ
(u)
j

B(k)(ρj, κj , Rj) = 0, k = 1, 2, (A.15)

where

∆−
j B

(k)(ρj , κj, Rj)

is given by (24).

Now consider the perturbation where Rj is reduced by one unit. Assume

this reduction is compensated for by a change in λ
(k)
j′ for k = 1, 2 so that

b
(k)
j stays constant. Thus, given that r

(k)
j′ = 0, the change of revenue due to

reducing Rj has been compensated for. Namely, we can write

∆−
j Ŵ (R) +

∑

m=1,2

θmj

dŴ (R)

dλ
(m)
j′

= 0.

Using(A.14), we obtain

∆−
j Ŵ (R) =

∑

m=1,2

θmj(1− b
(m)
j )c

(m)
j .

Now by substituting for c
(m)
j from (18), we obtain

∆−
j Ŵ (R) =

∑

m=1,2

θmj

∑

k=1,2

∂B(k)(ρj , κj, Rj)

∂ρ
(m)
j

×

∑

i∈N

ρ
(k)
ij

(

r(k) − (wij − 1)c
(k)
j −

∑

l∈N−j

wilc
(k)
l

)

.
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The expression can be rearranged in the following form

∆−
j Ŵ (R) =

∑

k=1,2

(

∑

m=1,2

θmj

∂B(k)(ρj, κj , Rj)

∂ρ
(m)
j

)

×

∑

i∈N

ρ
(k)
ij

(

r(k) − (wij − 1)c
(k)
j −

∑

l∈N−j

wilc
(k)
l

)

.

The result in the theorem now follows from (A.15). �
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