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Abstract—We examine the problem of minimizing feedback in Automatic Repeat reQuest (ARQ) protocols are commonly
reliable wireless broadcasting, by pairing rateless codig with  employed to guarantee the reliability of data dissemimaticer
extreme value theory. Our key observation is that, in a broadast lossy wireless channels [5]. ARQ requires receivers tofyioti
environment, this problem resolves into estimating themaximum . .
number of packets dropped amongmany receivers rather than for a sourcg about missing packets via acknowledgments (ACKs)
each individual receiver. With rateless codes, this estintmn relates  Of negative acknowledgments (NACKs). When the number of
to the number of redundant transmissions needed at the souec receivers gets large, however, these messages becomsiesces
in order for all receivers to correctly decode a message witligh  and result in the well-knowbroadcast storm problem [2, 4, 6].
probability. We develop and analyze two new data disseminain Packet-level forward error correction (FEC) provides a

rotocols, called Random Sampling RS) and Full Sampling with - .
Eimited Feedback (FSLF), baszd ?)rllet%emoment and Enafimum promising approach to effectively reduce feedback [7]. FEC

likelihood estimators in extreme value theory. Both protocols rely reéquires the source to anticipate packet losses and make re-
on a single-round learning phase, requiring the transmisgin of dundant transmissions proactively, instead of waitingféad-

a few feedback packets from a small subset of receivers. With pack from receivers and then making additional transmissio
fixed overhead, we show thatFSLF has the desirable property Rateless codes such as random linear codes, LT codes [8]
of becoming more accurate as the receivers’ population gets . Y .
larger. Our protocols are channel agnostic, in that they do ot and Sh|fted LT qugs [9] allow FEC to be |mplem.eflted In
require a-priori knowledge of (i.i.d.) packet loss probablities, @ practical and efficient way. The source encodésoriginal
which may vary among receivers. We provide simulations andm  packets of a file and then transmits the encoded packets. A
improved full-scale implementation of the Rateless Delugever- receiver is able to recover the file successfully after réogi
the-air programming protocol on sensor motes as a demonstten M (or slightly more) distinct encoded packets.

of the practical benefits of our protocols, which translate nto . - .
about 30% latency and energy consumption savings. Furtherve One of the challenges of implementing FEC is for the

apply our protocols to real time oblivious (RT) rateless cogs in Source to determine an appropriate amount of redundancy
broadcast settings. Through simulations, we demonstrate 400- when transmitting proactively. While too many redundanCFE
fold.reduction in the amount OT feedback packets while incuring packets slows down the data dissemination process unneces-
f‘rgn'gr%régﬁ)ensof only 10-20% in the number of encoded packets gqyjly  insufficient redundancy leaves many receivers lenab
' to decode packets. Furthermore, the inherent heterogeofeit
_ Index Terms—Extreme Value Theory, Forward Error Correc-  channel characteristics across receivers (e.qg., duekqliality,
tion (FEC), Rateless Coding, Over-the-Air Programming. distance to the source, and antenna sensitivity) significan
complicates the task of redundancy estimation. While egtim
[. INTRODUCTION ing each receiver’s packet loss probability may be pos$ililg

Reliable data broadcasting is the basis for over-the-aggam- Such an approach does not scale given that per-receiveefpack
ming (OAP) of sensor networks [1-4]. OAP is used to delivé@ss probability needs to be ascertained.
software updates and data from a broadcaster (source)ge lar This paper is based on the following key observation. When
populations of sensors (receivers) within wireless trdssion Using rateless codes in a broadcasting environment, such as
range of the source. Similar protocols have also been deedloWireless, the number of redundant packet transmissions cor
for applications like real-time updating of stock-quotezda responds to thenaximum number of redundant packet trans-
score-boards on cellular and mobile smartphones. missions needed among all receivers. This allows us to #&xplo
advances in extreme value theory [11], a powerful matheralati

A preliminary version of this paper appeared in the proaegsliof the IEEE  {gg| for Studying the distribution of extreme order-stidis,
INFOCOM 2010 conference.

This work was supported in part by NSF grants CCF-0729158;-0416892 such a_s r_namma of random Var_la_bles’ to effectively quantify
and a grant from Deutsche Telekom Laboratories. transmission redundancy with minimum overhead.



In this paper, motivated by OAP applications, we considscalable broadcast versions of real time oblivious (RT8lests
the problem of disseminating a file composed of multipleodes [14]. RT codes have a simple decoder design, making
segments, opages, from one source taV receivers over a them especially suitable for wireless sensor receiversdier,
lossy wireless channel. Each page consists of a fixed numbach receiver is required to send information about its diego
of packets. Our first contribution is formalizing this prebi progress to the source periodically, limiting the scalabdf RT
using extreme value theory, in order to perform accurataenl! codes for large receiver populations. For a marginal irszéa
estimation of the amount of transmissions (formally defineatie number of encoded packets broadcast from the source, we
as J-reliable volume in Section 1ll) a source needs to makeshow how using EVT to predict the decoding progress offers
in order to achieve a probability of successfully delivering a major decrease (on the order of two orders of magnitude) in
each page of the file to all the receivers. Thanks to extrertiee total amount of feedback required from the receivers.
value theory, we are able to perform accurate estimation ofThis paper is organized as follows. In Section Il we survey
the o-reliable volume without requiring specific knowledgerelated work. We formulate our problem in Section Ill. We
of channel characteristics. This accurate estimation can fwint out the limitations of classical estimation techrdgu
accomplished with extrapolation based on limited infoiiorat in Section IV-A, give a primer on extreme value theory
obtained from the dissemination ofsangle page. in Section IV-B, and introduce the moment and maximum
Second, we develop two new data dissemination protocdi§glihood estimators in Section IV-C. The design of tR§
called Random Sampling (RS) andFull Sampling with Limited and FSLF protocols is presented in Section V. Simulation
Feedback (FSLF), based on extreme value estimators known t&sults and sensor mote experiments are provided in Se¢tion
be asymptotically exact a& — oo. Both protocols estimate and VII, respectively. We illustrate the practical appidiy of
the d-reliable volume during alearning phase, and then reliably our approach by designing and then benchmarking a scalable
disseminate the rest of the file duringtransmission phase. broadcast version of RT codes [14] in Section VIII. We pravid
While RS restricts the overhead of the estimation during theoncluding remarks in Section IX.
learning phase, by randomly sampling feedback from a small
subset of receivers;SLF judiciously exploits the fact that the I1. RELATED WORK
extreme value estimators require only samples of khe 1
largest order statistics, for some << N, to collect all
the feedback needed. We further show tiw8.F has the
appealing property of providing more accurate estimatibn
thed-reliable volume when the receivers’ population gets large
without incurring higher overhea@hese results foFSLF hold
under the assumption that receivers can overhear eachsoth
transmissions.

Third, we show through extensive simulations that beg
and FSLF almost completely eliminate receivers’ feedbac
during thetransmission phase. Thanks to the high accuracy%

of the (_astimators, the ampunt of pack_et transmission by t §,21,22] as well as some hybrid FEERQ protocols such
source is only about 5% higher than with ARQ' as [23], assume homogeneous packet loss probabilitie®in th
Fourth, we compare the performance of different extremgajysis. The works in [16,18-20] do study the more realisti
value estimators, namely, tigoment and maximum likelihood  scenario of heterogeneous packet loss, but they assume that
estimators, in conjun_ction with. thEIS and FSLF protocols. |eceivers’ packet loss probabilities dmown to the source, a
Amongst all the possible combinations, we observe B&F (g|atively strong assumption for practical multiple reegien-
based on the moment estimator achieves the best performagggnments. In our work, we allow the packet loss probabiit
in terms of minimizing overhead and maximizing accuracy. g heunknown andheterogeneous across receivers. The idea of
Fifth, to demonstrate practical benefits of our protocolapplying EVT to minimize feedback was first proposed in [20].
we conductreal mote experiments on a testbed of 14 Tmotejowever, the techniques presented in this present paper are
Sky sensors [12] and perform larger-scale simulation usieg completely different from those in [20], since we resortentr
TOSSIM simulator [13]. Specifically, we design a new oveg-th on-line measurementsto estimate the extreme-value parameters.
air programming protocol based on Rateless Deluge [4Jedall Wwhile it is possible to perform online estimation of net-
Extreme Value Quantile Estimation (EV-QE) Deluge, whickvork parameters such as packet loss probabilities [10]Jh suc
integrates theRS protocol. The experiments and simulationgechniques are not generally scalable with the number of
show that EV-QE Deluge lead to a 75% reduction in controfeceivers in the network, given that all per-receiver packe
plane traffic together with 30% savings on latency and enerss probabilities must be determined. The authors in [BA] t
consumption, at the expense of an about 5% increase in dagaestimate FEC redundancy without obtaining the individua
plane traffic as compared to Rateless Deluge. receivers’ packet loss probabilities, but they do not distab
Finally, we employ extreme value estimators for creatingelationship between the redundancy and the probability of

The concept of exploiting FEC for reliable data dissemonati
has been the subject of prior research, both in wireline and
ireless settings, and we next survey those works mostectlat
P(/) our paper. The works in [15,16] numerically evaluate the
performance improvements achieved with different levdls o
IéFC redundancy. In order to allow the sender to decide when to
stop transmitting FEC-coded packets without explicit fesak,
the authors in [17—-20] study the properties of file dissetiona
Eompletion times. While in practice the packet loss prolitgbi
iffers from node to node due to many factors (i.e., link gyal
istance to the source, antenna sensitivity), the worksl# [



success. In this present work, we propose to estimate tbel for studying the distribution of the maxima of random
amount of transmissions needed to fully disseminate dataviariables. We then introduce extreme value theory-based es
all receivers, with probabilityy. Our estimate is computedmators, which form the basis of our near-zero feedback data
online without the knowledge of channel characteristicg] a dissemination protocols described in Section V.
we establish an analytical relationship between the amofint As discussed in Section Ill, for a given realizatienof
transmissions and the probability of success. the data dissemination process, the completion times of the
Finally, estimation can also be performed using classicaceivers are i.i.d. random variables;, 75, .., T}, following
approaches [25]. However, they have significant overhefad (an unknown distribution functiof’(¢). Let their order statistics
Section IV for details), which our approach avoids by uiilgg be 77,75 v, .., Ty y, Mmeaning thatly y < 75y < .. <

the theory of extreme values. Tx n- Clearly, T , which corresponds to the maximum of
completion times among all receivers, is identicalltd, the
I1l. PROBLEM FORMULATION number of packet transmissions by the source during reiliza

We consider the problem of broadcasting a file from a sourteSimilarly, for R realizationsy = 1, .., R, the set of["’s are
(e.g., a base station) t& receivers within its transmission glso i.i.d. random variables because they are the maxima of

range. The file is divided intd pages, each consisting of i.i.d. random variablesI’. Let their order statistics be denoted

packets.Encoding is done at the packet level using rateledy 717, T2, . TTF. _ ) .

codes (e.g. computing random sums of input packets). ourecall that our goal is to quantify thereliable volume, s,
analysis and simulations in Sections IV, V, and VI assunfieded in order to achieve a success probabila delivering
idealized rateless codes, where each receiver needs tverecd P29¢€ Fo all receivers, corresponding to Shquantile of the
precisely M distinct packets in order to recover a pagdlistribution functionPr{7" < ¢} = Pf{nglﬁégvTﬁ <t} =
Sections VII and VIII show how to apply the results to som@“N(t) [26, p.404]. Equivalently, this problem can be consid-
practical rateless codes, namely random linear codes and &&d as estimating the-quantiler = ¢~ of the distribution

codes. function F'(t). The r-quantile is preciselys.
The time axis is slotted, and each packet transmission is

assumed to take one time slot. The packet loss probability # Classical Estimators and their Limitations

receivern (n = 1,..,N) is p,, wherep,’s are heterogeneous Classical quantile estimators compute thquantile,t;, by
and unknown, but assumed to be independent, identicaliyterpolating linearly between the order statistics [26104].
distributed (i.i.d.) random variables. The source encaaled For example, consider the averaging quantile estimato}. [25
broadcasts the pages in an increasing order. Sending oee pafger the completion times oR: realizations are collected and
is denoted as one=alization in the data dissemination processordered asr’'™>? < 7% < ... < TRE the é-quantile for

In a given realization- of the data dissemination processpr{7" < t} = F(t) is estimated as
denote byT" the number of time slots required for receiver

. 1(74,R i+1,R\ i I B .
n to recover a pageSince the packet losses are governed — { 25{1 R+TJ ) !f 67._ roJ 7+11"',R 1
by i.i.d. random variableshe time required for decoding the A if £ <0<4%,j=0.R-1

1)

A major limitation of all interpolation-based quantile iesa-
tors is that they need many realizations.(large R) to estimate
high quantiles. The fundamental reason is that all thesmast
tors implicitly assume that the estimation will not excebd t
largest order statistic, namely/* . For instance, using Eq. (1)
to estimate the high quantile (whén> 1 — %) always yields
ts = TR Therefore, this estimator becomes ineffective when
0>1-— %. In other words, it is not possible to estimate any

page is i.i.d. across receivers; in other wor@d¥s are also
i.i.d. random variables. Denote by" the random variable
representing the completion time for this realizatiom,, the

number of time slots needed to disseminate packets to a
cluster of N receiversT” = max T, .

n=1...N
The success probability of }'31 page dissemination is the
probability that the page is decoded by all receivers. The
o-reliable volume, denoted ass, is the amount of packets the

source neeFjs to broadcast to guarantee a success probabilif; 4 qtile higher thafil — L) based on the data collected fran
Our gc_)al IS to Samp"’t‘ an_d analyze aﬁxe_d number of feedbatly i, ations using classical quantile estimators. Edeitdy, to
packets in a single realization, corresponding to the hrastibf determine/; wherePr{T" < t;} = 6, one needs to collect the
the first page of a file, in order to estimate theeliable volume completion times off"s fram at least? — —L_ realizations.
t5. Our estimation aims to accurately quantify the valyefa  \qote that one could equivalently estimate theyuantile,
ree}l|zat|onr, where, by deﬁmtpnPr{TT S_t(s}. = 6 Note that 7 = 6%, of the distribution functionF(t) by collecting the
ts is also referred to ag-quantile of the distribution function ;. 4ividual completion times7 ™, from all receivers. However
n n? . 3
Pr{I" <t} [26, p.404]. it can be shown that at leagt = ﬁ realizations are still
required.
IV. EXTREME VALUE QUANTILE ESTIMATION
We begin this section with a review of traditional approachd. Extreme Value Theory
in quantile estimation, pointing out their limitations, cara The completion time for successfully disseminating a page
short primer on extreme value theory, a powerful statisticaorresponds to the maximum of the individual completioresm
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From the definition ofU, it can be shown that(z) =

F~1(1 —1). Since F~*(Tx_, y) corresponds to the':~-
Fig. 1. The relationship between functidn and U. qguantile fork < N, we have

0(3) = Th o ©)
which is the (N — k) largest completion time in the-th
of each receiver. In order to estimate theeliable volume by  realization.This quantity is readily obtained by computing the
extrapolating beyond the limited amount of feedback (b@sed order statistics of the empirical completion times repbrby
only a single realization), one needs to explore the pr@®rtthe receivers. Therefore, when using Eq. (5) to estimate-the
of the distribution of the maximum of i.i.d. random variafle quantile, one only needs to estimate #x&@eme value index

froudindh :
Extreme Value Theory (EVT) provides a sound theoretic&Nd thescale factor a(3). This is the reason why thereliable
framework for such an extrapolation. It restricts the batray VOIUMe at the source can be estimated without knowledge of

of the distribution of the maximum of i.i.d. random variabgle chann(_al ch_aracteristics. Next, we describe statisticaiagrhes
namely 7", whereT” = max 77, to an EVT distribution. 'OF €stimating these two parameters.

n=1,.N

The EVT distribution can be specified by just two parameters, o
the extreme value index and thescale factor [11], defined below. ©- EStimation of the Extreme Value Index and Scale Factor
Consequently, we can quantify tidereliable volume without We will now introduce two important EVT estimators used
requiring knowledge of channel statistics of each indigiduto estimate the extreme value indesand the scale factar(3)
receiver. Formally: of Eq. (5). Note that these estimators are derived from E). (2
or its equivalent forms.

1) The Moment Estimator [11,27]: Themoment estimator is
an extension of the simple and widely used Hill estimatoi],[28

1—7

Theorem 1 ( [11], Theorem 1.1.3): Suppose there exists
a sequence of constanta(N) and b(N), such that
maxn—1..x 1, ~bN) pas a non-degenerate limit distribution a

a(N) Which is a special casg= 1 of the following equation:
N — oo. Then R
-1
. ; 1 ,
lim FN(a(N)t+b(N)) = G, (1), @ MY =Y (ogTh_x—logT yn) i =12 (7)
=0
where

. The Hill's estimator provides an estimate for £ max(0, )
G (t) = exp (—(1+7t) ) for1++t>0,7v€R, () (e, 7, = MP). Thus,7, — 0 wheny < 0 (i.e, it is
non-informative).Let v_ = min(0,~). This quantity can be

- o i
and the right-hand side is interpreted to dg(—e~*) when estimated as follows:

v = 0.
. . . 1 . . 1 (]Vf(l))Q -1
Define U to be the inverse function of=5. As depicted in Fo=1-o (1 _ 8)
Fig. 1,U(1X=) corresponds to the-quantilet, of F'(t) . The 2 va)

function U is more convenient to work with when performmgComplementarin to the Hill's estimatof,_ can only estimate
quantile estimation. The next theorem relates the asymptof,q case where < 0 and converges to 0 for the case> 0.
behavior ofU' to that of 1. The moment estimator foy € R is a combination of the

Theorem 2 ( [11], Theorem 1.1.6): The following statement estimator fory, and~y_

is equivalent to Eq. (2). There exists a positive functigsuch 1 -1
that forz > 0 ~ & 1 (My")?
v =My +1—--11- @ 9)

o Ult) —U®) a7 — 1 @ 2 My

t—oc0 a(t) oy The corresponding moment estimator of the scale factor is
and the right-hand side is interpreted tolbg x when~ = 0. . N (1) -
Moreover, Eq. (2) holds witth(N) = U(N) and the same aM(Z) =Tn-rn My (1 =7-). (10)
function a.

The following theorem states thaj,, and aM(%) are
Eq. (4) can be used as the basis for extreme quantilensistent estimatorsi(e., they converge in probability to the
estimationLet N be thesample size andk be theintermediate actual values ofy and a(%)). In the following, we denote the
number, where, asN — oo, k — oo, and £ — 0. Then, upper endpoint of’(¢) by t* = sup{t : F(t) < 1} < oo and
one can use the following estimator for thequantile (see [11, use the notatior—, to denote convergence in probability.



Theorem 3 ( [11], Theorems 3.5.2 and 4.2. 1) Suppose
Eq. (2) holds and* > 0. Let 43, and aM( ) be defined as
in Eq. (9) and Eq. (10). Then

- an ()
’YM —)p ’Y and 7]\7 —)p 1, (11)
a()
providedk = k(N) — co and £ — 0, asN — cc.
From the definitions ofU( ), Am, am(F) in Eq. (6),

Eqg. (9), and Eq. (10) respectlvely, we deduce the followmng i
portant result, namely that only thet 1 largest order statistics

(of the N samples) are needed to compute the estimator of t

T-quantile given by Eq. (4).

Corollary 1: Collecting thek + 1 largest order statistics of
T, (e, TNk voTN_k11.ns---» Ty n) is sufficient for the
computation oft,.

2) The Maximum Likelihood Estimator [29]: Given a set

of observationd y, ..., Ty x, themaximum likelihood (ML)

Therefore, the joint density function for all independent
observations is as follows,

h’y,a(s) (t17 ta, .., t[,) = Hiﬁzlh'y,a(s) (tz) (16)

Eq. (16) is also calletikelihood function. The goal of the ML
estimator is to find the values efanda(s) that maximize the
likelihood when given the observations to, .., t.. Namely,

{/V\I\JLEaa(S)I\JLE} = argmax Hleh%a(s) (tl) (17)

v,a(s)
Equivalently, one can maximize the logarithm of the likelial
Wnctlon calledlog-likelihood, as following,

c
{AmrLE,a(s)mLE} = argmax Zlog Py a(s) (i)

v,a(s) i=1
In order to obtain the estimation that maximizes the likedit,
one can set the partial derivatives of the log-likelihooddtion
(Eq. (18)) with respect tey anda(s) to zero. Therefore, using

(18)

estimator aims to determine which parameters of the extrefag. (15), one can obtain the ML estimation foranda(s) by
distribution make the observed data most likely to occur. Wlving the following system of equations,
next summarize the work in [29], which provides an equivalen 01og by a(s) (1)

v,al(s .

method of approximating Eq. (5).

As before, the upper endpoint &f is denotedt™ = sup{t : dlog }?'y’ya(s)(t) (19)
F(t) < 1} < co. Fors < t*, let Fi(t) be the conditional 87() = 0.
distribution function of7}, — s givenT,, > s. More precisely, ans
Namely,
Fs(t)—P(T,’;St+s|T£>s)—%w, (12) £y
Z — log (1 + L(tl))
for s <¢*,t>0andl — F(s) > 0. it a(s)
Let H,(t) be the generalized Pareto distribution function i (1 % (20)
- —+ 1) = — =0, 20
Hy(t)=1—(1+7t)"~ (13) =1 v £1 + ot
iy
Then, (based on [11,29] and the citations therein) therstexi _ Z 1 + Z (l + 1) M —
a normalizing functiona(s) > 0, which is the same as that im1 a(s) = \7 L+ a(s)

defined in Eqg. (4)such that

" Now back to the problem of estimating the extreme

E (14) value index and the scale factor using ML estimator.
When given a set of order statistics of random variables

if and only if F is in the maximum domain of attraction of7y . . T7, \, the distribution of the set of random variables

G (t). " - . , .

7E(q). (14) shows that the distribution of an applicable randoi'l(TN"““’N R TN"“N”Z =1 k} given Ty Fs(b),
variableT' — s givenT > s converges to a generalized Paret§2" be approximated by the disiribution of an O)rd\(,e\,rﬁsr;am-

s . : :
distribution H.,(t), ass — t*. Therefore,Hv(ﬁ), which Ple of & i.i.d. random variables with CDHI, (5

is determined by the parameteysand a(s), can be used to 5= TN.—’%N' According to Eq. (20), one thus can obtain the
approximateF, (). ML esumators for the extreme value indexand the scale

lim  sup )| =0,

s o<t<tr —s

Fs(t) - HV(

The ML estimator aims to determine the parameters whlct,ﬁCtora ) by solving the following system of equations,
make the observed data most likely to occur [30]. Specificall ko -
given a set ofC independent observations, to, .., ¢, (drawn Z — log (1 + —N(T]{,_Hl N —TN_k N))
from H. ( )) the ML estimator determines valuespfand i- Y (?)

a(s) that maX|m|ze the joint probability that these observagion zk: % (TN ir1,v — TN n) 0
will occur. Formally, leth., ) (t) = W be the PDF < T+ 25 (TR = Thgon) -
(Probability Density Function) off. ( ) Thus we have (T _Tr )

1 %) N—i+1,N N—k,N —
1 £\ Z(§+1> 5Ty — Thoew)
h ( )(t) _ 1 + y— . (15) i=1 ?) N—i+1,N N—k,N
v,a(s a(s) a(s) (21)



Algorithm 1 Learning Phase: Random Sampling (RS) at th&lgorithm 2 Learning Phase: RS at the receivers

source 1: Keep receiving encoded packets until the first page is
1: Attach a common random seed to each packet in the first syccessfully decoded
page 2: Use the common random seed to generate a seW'of
2: repeat different pseudo-random integers uniformly distributed o
3 Broadcast a new encoded packet [1...N]
4 if any completion times received from receivénisn 3: if node ID belongs to the set df’ integersthen
5: store received completion times 4 send completion time to the source
6 end if 5. end if

7: until N’ completion times are collected
8: Perform estimation

feedback fromN’ receivers with their completion time. It also
) ) . attaches a common random seed to each patket.source’s
There are only two unknown variables in Eq. (21), whiclyqqrithm in the learning phase is shown in Algorithm 1.
are~y anda(%), and_ their solutions are the ML estimators for After decoding the first page, the common seed is used by
tAhe extjr\game valug mdex.and spale factor, (.je.n@@‘iE and_ all receivers to generate the same setNdf pseudo-random
anre(y ) respectively. Discussions on obtaining the solutiongegers uniformly distributed ofi ... N]. Only receivers with
of Eq. (21) nume_rlcally can be foun_o! in [31]. . IDs within this common set send their completion time back
Urlder appropriate tech]rycal CO?fdlthhS [29], it can be smow, v source. The source continues to send packets until it
thatynpp —7 andani( ) —a(5) converge to asymplotic ooy es N feedback packets. It then uses the feedback to
Normal_ d!str|but|ons, under su_ltable normallzathn. Rort estimatets. The receivers’ algorithm in the learning phase is
more, similar to the moment estimators, the ML _es_umatoty "shown in Algorithm 2. In practice the feedback channel ftsel
require knowledge of thé + 1 largest order statistics. may be faulty, or a receiver with ID among tHé’ chosen
receivers may fail to decode the first page. To deal with both
of these issues, one may elect to use a smaller threshold on
In practical applications, one of the crucial steps to stiaet the number of feedback packets that must be received before
estimation is to collect sample data, which is referred ® thattempting estimation at the source.
learning phase in this paper. The estimation will then be used As discussed in Section IV, to quantify, one can either
to determine the required redundancy for the remaining pagestimate thes-quantile of Pr{T, < t} = FN(t), or estimate
which are distributed in thransmission phase of our protocols. the r-quantile, 7 = 5~ of Pr{T" < t} = F(t). In our
In the learning phase, the source disseminates the first pagee, we will estimate the-quantile, since the source collects
to the network and then collects individual completion Tﬂi’necompletion timesI’” during the dissemination process.
(T7;s) froma subset othe receivers. Upon collecting enough  aAccording to Eq. (5), withV’ data samples” v/, .., Tk nis
responses, the source estimates dheeliable volume using the source first sorts the data and then obtains the number of

either the moment estimator based on Eq. (9) and Eq. (10),t{nsmissions required using the following estimator:
the ML estimator based on Eq. (21). The estimateé;aé used

to determine how many packets to transmit in the transmissio < 1 L)V 1
T "N/
phase. = A (N (N a-ew
It is important to minimize the communication overhead Trs(9) = U( KT\ % v - (2)
of our protocol (in terms of the duration and the amount Olfhe result will be one of two differens-reliable volume

feedl:llack) n or(z)ertofmamtgm Scwb'“ty’ espe(t:\lNaIIy wl::eréa t%stimatorsf%((i) corresponding to the moment estimator or
'S @ large NUMDer ol Teceivers. YWe propose Wo metnods 1ak/Le 5) corresponding to the ML estimatdFheorem 3 im-

managing this overhead Random Sampling (RS) and Full ; . N :
. o plies that the moment estimators pfanda(3-) are consistent
Sampling with Limited Feedback (FSLF). asN' — N and N — oo

) 2) Transmission Phase: The source first broadcasts data

A. Random Sampling packets as estimated in the learning phase. Receiversihaot

1) Learning Phase: In our first approachRandom Sampling, recover the page, sense the channel and, if no other reguest i
the source restricts the amount of feedback by only cofigctioverheard first, reply to the source with a request for aoaliti
completion times from a smadiutset (V') of receivers chosen data packets. The source transmifs'n additional packets
uniformly at random amongV receivers, wheréV’ < N. We in the i-th round of its transmissions, whergis an integer.
will show through simulation in Section VI-A that randomlyThis multiplicative factor is important in reducing the nber
choosingN’ = 50 out of N = 10* receivers is sufficient to of rounds (i.e., making it proportional to the logarithm of
achieve good estimation. the number of additional packet transmissions needed). Our

In order to collect feedback fromV’ random receivers, the simulations indicate that this approach does not typiaafult
source keeps encoding and transmitting packets till itivese in many unnecessary transmissiotighere is no request for a

V. BROADCASTING PROTOCOLS WITHLIMITED FEEDBACK




Algorithm 3 Transmission Phase: RS at the source Algorithm 5 Learning Phase: FSLF, at receiver

1: repeat 1: Keep receiving encoded packets until the first page is
2: Encode a new page successfully decoded and record tiffig
3 Broadcast the required number of encoded packets: Listen to the channel until last packet is sent by the source
(determined by estimation) and record timer™
4 i1 3: Wait for a random time period proportional g — 7,7, and
5: repeat record the number of feedback packets containing receiver
6: Broadcasti~'n packets completion times sent to the source during that period
7: 1=1+1, 4: if number of feedback packets transmitted by other re-
8: until no request for additional encoded packets is ceivers to sourceC k then
received withinT..,,,+ amount of time 5: SendT’ to source
9: until no new page to broadcast 6: end if

Algorithm 4 Transmission Phase: RS at the receivers

1: repeat k+1 largest individual completion times from all the receivers
2: Decode a new page in the network, then this is equivalent to the case where the
3 repeat source collects all the data, sorts them, and then uses-+he
4: Receive new encoded packets largest order statistics as inputs for the extreme estirsato
5 if encoded broadcast packets no longer receivgdantify thes-reliable volume.
then In order for the source to collect thiet 1 largest completion
6: Request encoded packets from source  times, receivers with larger completion times are granigtdr
7: end if priority in sending feedbackrhis is achieved as illustrated in
8: Try to decode the page Algorithm 5. The source transmits the first page as in R&
9: until successfully decode the current page protocol. Ideally, after the page is successfully dissexted, all
10: until all pages are decoded receivers record the network completion tiffie = mlax T,

Each receiver then sets a random timer with length inversely

proportional to the difference between its own completioret
predefined length of tim@.,,,., the source moves on to the7 and the network completion tini&” (note that only the dif-
next page. In our sensor mote implementation (Section W), ference betweef” and7” is needed, not the absolute value of
usen = 1 andTyepore = 500 (Ms). Algorithm 3 and 4 show these variablesBefore the timer expires, each receiver records
the algorithms respectively run by the source and the receivthe number of overheard feedback packets with completion

during the transmission phase. time larger than or equal to its own. When the timer expires,
a receiver reports its own completion tirii& only if less than
B. Full Sampling with Limited Feedback k + 1 feedback packets have been recorded.

A simple way to improve the quality of estimations using the The timer of each receiver is set as follows. Re@all,+ is
RSis to collect more feedback, e.g., by increasiNg toward the interval of time allotted to receivers to report the tesck.

N. However, this approach does not scale as the numberVi¢ set the length of the timer to bearandom variable unifprml
receiversN becomes large and may cause feedback |mpI03|dh5t“bUt8d betwee%(T’ =T7) and%g‘ﬁl(Tr T,+
precisely the problem we try to avoid in the first place. 1). Therefore, a receiver with larger individual completit’m&

By exploiting the inherent properties of the EVT estimatord,; Wil report its completion time sooner. After waiting foreh
we devise a sampling approach call€dll Sampling with end of the report interval, the source estimates dfreliable
Limited Feedback which is able to collect all the completionvolume using thek + 1 largest order statistics.
times needed from the receivers, with an almost fixed amountn practice, each receiver may not precisely know the net-
of feedback. Consequently, an appealing propertfF8fF is work completion time and the source may not be able to collect
that, given a fixed amount of feedback, the estimators becoalek + 1 largest completion times, due to lossy channels. We
more accurate when the network has more receivers, since lgteeach receiver consider the time when overhearing the las
source collects more useful data sampR&LF is designed for data packet sent by the source as the network completion time
the case where receivers can hear each other. and use it in lieu off". In the case where the source collects

Although FSLF broadly mirrors the Algorithms 1 and 2k’ < k + 1 feedback packets, it may consider them as the
during the learning phase, the approach for collecting $esnpk’ largest completion times. In such a case, the source may
is different. It exploits the fact that the EVT estimators onlyunderestimates. However, the source also has an estimation
need thek + 1 (recall k is the intermediate number) largesfrom RSwhen sending the first page. Therefore, it can compare
order statisticsTy, ;. n» TN 1.3 T,y @S inputs for the both estimates and keep the larger one.
estimation. Therefore, if the sorting process can be perdr  The estimators foFSLF are slightly different fromRS. With
before the collection process, and the source only colltbets FSLF, although the source collects ority-1 completion times,



it is equivalent to the case where it collects the compldiibes estimations are obtained from Eq. (22) and Eq. (23)R8rand
from all the receivers, sorts them and then usekthel largest FSLF, respectively. The extreme value index and scale factor
order statistics as inputs for the extreme estimators. ,Ttws are estimated by the moment estimator (Eq. (9) and Eq. (10)),

obtains the estimation af; as following, and the ML estimator (by solving Eq. (21) using Matlab).
(—L. ﬁ)a 1 For RS, the source collects feedback fraWY = 50 random
Trspr(6) :ﬁ(ﬁ)_i_a(ﬁ) 1on N ' (23) receivers. The intermediate number fs = 20. Since the
k k v solution of the system of equations for the ML estimatordsel

We again have two different-reliable volume estimators, complex solutions whedV’ is small (similar issue is reported
TM, -(5) and TMEE (6), depending on the estimators usedn [11]), we omit the ML estimation here. F&SLF, the values
(moment or ML).Further, assuming that the source receive®f ¥ for the moment estimator and the ML estimator are set
the k + 1 largest completion times, Corollary 1 implies that théo 20 and 50, respectively. The results shown in the following
moment estimators of and a(%) are consistent ad’ — co. figures represent an average over 1000 iterations.

In summary, an important property BSLF is that given the  Fig. 2(a) shows that the overhead of the estimators (i.e.,
same amount of feedback, it achieves higher accuracy as tive number of packets collected for the estimation) maityina
number of the receivers becomes lardeF helps to mitigate increases as the number of receivéfsgrows. As discussed
the problem of feedback implosion in the learning phaset asn Section V-C, the smallest possible overhead R8 and
restricts the number of feedback packets. Therefore, thamk FSLF to perform estimation isV’ and N’ + k + 1 feedback
its scalability and increasing accuracy, this approachdéali packets, respectively. The result shows that the overhead f
for broadcasting in dense networks. both estimators is close to minimum and remains almost a

constant as the number of receivers increases. Note that the
C. Overhead Analysis of Extreme Value Estimators overhead oFSLF is slightly higher tharRS, sinceFSLF needs
) ) to collect thek + 1 largest completion times at the end of the
We next summarize the overhead of the EVT estimators a ming phase. Since a small intermediate nuriter the ML

compare it with that of classical approaches. We look at thetimator yields to complex solutions, it is set to 50 for khie

number of feedback packets needed for the estimation as Wellinator, larger than the one for the moment estimatoriwhi

as the number of pages, which corresponds to the time needgdq Recall for the=SLF sampling technique, the intermediate
According to the discussion in Section IV-A, to es.t|m?<§e number corresponds to the number of samples the source needs

a classical estimator needs to know the completion time-af 1 coliect from the receivers. ThereforBSLF with the ML

pages to get a valid estimation. Therefore, the leaming®Nastimator has higher overhead thBSLF with the moment

of classical estimators requires the transmission of atleas  astimator in the learning phase, as shown in Fig. 2(a). Next w

pages and the collection of the completion time for each pagg| show that this extra communication cost trades off with
For EVT estimators, the leaming phase for b&8 and pigher accuracy in estimating thiereliable volume.
FSLF requires the transmission of only one page to estimate

During the learning phase &S, only N’ receivers report their
completion times. Therefore the number of feedback pack
needed folRS estimation isN’. In the learning phase &fSLF,
the source transmits the first page uskg and then collects
the k + 1 largest completion times. Therefore, the number
feedback packets needed 68LF is N’ + k + 1.

Fig. 2(b) shows the accuracy of the estimators by comparing
the estimations with the empirical quantile. The empirgpan-
?ﬁ% is obtained from the classical quantile estimator in B9
by running10°® identical iterations, bringing this estimate close
t? the actual value. The accuracy of tR8 approach decreases
Q . . . .
as the number of receivers increases. Recall that estignétin

) antilets, of FV(¢) is equivalent to estimating thequantile,
Note that these comparisons are for the best case of lﬁ ) (*) 9 g theq

1 . . .
. . . ~, 7 =0~ of F(t) (see Section IV). Therefore, increasing the
estimators. In practice, thg d|ﬁerence between t_hem caver number of receivers requires greater extrapolation tonesé
larger as shown by our simulations and experiments.

higher quantiles. Sinc&S fixes the number of feedback to
N’ = 50, its accuracy thus decreases.
On the other hand, the accuracy B8_F-based estimators
A. Performance of Extreme Value Estimators improves as the number of receivers grows, because theesourc
We first investigate the overhead and accuracy of the E\epllects more useful data with increasing Correspondingly,
estimators proposed in Section V in tlearning phase, as well the EVT estimates converge to the actual valueNas» oc.
as the benefit of applying the estimation to tinansmission Further, the overhead &fSLF barely increases a¥ grows, as
phase, in terms of reducing feedback requests and maintainig§own in Fig. 2(a), confirming the scalability 58LF.
the minimum required-reliable volume, ts, whered = 99%. Next, we study the benefit of applying the estimation in
In this simulation, a two-page file is disseminated o reducing control traffic during the transmission phase. We
(ranging from10% to 10%) receivers. Each page consists ofecord 1), the number of feedback requests and 2), the extra
M = 1000 packets. For receivet, the corresponding packetnumber of data packets transmitted compared to a pure ARQ
loss ratep,,, unknown to the source, is a uniformly distributedscheme, where the source only transmits when requested and
random variable in the rangl®, 0.2]. The J-reliable volume so the number of data packets transmitted is minimum.

VI. NUMERICAL RESULTS
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Fig. 2. Performance of EVT estimators. (a) Learning phake: dverhead of quantile estimation, (b) Learning phase:attwiracy of the estimators, (c)
Transmission phase: the amount of feedback, (d) Transmiggiase: the ratio of extra packets sent to the minimum pacleeded.

Fig. 2(c) shows the average number of feedback packef$ects the accuracy of the FEC redundancy estimators. \jfe on
during the transmission phase. When transmitting a pageiofestigate theRS method, as th&S_F approach is equivalent
M = 1000 packets toN = 10* receivers using th&S and to RSwhen N’ = N and yields better accuracy otherwise, as
moment estimator methods, the average number of feedbabkwn in Fig. 2(b).
packets is only 1.2 per page. When uskfg F, it decreases to  In this simulation, we focus on the learning phase. The
0.19 for the moment estimator and 0.04 for the ML estimatqsarameters aréd/ = 1000, N = 1000 and the packet loss
Therefore, in all cases, receivers recover the page usiag thtes among receivers are again heterogeneous, and ulyiform
initially estimateds-reliable volume with little or no feedback. distributed in the range db,20%]. The estimations are com-

Fig. 2(d) shows that the moment estimator using Rfand pared with the empirical result which is obtained from Eq. (1
FSLF overestimates the required redundancy by only 4% (of thg running10° identical iterations, and each point in the figures
total number of packets transmitted). In the ML estimatiog, t represents an average over 100 independent estimatiotigdol
overestimate is relatively large when the number of reesivenith a a 95% confidence interval.
is small, but decreases to a reasonable level for laiger

Based on the above simulations, we conclude a8~ 1) varying the intermediate number k: We first investigate
using the moment estimator provides the best trade-offgaloghe accuracy of the estimators by varying the choice of the
all dimensions of interest (high estimation accuracy and lointermediate numbek and fixing N/ = N = 1000, § = 95%.
amount of feedback)RS using the moment estimator is acig. 3(a) shows that the bias of both estimators increases as
curate when the number of receivers is small. However, theincreases, which is expected from the properties of extreme
amount of feedback needs to grow with increasiNg to  quantile estimators [32]. The results show that while adarg
maintain accurate estimation. Both protocols drastio@Buce yalue ofk leads to a smaller variance for the moment estimator,
receiver(s)-to-sender traffic and incur only marginal &dom- it yields a larger variance for the maximum likelihood esttor.
munication due to overestimatirig. Although the moment estimator has larger variance for small

values ofk (e.g.,k = 10,20), its 95% confidence interval is
still small, i.e., less than 1% of the estimated quantile.
B. Further Evaluation on FEC Redundancy Estimators

We next study further how each parameter (ke.V’, ando) 2) Varying the sample size N’: We next study how the
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Fig. 4. Extreme value estimators for network with small nembf receivers with non-i.i.d. packet loss rates. (a) Tvateserror-burst channel model, (b) The
amount of feedback, (c) The amount of extra data commubitati

sample sizeV’, affects the estimators’ accuracy, by fixidg= is an error-burst (with probabilitf’; 5 = 0.2), the channel will
95%, k = 10,20 for the moment estimator, and = 50,150 switch to the bad state, wherein the packet loss of eachvecei
for the ML estimator. As expected, Fig. 3(b) shows that the uniformly distributed in the rang€).6,0.8]. The channel
estimators become more accurate and their variances reducswitches back to the good state with probability ¢ = 0.5 at
N’ increases. It is worth noting that for the moment estimat@ubsequent time slots.
a sample sizéV’ = 25 is sufficient to achieve good estimation, Similar to previous simulations, the source first transimits
i.e., within 4% of the empirical value. This implies that thepage, collects feedback, and estimatgdt then transmits the
overhead of usingRS can be made very small, since it roughlynext pages based on the estimate. The parameters are asfollo
corresponds taV’ feedback packets, as shown in Fig. 2(a). M = 50, N ranging from 20 to 60N’ = 20, £ = 10, and
0 = 95%. The results in Fig. 4(b) and Fig. 4(c) demonstrate
3) Varying the success probability §: We verify the accuracy that for these scenarios, the estimators still signifigargtiuce
of the estimators over a large range of desired success prigedback from the receivers. The extra communication due to
ability ¢, ranging from0.7 to 0.9995. The result (Fig. 3(c)) overestimating th&-reliable volume is slightly larger than in
shows that both estimators are accurate over the entireerarig.d. packet loss scenarios, but it is reasonable.
As one could expect, the estimation variance increasestigth  Both RS and FSLF can be adapted for time-varying chan-
stringency of the success probability. However, all estioma nels by repeatedly running the learning phase periodically
errors are within the order of 5% of the empirical value. depending on channel coherence times. From an engineering
perspective, slightly overestimating tldereliable volume and
C. Small Network and Non-i.i.d. Scenarios sending a few extra encoded packets will effectively entuae

: . at least) fraction of the receivers successfully decode the page.
We evaluate the estimators under a non-typical EVT scenario y pag

i.e., a network with small number of receivers that have non-
i.i.d. packet loss rates. We consider a two state errortburs
channel model in Fig. 4(a). When the receivers are in a good
channel state their packet loss rates are heterogeneadsmnanin this section, we enhance an over-the-air programming pro
variables uniformly distributed in the ranf& 0.2]. When there tocol for wireless sensor networks using the proposed exre

VIl. PROTOTYPEIMPLEMENTATION
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value techniques. Our modifications are based on Rateless
Deluge [4], which uses random linear codes for efficient
file distribution to wireless sensors. The performance dhbo
protocols is compared using our Tmote sky [12] testbed ak wel
as through the TOSSIM bit-level network simulator [13].

A. Setup

In our setup a file is divided into pages consisting of
20 packets, each with 23 bytes of payload. The packet loss rat
of each receiver is a uniform random variable in the rangg, [O.
0.2]. All sensors are within communication range and trahsm
at their highest power setting to ensure a good link, and gtacki9- 5. Tmote Sky sensors testbed with 14 motes.
loss at the receiver is forced by dropping packets uniforatly

random according to its own packet loss rate. All resultdis t Rateless Deluge | EV-QE Deluge
section represent an averagelofindependent trials. Number of Feedback Packets 77.8 17.3

A sensor requests encoded packets from the sender i Number of Data Packets 593.1 632.7
discovers that its neighbors have new data. The requesages [ 1. Completion Time (sec) 56.7 39.1

specifies the page number and the number of packets neeueu:
When a sensor receives enough packets, it can decode the pag®@. Rateless Deluge vs. EV-QE Deluge: 20 pagés— 12, M = 20,
successfully. A sensor suppresses its request if it hashemed heterogeneous packet loss.
similar requests by other sensors recently.

Here, we augment the original Rateless Deluge with the

extreme value quantile estimation technique, and refehéo treceivers here is small (12 sensor motes), we have the source
new protocol as EV-QE Deluge. To ensure a fair comparisagy|ject the feedback from every receiver after dissemiggtine
minimal modifications are made to Rateless Deluge. EV-Qfst page. NamelyN’ = N = 12 in the first experiment. The
Deluge operates in the same manner as Rateless Deluge WRgtmediate numbek is set to 5.
disseminating the first page, referred to tearning phase in  The results in Fig. 6 show that EV-QE Deluge sends out
Section V. The source then uses R@approach to collecN’  g|ightly more encoded packets (about 6%). However, it dras-
random feedback packets from the receivers and estimate thgca”y reduces the amount of feedback, which is only 17.3
reliable volume corresponding to success probability= 0.95.  packets on average. Note that this number includes the eadrh

In the transmission phase, the source initially disseminatesmessages in the learning phase for the estimation,afhich
a page based on the estimat@deliable volume. After that, is 12, aswell as the request messages when the source ti®nsmi
it waits for a certain amount of timelfcyore = 500 (MS), the first page using the original Rateless Deluge, whichd®8.
as in [1). In the case that a receiver requests additionglerage, as shown in Fig. 6. Therefore, with EV-QE Deluge, in
encoded packets during this interval, the packets are -trafife transmission phase, the average number of feedbacktsack
mitted. Otherwise the source proceeds to the next piigee s about 1.4 for 19 pages in total, indicating that most of the
that it is possible that the source will proceed to next paggne the entire network finishes receiving enough packeés af
without delivering the current page to all nodes. Howevelhe source’s first set of transmissions for each page. Béitey a

the underlying Deluge protocol, upon which EV-QE Delugg, accurately estimatg, EV-QE Deluge effectively reduces the
is based, guarantees that all data will be reliably dissateth oyerall data dissemination time by about 30%.

to all nodes eventually [1].

C. Large Scale Network Simulation with TOSSM

B. Tmote Sky Sensor Testbed We next compare the performance of both protocols in
The performance of EV-QE Deluge and the original Ratele3®©SSIM for a larger scale experiment. The energy consumptio
Deluge is first evaluated on a testbed with 14 Tmote SKgue to CPU and Radio) for both protocols is also monitored
sensors. One sensor serves as the file-sending base stadionttaough PowerTOSSIM [33]. The parameters for R&method
12 other sensors are receivers. The last sensor is useddta reare set toN’ = 30, k = 20.
network traffic. During each experiment, a new file is injecte The simulation results for varying number of receivé¥s
from a PC into the base station to disseminate to the receivetre shown in Fig. 7(a), 7(b) and 7(c). As expected, the number
The size of the file is 8518 bytes, which corresponds to 20 data packets sent out by EV-QE Deluge is slightly higher
pages using Rateless Deluge and EV-QE Deluge. We monitban Rateless Deluge. However, Esincreases, the number of
the network traffic due to the encoded packets transmitted a@eedback packets of EV-QE Deluge remains almost constant at
due to the encoded packet requests. We also record the loverdabut 50, including théV’ = 30 initial feedback packets for
completion time of disseminating the file. Since the number the source to estimaté&reliable volume. On the other hand,
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Fig. 7. Rateless Deluge vs. EV-QE Deluge, TOSSIM simulatfbpages,\/ = 20, heterogeneous packet loss, varying the number of reseiVer(a) Total
packets transmitted: forward and feedback channels, (mpBgion time, (c) Average energy consumption per receiver

the amount of feedback of Rateless Deluge increases wétbailable (previously decoded) at the receiver; becausRiX®
N. By reducing the control overhead, EV-QE Deluge is abkhe encoded packet with thege— 1 input packets reveals
to effectively reduce the overall completion time and egyergn unknown input packet. Otherwise the encoded packet is

consumption per receiver by about 30%. discarded by the receiver (instead of being stored for degod
at a later time, as is the case, for example, in LT [8] decoding
VIII. A PPLICATION TOREAL TIME OBLIVIOUS (RT) When an input packet is successfully decoded the receivgr ma
RATELESSCODES elect to send its decoding progress (the updated number of
A. RT Codes input packets decodedy) to the source if doing so changes

To further emphasize the general applicability of our ressul th%gﬁg.rde:ftﬁfezr;?nda?% g?gkf;ér']nE?ﬁét the case of a80UrC
we describe in this section application of extreme valué est : : X ing thi u

mators to real time (RT) oblivious codes. RT codes are eeasmtjrransm'ttmg M input packets tolV' receivers in a wireless

%nmunication environment with i.i.d. packet loss rateosse

correcting rateless codes which use a feedback channel fr . .
: . o the receivers. The value ofi across the receivers may vary
the receiver to the source in order to efficiently encode gtsck .~ .~ . .
significantly during decoding. In order to accommodate all

at the source. As compared to other rateless codes thateeqi . .
o e N receivers, the source has to encode packets using the
very few redundant packet transmissions, RT codes trade com

munication efficiency (encoded packets transmitted, faekip zmrilc-lzersetc\(/a?\l/:?s?/vfrirlll ﬁgltlicée:br;otrg égiorgg?g:rsécokggrw'se’
for lower processing overhead and lower memory requiremen o € pac '
owever, the most significant problem with this approach

at the receivers. To achieve this, a receiver discards an that th b t feedback kets f : i
encoded packet that cannot be decoded immediately; theref at the number of feedback packels irom recevers 1o
source grows a®(N+/M), as we shall demonstrate in

) o t
T encoded packets e cesgne to maximz e decodf 01U 7S 0L e o s o
Y y ) case in dense cellular and sensor networks, the source would

The RT encoder creates each encoded packet by combi
(XORing) d randomly-chosen input packets out of the rbe overwhelmed by the number of feedback packets.

total input packetsd < M), whered is the degree of the
encoded packet. Let be the number of input packets alreadys. Broadcasting Version of RT code

decoded at the receiver and reported to the source (encodet)y improve the applicability of RT codes in a broadcasting

via feedback. The degregis determined as follows scenario, we incorporate use of extreme value estimaticn te
M if m=M-—1 nigues. Thus, instead of collecting feedback from the wesi
d= { L%J otherwise, (24) 1o adjust the RT degree distribution of the encoded symbols

) N we propose to have the source accurately predict thesegsmin
The encoder continues transmitting encoded packets as @gs consider the same problem as in the previous sections, i.e

scribed above until the receiver has decoded all the i”pé’rbadcasting a file with multiple pages from a sourceMo
packetsi.e, until m = M. Using the construction in Eq. (24) receivers within its communication range. Each page ctmsis
the authors in [14] show that the expected number of encsding 17 packets. Encoding is done at the packet level using an
required for decoding\/ input packets is less thatl. The RT code. In the broadcasting version of RT code, the source
expected number of feedback messages from the receiveg t04Rjysts the degree of encoded packets according to the mumbe
source isO(v/M), and the total expected decoding complexityt decoded packets of each receiver using Eq. (24). Spatifica

of RT codes isO(M log M). let the number of input packets decoded at receivep be
A receiver can decode a degrdeencoded degree packet

if any d — 1 input packets used its construction are already!The terms ‘symbol’ and ‘packet’ are used interchangeabljhis text.
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my (n =1,.., N), then the source creates a degideencoded
packet according to the following equation,

de M if min, m, = M —1
R otherwise.

M —min, m.,

—e—Original RT code
[ |—=RT with EVT estimation
——RT with MAX estimation

w
o
o

n
a
o

(25)

In our approach, the source collects feedback in the form of
sample data from a few receivers and estimates the tramsitio
points when the encoded packets’ degrees are to be incre-
mented. In effect, the source broadcasts encoded packets an
adjusts their degrees according to the total number of esttod 54 ‘ ‘ ‘
packets already broadcast instead of relying on continuous 0 4?\jumberof ﬁ](:)utsymbolgo 100
feedback from the receivers.

Note that this problem differs from the previous sections if{9: 8. Expected number of transmissions from the souice- 100 receivers,

. . . . . packet loss rates are distributed uniformly at random fr@% o 20%, varying

that here the estimation is performed to predicttiple transi- the number of input packets. 95% confidence interval. Awlagver 100
tion points at a time. Specifically, denote By ,,, the number iterations.
of encoded packets the source needs to broadcast formtmle
be able to decode: input packets. The source can determine
the degree of the encoded packets with information aput
from all receivers. For example, if according to the origina
RT code design, the degree of the encoded packétviden
all receivers have decoded packets, then alternatively, the
source can adjust the degree todwhenmax,, 6, ,, packets
have been sent. Therefore, the problem becomes to estimate
maxy, 0, ., by only collecting a small amount of feedback when
transmitting the first page, instead of continuously caifer
feedback from all receivers for each page.

Our goal is to sample and analyze a fixed number of feedback 1ok ‘ ‘ ‘ ‘
packets in the broadcast of the first page of a file, in order 20 “Number of iaut symbole. 100
to estimate thej-reliable volume t5 of each instance in the
RT code design when the degree of encoded symbols chan§@s.9-  Expected number of feedback packets while varyirg iimber
We can then reduce the ampunt of feedback while transmittiﬁlﬁg}%‘?#ﬁfiﬂ%ﬂj% ffonlqofo'(;)pg ;&%e\z;ﬁfﬁﬁg Iﬁj;gztregfeﬁrg'sgg%md
subsequent pages by having the source broadcast enca@eftience interval. Averaged over 100 iterations.
packets according to the estimation instead of feedbaak fro
the receivers.

The sampling technique used here is random sampling, i i )
i.e., RS as described in Section V-A. For simplicity, we only In the fol_lowmg simulations we evaluate the_performance
consider the moment estimator. Similar to EV-QE Deluge, OBF the original RT code, R§ and RT code with another

proposed RT code with EVT estimation technique first obtaiﬁgnple estimation technique (labeled MAX estimation). Wit

estimations by transmitting the first page. It then usesahetg'e MAX estimation, the source determines the degree by

H H H H ! /
estimations for the transmission of the rest of the pagexftéf smplg takmgea maxm;lum OcI ;he.glveri;v (N < N) _sampfleh
the transmission of a page, there remain one or more reseiVi@@ f1.m, . On’m, collected during the transmission of the

which have not finished receiving it, the source switcheskbaErSt page. Namely, ins_teaq of performing extrapolatiomgsi
to the original RT code. Eq. (5), the MAX estimation simply uses the largest order

statistic, i.e.,max; .y 6, t0o estimate the actual shifting
point, maxy . v 0,,.. Note that while this approach is simple,
C. RT Codes Smulation Results it generally underestimates the transition point, sinesstmple
We evaluate the performance of our EVT-based broadcastiige is much smaller than the number of receivers in the
version of RT code, namely, RTscheme (labeled EVT estima-network. Moreover, this simple approach does not provide an
tion in the figures). The number of receivers in the network relationship between the number of packets broadcasteleby t
N = 100. We assume the packet loss rates across the receigsrgrce and the probability of successfully delivering thggs.
are heterogeneous, unknown, and they are i.i.d and unijorml Figs. 8 and 9 plot the average number of encoded packets and
distributed between 10% and 20%. The sample siz&®fs the average number of feedback packets needed to guarantee
15 and the intermediate number for extreme value estimatorcompletion across all receivers for the original RT code, TEV
k = 10. The success probability associated with each transitiestimation and MAX estimation. Both estimation techniques
point to estimate i = 99%. The simulation results shown hereneed slightly more encoded packets than the original RT<ode
represent an average over 100 independent identicalidiesat The difference in the number of encoded packets required

Number of encoded symbols required
n
o
o

10

10* //°
/ —=—Original RT code

—=—RT with EVT estimation
3 ——RT with MAX estimation

10

> —
T

T

102 f——o —

Average number of feedback packets
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—=—0Original RT code
—=—RT with EVT estimation
320} | -~ RT with MAX estimation

—=—Original RT code —
—=—RT with EVT estimation
——RT with MAX estimation

Number of encoded symbols required

Average number of feedback packets

N
D
o

[N)

5
o2
=)

100 150 200 10 ‘ ‘ :
" 50 100 150 200
Number of receivers Number of receivers

Fig. 10. Original RT vs. modified RT, expected completiongim/ = 100 Fig. 11
input packets, packet loss rates are distributed uniformisandom from 10% s
to 20%, varying the number of receivers. 95% confidence JateAveraged
over 100 iterations.

Expected number of feedback packets while varyirgnumber of
receivers.M = 100 input packets, packet loss rates are distributed uniformly
at random from 10% to 20%, varying the number of receiver$o @bnfidence
interval. Averaged over 100 iterations.

by EVT estimation and the original RT code remains almoa

constant even as the number of input packét ncreases. aboutwhich specific packets require retransmission (i.e., they

However, both the EVT and MAX estimation techniques dra%’nly need to indicate theumber of missing packets). Following

t|cally_r§'duce the amount of feedback required as comparedat short learning phase, EVT estimation nearly suppresses
the original RT codes.

L . edback packets and retransmissions altogether by [pngvid
MAX estimation transmits less encoded packets than E\&) P g y

L : ) . urce with an accurate prediction of the number of redundan
estimation because it underestimates the time to change %%ket transmissions neededur mechanisms. based on the
degree. This is because MAX estimation may fail to tal ’

int ¢ | . d theref be t symptotically exact) moment and ML estimators in extreme
Into account very Slow TECEIVErs, and may therefore be lue theory, offer major scalability benefits because €l e
optimistic about the decoding rate of the estimated slow

. . . . . o tion of per-receiver packet loss probabilities is nourezg;
receiver. This results in receivers fa_lllng_back to the i@ RT 2) the amount of feedback used to estimate redundancy is
scheme more often with MAX estimation and, consequent

o early constant; (3) accuracy improves with growth in the
significantly more feedback. numger of receive(rs) y Imp 9
In Figs. 10 and 11, we compare the performance of theWe introduce two new protocol®S andFSLF, for wireless

different schemes while varying the number of receivers. ta broadcastingWe show thatFSLF using the moment
report the average number of encoded packets required and gy -+, provides the best trade-off in terms of obtairiig

number of_feedback p_ackets needed to guarantee complet timation accuracy while maintaining low feedback. Wenthe
For all sizes of receiver populations, the number of encod

- . Urther investigate the impact of the system parameterden t
packets tran§m|35|qns Feq”'fed by the EVT and MAX eSlistimation result through simulation and provide guidedin
mation techmgges is slightly larger (10% 20%) than that for practical implementationWe also demonstrate practical
re_quwed by original RT cc_)des, and appears to grow Sudeineafeasibility of our proposed approach by integratiRginto the

with the number of recelvers. Or! the other _han(_j, the nur_nqsételess Deluge OAP protocol on a testbed of T-sky sensor
of feedback packets required using the estimation teCIE"E"qlllnotes. Our experimental and simulation results indicat@% 3

Is drastically ;maller (revealing a .reduction by a muln'ptiv-e reduction in latency and energy consumption, an improvémen
factor of 60 with MAX and 150 with EVT) than that requwedof particular significance for battery-limited wirelessvibes.

_by the original RT codesThough the size of fet_adback packets Finally, we incorporate use of EVT estimation into RT codes

IS generall)_/ smaller thaf‘ the_lt of data p_ackets, Ih many aiees under a broadcasting scenario. We employ EVT to estimate the

difference is not very significant. For instance, in Tinya$ [ y5nsition points (i.e., the number of packets transmissio

the.default ”.‘?Xim“m packet §ize_ (including headers) is 365byat which a source changes the degree of encoded packets.

while the minimum packet size is 13 bytes. Our simulations show that such an approach reduces the total

number of feedback packets by a factor of 100 compared

IX. CONCLUDING REMARKS to original RT codes. These results demonstrate the wide

In this paper, we propose novel, on-line prediction mecsrasi applicability of our protocols to improving the performanef

for data dissemination in wireless networks with heteregers any broadcasting application making use of feedback.
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