Bounding the Covering Radius

Our first bound is a recursive upper bound on the covering radius $ \rho_{m}^{}$ of the m-th code of an arbitrary $\ensuremath{{\mathfrak{G}}}$-family. We shall use the term $ \Delta_{m}^{}$ to refer to the corresponding term in Definition 1 for this m-th code.

Lemma 1   For any $\ensuremath{{\mathfrak{G}}}$-family of codes and m > 1,

\begin{displaymath}
\rho_m \ \leq \ \ensuremath {\left\lfloor \frac{d}{2} \right\rfloor}+\rho_{m-1}.
\end{displaymath}

Proof: Consider constructing $ \mathfrak{G}_{m}^{}$ from $ \mathfrak{G}_{m-1}^{}$ using Theorem 3. Any two coset leaders l and $ \kappa$(l ) of $ \mathfrak{G}_{m-1}^{}$ must each have weight at most $ \rho_{m-1}^{}$, by the definition of the covering radius. Consider the weight of a corresponding coset leader of $ \mathfrak{G}_{m}^{}$, based on Theorem 3:

min $\displaystyle \left\{\vphantom{\ensuremath{\operatorname{wt}}(a \mid l), \ensuremath{\operatorname{wt}}\left(\bar{a} \mid \kappa_v(l)\right)}\right.$wt(a | l ), wt$\displaystyle \left(\vphantom{\bar{a} \mid \kappa_v(l)}\right.$$\displaystyle \bar{a}$ | $\displaystyle \kappa_{v}^{}$(l )$\displaystyle \left.\vphantom{\bar{a} \mid \kappa_v(l)}\right)$$\displaystyle \left.\vphantom{\ensuremath{\operatorname{wt}}(a \mid l), \ensuremath{\operatorname{wt}}\left(\bar{a} \mid \kappa_v(l)\right)}\right\}$    
  $\displaystyle \leq \min \left\{\ensuremath{\operatorname{wt}}(a)+\rho_{m-1}, \ensuremath{\operatorname{wt}}(\bar{a})+\rho_{m-1} \right\}$    
  $\displaystyle \leq \ensuremath {\left\lfloor {\Delta_m}/2 \right\rfloor}+ \rho_{m-1}$    

for all a$ \mbox{$ \inn $}$$ \mathbb {F}$2$\scriptstyle \Delta_{m}$. Since the $\ensuremath{{\mathfrak{G}}}$-construction implicitly demands that $ \Delta_{m}^{}$ $ \leq$ d, we may conclude that any coset leader of $ \mathfrak{G}_{m}^{}$ must have weight no greater than

\begin{displaymath}
\ensuremath {\left\lfloor \frac{d}{2} \right\rfloor}+ \rho_{m-1}
\end{displaymath}

which bounds the covering radius of $ \mathfrak{G}_{m}^{}$ and proves the lemma.

width4pt depth2pt height6pt

With some combinatorial analysis, we can also establish a recursive lower bound on the covering radius of $\ensuremath{{\mathfrak{G}}}$-codes. Specifically, we shall make use of the following simple combinatorial lemma, which we provide without proof.

Lemma 2   If a > 3b > 0 then

a$\displaystyle \chooseb$ > $\displaystyle \sum_{i=0}^{b-1}$a$\displaystyle \choosei$. (10)

Theorem 4   For any $\ensuremath{{\mathfrak{G}}}$-family of codes whose seed code has length

\begin{displaymath}
n_0 > 3 \ensuremath {\left\lfloor \frac{d-1}{2} \right\rfloor},
\end{displaymath}

it necessarily follows that

\begin{displaymath}
\rho_m \ \geq \ \ensuremath {\left\lfloor \frac{d-1}{2} \ri...
...nsuremath {\left\lfloor \frac{d-\rho_{m-1}}{2} \right\rfloor}.
\end{displaymath}

Proof: Following convention, we let $t = \ensuremath {\left\lfloor (d-1)/2 \right\rfloor}$ denote the number of errors that the codes of a $\ensuremath{{\mathfrak{G}}}$-family can correct. It is well-known that each vector in $ \mathbb {F}$2nm - 1 of weight $ \leq$ t must be a unique coset leader for $ \mathfrak{G}_{m-1}^{}$. Moreover, using our assumption about n0 (which also holds for nm, since nm $ \geq$ n0), Lemma 2 implies that

nm - 1$\displaystyle \choose {t}$  >  $\displaystyle \sum_{i=0}^{t-1}$nm - 1$\displaystyle \choosei$. (11)

The left-hand side of (14) is the number of vectors of weight t, while the right-hand side is the number of vectors of weight < t. Thus, by the pigeon-hole principle, there must be at least one coset leader $l\mbox{$\,\inn\,$}\ensuremath{ {\mathfrak{G}}_{m-1}}$ of weight t whose companion $ \kappa$(l ) has weight at least t. Since $ \Delta_{m}^{}$ $ \geq$ d - $ \rho_{m-1}^{}$ for any $\ensuremath{{\mathfrak{G}}}$-code, we may choose $a=0^{\ensuremath {\left\lfloor {\Delta_m}/2 \right\rfloor}}1^{\ensuremath {\left\lceil {\Delta_m}/2 \right\rceil}}$ to get:

$\displaystyle \rho_{m}^{}$ $\displaystyle \geq$ min$\displaystyle \left\{\vphantom{wt(\langle a \mid l\rangle),
\ensuremath{\operatorname{wt}}\left( \langle \bar{a} \mid \kappa_v(l) \rangle \right)}\right.$wt($\displaystyle \langle$a | l$\displaystyle \rangle$), wt$\displaystyle \left(\vphantom{ \langle \bar{a} \mid \kappa_v(l) \rangle }\right.$$\displaystyle \langle$$\displaystyle \bar{a}$ | $\displaystyle \kappa_{v}^{}$(l )$\displaystyle \rangle$$\displaystyle \left.\vphantom{ \langle \bar{a} \mid \kappa_v(l) \rangle }\right)$$\displaystyle \left.\vphantom{wt(\langle a \mid l\rangle),
\ensuremath{\operatorname{wt}}\left( \langle \bar{a} \mid \kappa_v(l) \rangle \right)}\right\}$  
  $\textstyle =$ $\displaystyle \ensuremath {\left\lfloor \frac{{\Delta_m}}{2} \right\rfloor}+ t$  
  $\textstyle \geq$ $\displaystyle \ensuremath {\left\lfloor \frac{d-\rho_{m-1}}{2} \right\rfloor}+ \ensuremath {\left\lfloor \frac{d-1}{2} \right\rfloor}.$  



width4pt depth2pt height6pt

The result in Theorem 4 also applies to all $ \mathfrak{G}$-families trivially seeded with the code $ \mathbb {S}$d.

Lemma 3   For any trivially seeded $\ensuremath{{\mathfrak{G}}}$-family of codes,

\begin{displaymath}
\rho_m \ \geq \ \ensuremath {\left\lfloor \frac{d-1}{2} \ri...
...nsuremath {\left\lfloor \frac{d-\rho_{m-1}}{2} \right\rfloor}.
\end{displaymath}

If a $\ensuremath{{\mathfrak{G}}}$-family is trivially seeded, then, necessarily, n0 = d and $\rho_0 = \ensuremath {\left\lfloor \frac{d}{2} \right\rfloor}$. Thus,

\begin{displaymath}
n_1 = n_0 + (d - \rho_0) = d + \ensuremath {\left\lceil \fra...
...ceil}> 3 \ensuremath {\left\lfloor \frac{d-1}{2} \right\rfloor}\end{displaymath}

so that Theorem 4 applies to the remaining codes in the family.

We now turn our attention to generating mappings which produce codes whose information rate is locally maximized. More specifically, for any code $\ensuremath{{\mathbb{C}}}$ with covering radius $ \rho_{\ensuremath{{\mathbb{C}}}}^{}$, we will consider only generating mappings f with the property that the Hamming distance from $\ensuremath{{\mathbb{C}}}$ to $f(\ensuremath{{\mathbb{C}}})$ is exactly $ \rho_{\ensuremath{{\mathbb{C}}}}^{}$. We will call such mappings minimal generating mappings, and the corresponding family of codes minimal $ \mathfrak{G}$-codes, because they locally minimize length (and hence locally maximize information rate) for a given dimension and minimum-distance.

As an example, the generating mappings for the traditional lexicodes and the trellis-oriented lexicodes are both minimal. We may now easily strengthen Lemma 1 by observing in its proof that $ \Delta_{m}^{}$ = d - $ \rho_{m-1}^{}$ for minimal $\ensuremath{{\mathfrak{G}}}$-codes.

Corollary 1   For any minimal $\ensuremath{{\mathfrak{G}}}$-family of codes,

\begin{displaymath}
\rho_m \ \leq \ \ensuremath {\left\lfloor \frac{d+\rho_{m-1}}{2} \right\rfloor}.
\end{displaymath}

The covering radius bounds we have developed for $\ensuremath{{\mathfrak{G}}}$-codes translate naturally to length bounds.